1
|
Zhu Z, Shi Y. Poly (ADP-ribose) polymerase inhibitors in cancer therapy. Chin Med J (Engl) 2025; 138:634-650. [PMID: 39932206 PMCID: PMC11925422 DOI: 10.1097/cm9.0000000000003471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 03/17/2025] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have emerged as critical agents for cancer therapy. By inhibiting the catalytic activity of PARP enzymes and trapping them in the DNA, PARPis disrupt DNA repair, ultimately leading to cell death, particularly in cancer cells with homologous recombination repair deficiencies, such as those harboring BRCA mutations. This review delves into the mechanisms of action of PARPis in anticancer treatments, including the inhibition of DNA repair, synthetic lethality, and replication stress. Furthermore, the clinical applications of PARPis in various cancers and their adverse effects as well as their combinations with other therapies and the mechanisms underlying resistance are summarized. This review provides comprehensive insights into the role and mechanisms of PARP and PARPis in DNA repair, with a particular focus on the potential of PARPi-based therapies in precision medicine for cancer treatment.
Collapse
Affiliation(s)
- Ziqi Zhu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
D'Agostino E, Mastrodomenico L, Ponzoni O, Baldessari C, Piombino C, Pipitone S, Giuseppa Vitale M, Sabbatini R, Dominici M, Toss A. Molecular characterization as new driver in prognostic signatures and therapeutic strategies for endometrial cancer. Cancer Treat Rev 2024; 126:102723. [PMID: 38555857 DOI: 10.1016/j.ctrv.2024.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Endometrial cancer (EC) incidence and mortality rates have been increasing, particularly among young females. Although more than 90% of ECs are sporadic, 5-10% are hereditary, a majority of which occurs within Hereditary Non-Polyposis Colorectal Cancer syndrome (HNPCC) or Lynch syndrome. The traditional histopathological classification differentiates EC between two main groups: type I (or endometrioid) and type II (including all other histopathological subtypes). However, this classification lacks reproducibility and does not account for the emerging molecular heterogeneity. In 2013, The Cancer Genome Atlas (TCGA) project proposed EC molecular classification defining four groups with different prognostic and predictive values and the current international guidelines are progressively establishing EC risk stratification and treatment based on both histopathological and molecular criteria. Our manuscript aims to summarize the current state of EC molecular characterizations, including germline alterations at the basis of hereditary EC predisposition, to discuss their clinical utility as prognostic and predictive markers.
Collapse
Affiliation(s)
- Elisa D'Agostino
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Luciana Mastrodomenico
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Ornella Ponzoni
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Cinzia Baldessari
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Claudia Piombino
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Giuseppa Vitale
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy.
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
3
|
Bian X, Sun C, Cheng J, Hong B. Targeting DNA Damage Repair and Immune Checkpoint Proteins for Optimizing the Treatment of Endometrial Cancer. Pharmaceutics 2023; 15:2241. [PMID: 37765210 PMCID: PMC10536053 DOI: 10.3390/pharmaceutics15092241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
The dependence of cancer cells on the DNA damage response (DDR) pathway for the repair of endogenous- or exogenous-factor-induced DNA damage has been extensively studied in various cancer types, including endometrial cancer (EC). Targeting one or more DNA damage repair protein with small molecules has shown encouraging treatment efficacy in preclinical and clinical models. However, the genes coding for DDR factors are rarely mutated in EC, limiting the utility of DDR inhibitors in this disease. In the current review, we recapitulate the functional role of the DNA repair system in the development and progression of cancer. Importantly, we discuss strategies that target DDR proteins, including PARP, CHK1 and WEE1, as monotherapies or in combination with cytotoxic agents in the treatment of EC and highlight the compounds currently being evaluated for their efficacy in EC in clinic. Recent studies indicate that the application of DNA damage agents in cancer cells leads to the activation of innate and adaptive immune responses; targeting immune checkpoint proteins could overcome the immune suppressive environment in tumors. We further summarize recently revolutionized immunotherapies that have been completed or are now being evaluated for their efficacy in advanced EC and propose future directions for the development of DDR-based cancer therapeutics in the treatment of EC.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Jin Cheng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Dall G, Vandenberg CJ, Nesic K, Ratnayake G, Zhu W, Vissers JHA, Bedő J, Penington J, Wakefield MJ, Kee D, Carmagnac A, Lim R, Shield-Artin K, Milesi B, Lobley A, Kyran EL, O'Grady E, Tram J, Zhou W, Nugawela D, Stewart KP, Caldwell R, Papadopoulos L, Ng AP, Dobrovic A, Fox SB, McNally O, Power JD, Meniawy T, Tan TH, Collins IM, Klein O, Barnett S, Olesen I, Hamilton A, Hofmann O, Grimmond S, Papenfuss AT, Scott CL, Barker HE. Targeting homologous recombination deficiency in uterine leiomyosarcoma. J Exp Clin Cancer Res 2023; 42:112. [PMID: 37143137 PMCID: PMC10157936 DOI: 10.1186/s13046-023-02687-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.
Collapse
Affiliation(s)
- Genevieve Dall
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cassandra J Vandenberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Wenying Zhu
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph H A Vissers
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Justin Bedő
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Computing and Information Systems, the University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jocelyn Penington
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Matthew J Wakefield
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Damien Kee
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Amandine Carmagnac
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Ratana Lim
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kristy Shield-Artin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Briony Milesi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Amanda Lobley
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Elizabeth L Kyran
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Emily O'Grady
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Joshua Tram
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Warren Zhou
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Devindee Nugawela
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kym Pham Stewart
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Reece Caldwell
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
| | - Lia Papadopoulos
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
| | - Ashley P Ng
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
| | | | - Stephen B Fox
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Orla McNally
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jeremy D Power
- Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Tarek Meniawy
- University of Western Australia, Perth, WA, 6009, Australia
| | - Teng Han Tan
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Ian M Collins
- SouthWest Healthcare, Warrnambool, VIC, 3280, Australia
- Faculty of Health, School of Medicine, Deakin University, Warrnambool, VIC, 3280, Australia
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - Stephen Barnett
- Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
- Western Hospital, Footscray, VIC, 3011, Australia
| | - Inger Olesen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- University Hospital Geelong, Geelong, VIC, 3220, Australia
| | - Anne Hamilton
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Oliver Hofmann
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sean Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Clare L Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Australian Rare Cancer Portal, BioGrid Australia, Melbourne Health, Parkville, VIC, 3052, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Holly E Barker
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
5
|
Madariaga A, Garg S, Tchrakian N, Dhani NC, Jimenez W, Welch S, MacKay H, Ethier JL, Gilbert L, Li X, Rodriguez A, Chan L, Bowering V, Clarke B, Zhang T, King I, Downs G, Stockley T, Wang L, Udagani S, Oza AM, Lheureux S. Clinical outcome and biomarker assessments of a multi-centre phase II trial assessing niraparib with or without dostarlimab in recurrent endometrial carcinoma. Nat Commun 2023; 14:1452. [PMID: 36922497 PMCID: PMC10017680 DOI: 10.1038/s41467-023-37084-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
This multi-centre, non-randomized, open-label, phase II trial (NCT03016338), assessed niraparib monotherapy (cohort 1, C1), or niraparib and dostarlimab (cohort 2, C2) in patients with recurrent serous or endometrioid endometrial carcinoma. The primary endpoint was clinical benefit rate (CBR), with ≥5/22 overall considered of interest. Secondary outcomes were safety, objective response rate (ORR), duration of response, progression free survival and overall survival. Translational research was an exploratory outcome. Potential biomarkers were evaluated in archival tissue by immunohistochemistry and next generation sequencing panel. In C1, 25 patients were enrolled, and CBR was 20% (95% CI: 9-39) with median clinical benefit duration of 5.3 months. The ORR was 4% (95% CI: 0-20). In C2, 22 patients were enrolled, and the CBR was 31.8% (95% CI: 16-53) with median clinical benefit duration of 6.8 months. The ORR was 14% (95% CI: 3-35). No new safety signals were detected. No significant association was detected between clinical benefit and IHC markers (PTEN, p53, MMR, PD-L1), or molecular profiling (PTEN, TP53, homologous recombination repair genes). In conclusion, niraparib monotherapy did not meet the efficacy threshold. Niraparib in combination with dostarlimab showed modest activity.
Collapse
Affiliation(s)
- Ainhoa Madariaga
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
- Autonomous University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, 12 de Octubre University Hospital, Madrid, Spain
| | - Swati Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nairi Tchrakian
- University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, University Health Network, Toronto, ON, Canada
| | - Neesha C Dhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Waldo Jimenez
- Division of Gynecologic Oncology, Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Stephen Welch
- Division of Medical Oncology and Hematology, London Health Sciences Center, London Regional Cancer Program, London, ON, Canada
| | - Helen MacKay
- Division of Medical Oncology and Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Josee-Lyne Ethier
- Division of Medical Oncology and Hematology, Kingston Health Sciences Cancer Centre, Kingston, ON, Canada
| | - Lucy Gilbert
- Division of Gynecologic Oncology, McGill University Health Centre, Royal Victoria Hospital, Montréal, QC, Canada
| | - Xuan Li
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Angela Rodriguez
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lucy Chan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Valerie Bowering
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Blaise Clarke
- University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, University Health Network, Toronto, ON, Canada
| | - Tong Zhang
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ian King
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gregory Downs
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tracy Stockley
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Lisa Wang
- University of Toronto, Toronto, ON, Canada
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Smitha Udagani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Tronconi F, Nero C, Giudice E, Salutari V, Musacchio L, Ricci C, Carbone MV, Ghizzoni V, Perri MT, Camarda F, Gentile M, Berardi R, Scambia G, Lorusso D. Advanced and recurrent endometrial cancer: State of the art and future perspectives. Crit Rev Oncol Hematol 2022; 180:103851. [PMID: 36257537 DOI: 10.1016/j.critrevonc.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with primary metastatic/recurrent endometrial cancer have poor prognosis and available therapeutic options are limited. Current treatment is mainly based on platinum-based chemotherapy. Recently, the Food and Drug Administration (FDA) granted approval for the combination of pembrolizumab and lenvatinib for endometrial cancer patients without microsatellite instability (MSS) progressing on a previous line of therapy while European Medicines Agency (EMA) approved the combination for all comers patients failing previous platinum treatment. Anti programmed cell death protein-1 (PD-1) dostarlimab (TSR-042) was approved as monotherapy in patients with advanced, microsatellite instable (MSI) endometrial cancer progressing to platinum treatment. Phase II-III clinical trials in metastatic endometrial cancer are mainly focused on target therapies and immunotherapy as single agents or in combination. Unfortunately, most of these trials are lacking of predictive biomarkers of response to select patients most or at least likely to benefit from those treatments.
Collapse
Affiliation(s)
- Francesca Tronconi
- Oncologic Clinic, Università Politecnica delle Marche, Via Conca 71, 60126 Torrette, Ancona, Italy; Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Camilla Nero
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Elena Giudice
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Roma, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Vanda Salutari
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Lucia Musacchio
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Caterina Ricci
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Maria Vittoria Carbone
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Viola Ghizzoni
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Maria Teresa Perri
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Roma, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Floriana Camarda
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Medical Oncology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Marica Gentile
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, BA, Italy
| | - Rossana Berardi
- Oncologic Clinic, Università Politecnica delle Marche, Via Conca 71, 60126 Torrette, Ancona, Italy
| | - Giovanni Scambia
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Roma, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Domenica Lorusso
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Roma, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
7
|
Identification of NRAS Diagnostic Biomarkers and Drug Targets for Endometrial Cancer-An Integrated in Silico Approach. Int J Mol Sci 2022; 23:ijms232214285. [PMID: 36430761 PMCID: PMC9692821 DOI: 10.3390/ijms232214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
The diagnosis of endometrial cancer involves sequential, invasive tests to assess the thickness of the endometrium by a transvaginal ultrasound scan. In 6−33% of cases, endometrial biopsy results in inadequate tissue for a conclusive pathological diagnosis and 6% of postmenopausal women with non-diagnostic specimens are later discovered to have severe endometrial lesions. Thus, identifying diagnostic biomarkers could offer a non-invasive diagnosis for community or home-based triage of symptomatic or asymptomatic women. Herein, this study identified high-risk pathogenic nsSNPs in the NRAS gene. The nsSNPs of NRAS were retrieved from the NCBI database. PROVEAN, SIFT, PolyPhen-2, SNPs&GO, PhD-SNP and PANTHER were used to predict the pathogenicity of the nsSNPs. Eleven nsSNPs were identified as “damaging”, and further stability analysis using I-Mutant 2.0 and MutPred 2 indicated eight nsSNPs to cause decreased stability (DDG scores < −0.5). Post-translational modification and protein−protein interactions (PPI) analysis showed putative phosphorylation sites. The PPI network indicated a GFR-MAPK signalling pathway with higher node degrees that were further evaluated for drug targets. The P34L, G12C and Y64D showed significantly lower binding affinity towards GTP than wild-type. Furthermore, the Kaplan−Meier bioinformatics analyses indicated that the NRAS gene deregulation affected the overall survival rate of patients with endometrial cancer, leading to prognostic significance. Findings from this could be considered novel diagnostic and therapeutic markers.
Collapse
|
8
|
Liu J, Geng R, Yang S, Shao F, Zhong Z, Yang M, Ni S, Cai L, Bai J. Development and Clinical Validation of Novel 8-Gene Prognostic Signature Associated With the Proportion of Regulatory T Cells by Weighted Gene Co-Expression Network Analysis in Uterine Corpus Endometrial Carcinoma. Front Immunol 2021; 12:788431. [PMID: 34970268 PMCID: PMC8712567 DOI: 10.3389/fimmu.2021.788431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC) is a gynecological malignant tumor with low survival rate and poor prognosis. The traditional clinicopathological staging is insufficient to estimate the prognosis of UCEC. It is necessary to select a more effective prognostic signature of UCEC to predict the prognosis and immunotherapy effect of UCEC. Methods CIBERSORT and weighted correlation network analysis (WGCNA) algorithms were combined to screen modules related to regulatory T (Treg) cells. Subsequently, univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were used to identify the genes in key modules. The difference in overall survival (OS) between high- and low-risk patients was analyzed by Kaplan-Meier analysis. The Tregs-related risk signature (TRRS) was screened by uni- and multivariate Cox analyses. Afterward, we analyzed the expression difference of TRRS and verified its ability to predict the prognosis of UCEC and the effect of immunotherapy. Results Red module has the highest correlation with Tregs among all clustered modules. Pathways enrichment indicated that the related processes of UCEC were primarily associated to the immune system. Eight genes (ZSWIM1, NPRL3, GOLGA7, ST6GALNAC4, CDC16, ITPK1, PCSK4, and CORO1B) were selected to construct TRRS. We found that this TRRS is a significantly independent prognostic factor of UCEC. Low-risk patients have higher overall survival than high-risk patients. The immune status of different groups was different, and tumor-related pathways were enriched in patients with higher risk score. Low-risk patients are more likely take higher tumor mutation burden (TMB). Meanwhile, they are more sensitive to chemotherapy than patients with high-risk score, which indicated a superior prognosis. Immune checkpoints such as PD-1, CTLA4, PD-L1, and PD-L2 all had a higher expression level in low-risk group. TRRS expression really has a relevance with the sensitivity of UCEC patients to chemotherapeutic drugs. Conclusion We developed and validated a TRRS to estimate the prognosis and reflect the immune status of UCEC, which could accurately assess the prognosis of patients with UCEC and supply personalized treatments for them.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Geng
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Fang Shao
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Min Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Lixin Cai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Le Gac M, Koual M, Delanoy N, Perkins G, Nguyen-Xuan HT, Blons H, Le Frère-Belda MA, Laurent-Puig P, Bentivegna E, Durdux C, Azaïs H, Bats AS. [Place of PARP inhibitors in the treatment of endometrial and cervical cancers]. Bull Cancer 2021; 109:65-75. [PMID: 34801228 DOI: 10.1016/j.bulcan.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
New molecular therapeutic approaches have emerged in recent years for advanced gynaecological cancers, including targeted therapies such as poly-ADP-ribose polymerase inhibitors (PARPi). These have demonstrated efficacy in high-grade serous ovarian cancers in patients carrying a mutation in the BRCA gene, which predisposes them to breast and ovarian cancers. Clinical and pre-clinical data suggest that the activity of PARPi inhibitors may not be limited to BRCA mutated tumours and may involve the homologous recombination pathway. These data raise the question of the potential efficacy of PARPi in advanced endometrial and cervical cancers where treatment options are currently limited. At present, there are few data available on the activity of PARPi in endometrial and cervical cancers, but some results seem promising. In this review, we present a synthesis of the available studies concerning PARPi in endometrial and cervical cancer.
Collapse
Affiliation(s)
- Marjolaine Le Gac
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| | - Meriem Koual
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Inserm UMR-S 1124, université de Paris, centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75006 Paris, France
| | - Nicolas Delanoy
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Géraldine Perkins
- Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncogénétique, 75015 Paris, France
| | - Huyên-Thu Nguyen-Xuan
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Hélène Blons
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, biochimie, 75015 Paris, France
| | | | - Pierre Laurent-Puig
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Enrica Bentivegna
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Catherine Durdux
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Henri Azaïs
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Anne-Sophie Bats
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France
| |
Collapse
|
10
|
Ding L, Li H, Wang Y. Application of Jianpi Xiaoai Recipe Combined with Cisplatin and Adriamycin in the Treatment of Endometrial Cancer and Its Effect on Disease Control Rate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2258183. [PMID: 34621319 PMCID: PMC8492281 DOI: 10.1155/2021/2258183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the application of Jianpi Xiaoai recipe combined with cisplatin and Adriamycin in the treatment of endometrial cancer (EC) and its effect on the disease control rate (DCR). METHODS The data of 120 EC patients treated in People's Hospital of Rizhao from February 2019 to February 2020 were retrospectively analyzed. They were equally split into experimental group and control group according to the order of admission. All patients were treated with neoadjuvant intra-arterial chemotherapy (continuous infusion of the uterine artery for 5 days before surgery, with 20 mg of cisplatin mixed with 2000 mg of normal saline and 10 mg of Adriamycin mixed with 500 ml of normal saline daily), while the experimental group was treated with Jianpi Xiaoai recipe at the same time to compare the short-term efficacy, immune function indexes, incidence of adverse reactions, and HEC-1-B (human endometrial adenocarcinoma cells) cell inhibition rates between the two groups. RESULTS The DCR and objective remission rate (ORR) in the experimental group were markedly higher compared with the control group (P < 0.05). The immune function indexes after treatment were remarkably better in the experimental group than in the control group (P < 0.05). Compared with the control group, the incidence of adverse reactions in the experimental group was notably lower (P < 0.05), while the HEC-1-B inhibition rates after treatment were obviously higher (P < 0.05). CONCLUSION Jianpi Xiaoai recipe combined with cisplatin and Adriamycin can increase the HEC-1-B cell inhibition rate in EC patients, improve their immune function, reduce the possibility of adverse reactions, and enhance the therapeutic effect, which is worthy of clinical application and popularization.
Collapse
Affiliation(s)
- Li Ding
- Department of Gynaecology, People's Hospital of Rizhao, Rizhao 276826, Shandong, China
| | - Hongyu Li
- Department of Radiology, People's Hospital of Lixia District, Jinan 250013, Shandong, China
| | - Yuping Wang
- Department of Postpartum Rehabilitation, Zibo City Maternal and Child Health Care Hospital, Zibo 250031, Shandong, China
| |
Collapse
|
11
|
Shen K, Yang L, Li FY, Zhang F, Ding LL, Yang J, Lu J, Wang NN, Wang Y. Research progress of PARP inhibitor monotherapy and combination therapy for endometrial cancer. Curr Drug Targets 2021; 23:145-155. [PMID: 34139979 DOI: 10.2174/1389450122666210617111304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Endometrial cancer is one of the three most common malignant tumors in the female reproductive system. Advanced and recurrent endometrial cancers have poor prognoses and lack effective treatments. Poly(ADP-ribose) polymerase (PARP) inhibitors have been applied to many different types of tumors, and they can selectively kill tumor cells that are defective in homologous recombination repair. Endometrial cancer is characterized by mutations in homologous recombination repair genes; accordingly, PARP inhibitors have achieved positive results in off-label treatments of endometrial cancer cases. Clinical trials of PARP inhibitors as monotherapies and within combination therapies for endometrial cancer are ongoing. For this review, we searched PubMed with "endometrial cancer" and "PARP inhibitor" as keywords, and we used "olaparib", "rucaparib", "niraparib" and "talazoparib" as search terms in clinicaltrials.gov for ongoing trials. The literature search ended in October 2020, and only English-language publications were selected. Multiple studies confirm that PARP inhibitors play an important role in killing tumor cells with defects in homologous recombination repair. Its combination with immune checkpoint inhibitors, PI3K/AKT/mTOR pathway inhibitors, cell cycle checkpoint inhibitors, and other drugs can improve the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Ke Shen
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Li Yang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Fei-Yan Li
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Feng Zhang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Lei-Lei Ding
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Jing Yang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Jie Lu
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Nan-Nan Wang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Yan Wang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| |
Collapse
|
12
|
An olaparib window-of-opportunity trial in patients with early-stage endometrial carcinoma: POLEN study. Gynecol Oncol 2020; 159:721-731. [PMID: 32988624 DOI: 10.1016/j.ygyno.2020.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Olaparib is a potent inhibitor of poly(ADP-ribose) polymerase (PARP)-1, 2, and 3 with potential activity in endometrial cancer (EC). METHODS In this window-of-opportunity trial, women with operable type 1 EC received olaparib oral tablets (300mg) twice daily for 28days before surgery. The primary objective was to evaluate the effects of olaparib on EC in tissue samples taken at baseline and at treatment completion. Signal of activity was defined as significant changes in the expression of the cell cycle-related proteins cyclin D1, Ki67, and cleaved caspase-3. RESULTS A total of 31 patients were included in the biomarker analysis. The median time of olaparib exposure was 24 days (1-39). Significant inhibition was found for cyclin D1 (p < 0.01), but not for Ki67 and active caspase 3 immunostaining. PARP-1 levels positively correlated with cyclin D1 levels (rho = 0.661, p = 0.0001). Both PARP-1 and cyclin D1 levels were significantly lower (p = 0.022 and p = 0.004, respectively) in patients with ARID1A[-] tumors than ARID1A[+] tumors. A significant relationship between plasma olaparib concentrations and decreased GLUT1 activity was observed (r = -0.5885; p < 0.05). Drug-related toxicity consisted mostly of gastrointestinal and grade 1 or 2 adverse events. CONCLUSIONS Olaparib reduced expression of cyclin D1, which positively correlated with PARP-1 levels. This effect was more evident in ARID1A-deficient tumors. Olaparib further induced inhibition of GLUT1 plasma activity. Our findings could have noteworthy implications in predicting which patients with EC would benefit from olaparib-based strategies.
Collapse
|
13
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
14
|
Lee EK, Konstantinopoulos PA. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther Adv Med Oncol 2020; 12:1758835920944116. [PMID: 32782491 PMCID: PMC7383615 DOI: 10.1177/1758835920944116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Poly[adenosine diphosphate (ADP) ribose]polymerase (PARP) has multifaceted roles in the maintenance of genomic integrity, deoxyribonucleic acid (DNA) repair and replication, and the maintenance of immune-system homeostasis. PARP inhibitors are an attractive oncologic therapy, causing direct cancer cell cytotoxicity by propagating DNA damage and indirectly, by various mechanisms of immunostimulation, including activation of the cGAS/STING pathway, paracrine stimulation of dendritic cells, increased T-cell infiltration, and upregulation of death-ligand receptors to increase susceptibility to natural-killer-cell killing. However, these immunostimulatory effects are counterbalanced by PARPi-mediated upregulation of programmed cell-death-ligand 1 (PD-L1), which leads to immunosuppression. Combining PARP inhibition with immune-checkpoint blockade seeks to exploit the immune stimulatory effects of PARP inhibition while negating the immunosuppressive effects of PD-L1 upregulation.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Musacchio L, Caruso G, Pisano C, Cecere SC, Di Napoli M, Attademo L, Tambaro R, Russo D, Califano D, Palaia I, Muzii L, Benedetti Panici P, Pignata S. PARP Inhibitors in Endometrial Cancer: Current Status and Perspectives. Cancer Manag Res 2020; 12:6123-6135. [PMID: 32801862 PMCID: PMC7383016 DOI: 10.2147/cmar.s221001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Advanced, recurrent and metastatic endometrial cancer (EC) has a dismal prognosis due to poor response rates to conventional treatments. In the era of precision medicine, the improved understanding of cancer genetics and molecular biology has led to the development of targeted therapies, such as poly (ADP-ribose) polymerase (PARP) inhibitors. This class of drugs that inhibit PARP enzymes has been investigated in many different types of tumors and its use in the treatment of gynecological malignancies has rapidly increased over the past few years. Data from several clinical trials showed that PARP inhibitors have a beneficial role in cancers with a defect in the homologous DNA recombination system, regardless of the BRCA mutational status. Since EC frequently shows mutations in PTEN and TP53 genes, indirectly involved in the homologous DNA recombination pathway, several in vivo and in vitro studies investigated the efficacy of PARP inhibitors in EC, showing promising results. This review will discuss the use of PARP inhibitors in endometrial cancer, summarizing data from preclinical studies and providing an overview of the ongoing trials, with a special focus on the development of combined treatment strategies with PARP inhibitors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lucia Musacchio
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Giuseppe Caruso
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Carmela Pisano
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Sabrina Chiara Cecere
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Marilena Di Napoli
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Laura Attademo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rosa Tambaro
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Daniela Russo
- Functional Genomic Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Daniela Califano
- Functional Genomic Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
16
|
Inoue K, Tsubamoto H, Ueda T, Tajima C, Nakagomi N. Recurrent uterine serous carcinoma with a germline pathogenic BRCA2 variant treated using olaparib: A case report. Gynecol Oncol Rep 2020; 32:100563. [PMID: 32300630 PMCID: PMC7152717 DOI: 10.1016/j.gore.2020.100563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 12/27/2022] Open
Abstract
A germline pathogenic variant in BRCA2 was secondarily found through genomic sequencing of uterine serous carcinoma. Clinical response to olaparib was observed in recurrent uterine serous carcinoma with a germline BRCA2 mutation. Olaparib is a possible treatment option for uterine serous carcinomas with BRCA2 mutations.
A germline pathogenic variant in BRCA2 was secondarily found through genomic sequencing of uterine serous carcinoma. Clinical response to olaparib was observed in recurrent uterine serous carcinoma with a germline BRCA2 mutation. Here, we report, for the first time, a long-term clinical response to olaparib in a patient with uterine serous carcinoma and a germline pathogenic BRCA2 variant.
Collapse
Affiliation(s)
- Kayo Inoue
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Hiroshi Tsubamoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Tomoko Ueda
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Chihiro Tajima
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, Japan
| |
Collapse
|
17
|
Wang H, Tang Z, Li T, Liu M, Li Y, Xing B. CRISPR/Cas9-Mediated Gene Knockout of ARID1A Promotes Primary Progesterone Resistance by Downregulating Progesterone Receptor B in Endometrial Cancer Cells. Oncol Res 2019; 27:1051-1060. [PMID: 31072420 PMCID: PMC7848330 DOI: 10.3727/096504019x15561873320465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Medroxyprogesterone (MPA) is used for the conservative treatment of endometrial cancer. Unfortunately, progesterone resistance seriously affects its therapeutic effect. The purpose of the current study was to investigate the influence of deletion of AT-rich interactive domain 1A (ARID1A) in progesterone resistance in Ishikawa cells. Ablation of ARID1A was conducted through the CRISPR/Cas9 technology. Acquired progesterone-resistant Ishikawa (Ishikawa-PR) cells were generated by chronic exposure of Ishikawa cells to MPA. The sensitivity of the parental Ishikawa, Ishikawa-PR, and ARID1A-deficient cells to MPA and/or LY294002 was determined using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis. In addition, Western blot analysis and reverse transcription-polymerase chain reaction was performed to evaluate the mRNA and protein expression levels of ARID1A, progesterone receptor B (PRB), and P-AKT. Both Ishikawa-PR and ARID1A knockout cells showed insensitivity to MPA, downregulation of PRB, and hyperphosphorylation of AKT compared to the parental Ishikawa cells. Pretreatment with LY294002 significantly enhanced the ability of MPA to suppress proliferation and to induce apoptosis in the parental and Ishikawa-PR cells via the inhibition of AKT activation and upregulation of PRB transcriptional activity. However, the PRB transcriptional activity and insensitivity to MPA were irreversible by LY294002 in ARID1A-deficient cells. Ablation of ARID1A is associated with low PRB expression, which serves an important role in primary progesterone resistance. Akt inhibition cannot rescue PRB or sensitize to MPA in ARID1A knockout cells. These findings suggest that ARID1A may act as a reliable biomarker to predict the response for the combination of AKT inhibitor and MPA treatment.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Zhenghua Tang
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Ting Li
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Menglu Liu
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Yong Li
- Department of Gynecology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| | - Baoling Xing
- Department of Pathology, Changzhou Maternal and Child Health Hospital Affiliated to Nangjing Medical University, Changzhou, P.R. China
| |
Collapse
|
18
|
de Jonge MM, Auguste A, van Wijk LM, Schouten PC, Meijers M, Ter Haar NT, Smit VTHBM, Nout RA, Glaire MA, Church DN, Vrieling H, Job B, Boursin Y, de Kroon CD, Rouleau E, Leary A, Vreeswijk MPG, Bosse T. Frequent Homologous Recombination Deficiency in High-grade Endometrial Carcinomas. Clin Cancer Res 2019; 25:1087-1097. [PMID: 30413523 DOI: 10.1158/1078-0432.ccr-18-1443] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The elevated levels of somatic copy-number alterations (SCNAs) in a subset of high-risk endometrial cancers are suggestive of defects in pathways governing genome integrity. We sought to assess the prevalence of homologous recombination deficiency (HRD) in endometrial cancers and its association with histopathologic and molecular characteristics. EXPERIMENTAL DESIGN Fresh tumor tissue was prospectively collected from 36 endometrial cancers, and functional HRD was examined by the ability of replicating tumor cells to accumulate RAD51 protein at DNA double-strand breaks (RAD51 foci) induced by ionizing radiation. Genomic alterations were determined by next-generation sequencing and array comparative genomic hybridization/SNP array. The prevalence of BRCA-associated genomic scars, a surrogate marker for HRD, was determined in the The Cancer Genome Atlas (TCGA) endometrial cancer cohort. RESULTS Most endometrial cancers included in the final analysis (n = 25) were of non-endometrioid (52%), grade 3 (60%) histology, and FIGO stage I (72%). HRD was observed in 24% (n = 6) of cases and was restricted to non-endometrioid endometrial cancers (NEEC), with 46% of NEECs being HRD compared with none of the endometrioid endometrial cancers (EEC, P = 0.014). All but 1 of the HRD cases harbored either a pathogenic BRCA1 variant or high somatic copy-number (SCN) losses of HR genes. Analysis of TCGA cases supported these results, with BRCA-associated genomic scars present in up to 48% (63/132) of NEEC versus 12% (37/312) of EEC (P < 0.001). CONCLUSIONS HRD occurs in endometrial cancers and is largely restricted to non-endometrioid, TP53-mutant endometrial cancers. Evaluation of HRD may help select patients that could benefit from treatments targeting this defect, including platinum compounds and PARP inhibitors.
Collapse
Affiliation(s)
- Marthe M de Jonge
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aurélie Auguste
- INSERM U981, Gustave Roussy Cancer Center, Villejuif, France
| | - Lise M van Wijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Philip C Schouten
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matty Meijers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Natalja T Ter Haar
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark A Glaire
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David N Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastien Job
- Plateforme de Bioinformatique, UMS AMMICA, Gustave Roussy Cancer Center, Villejuif, France
| | - Yannick Boursin
- INSERM U981, Gustave Roussy Cancer Center, Villejuif, France
| | - Cor D de Kroon
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Etienne Rouleau
- Department of Genetics, Gustave Roussy Cancer Center, Villejuif, France
| | - Alexandra Leary
- INSERM U981, Gustave Roussy Cancer Center, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Center, Villejuif, France
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|