1
|
Rodolphi MS, Strogulski NR, Kopczynski A, Sartor M, Soares G, de Oliveira VG, Vinade L, Dal-Belo C, Portela JV, Geller CA, De Bastiani MA, Justus JS, Portela LOC, Smith DH, Portela LV. Nandrolone Abuse Prior to Head Trauma Mitigates Endoplasmic Reticulum Stress, Mitochondrial Bioenergetic Deficits, and Markers of Neurodegeneration. Mol Neurobiol 2025; 62:6951-6967. [PMID: 39313656 DOI: 10.1007/s12035-024-04488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
The abuse of synthetic steroids, such as nandrolone decanoate (ND), is often associated with violent behavior, increasing the risk of traumatic brain injury (TBI). After a TBI, proteins like APP, β-amyloid peptide-42 (Aβ42), and phosphorylated tau (pTau) accumulate and trigger endoplasmic reticulum (ER) stress associated with an unfolded protein response (UPR). The involvement of mitochondrial bioenergetics in this context remains unexplored. We interrogate whether the abuse of ND before TBI alters the responses of ER stress and mitochondrial bioenergetics in connection with neurodegeneration and memory processing in mice. Male CF1 adult mice were administered ND (15 mg/kg) or vehicle (VEH) s.c. for 19 days, coinciding with the peak day of aggressive behavior, and then underwent cortical controlled impact (CCI) or sham surgery. Spatial memory was assessed through the Morris water maze task (MWM) post-TBI. In synaptosome preparations, i) we challenged mitochondrial complexes (I, II, and V) in a respirometry assay, employing metabolic substrates, an uncoupler, and inhibitors; and ii) assessed molecular biomarkers through Western blot. TBI significantly increased APP, Aβ42, and pTauSer396 levels, along with ER-stress proteins, GRP78, ATF6, and CHOP, implying it primed apoptotic signaling. Concurrently, TBI reduced mitochondrial Ca2+ efflux in exchange with Na+, disturbed the formation/dissipation of membrane potential, increased H2O2 production, decreased biogenesis (PGC-1⍺ and TOM20), and ATP biosynthesis coupled with oxygen consumption. Unexpectedly, ND abuse before TBI attenuated the elevations in APP, Aβ42, and pTauSer396, accompanied by a decrease in GRP78, ATF6, and CHOP levels, and partial normalization of mitochondrial-related endpoints. A principal component analysis revealed a key hierarchical signature featuring mitochondrial Ca2+ efflux, CHOP, GRP78, TOM20, H2O2, and bioenergetic efficiency as a unique variable (PC1) able to explain the memory deficits caused by TBI, as well as the preservation of memory fitness induced by prior ND abuse.
Collapse
Affiliation(s)
- Marcelo S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Nathan R Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Leinster, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Monia Sartor
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Gabriela Soares
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Vitoria G de Oliveira
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Lucia Vinade
- Laboratory of Neurobiology and Toxinology (LANETOX), Universidade Federal Do Pampa (UNIPAMPA), São Gabriel, RS, Brazil
| | - Chariston Dal-Belo
- Laboratory of Neurobiology and Toxinology (LANETOX), Universidade Federal Do Pampa (UNIPAMPA), São Gabriel, RS, Brazil
- Departamento Multidisciplinar - Escola Paulista de Política, Economia E Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Osasco, SP, Brazil
| | - Juliana V Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Cesar A Geller
- Laboratory of Performance in Simulated Environment (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Marco A De Bastiani
- Zimmer Neuroimaging Lab, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jijo S Justus
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Luiz Osorio C Portela
- Laboratory of Performance in Simulated Environment (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis V Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
2
|
Dury LC, Yde Ohki CM, Lesch KP, Walitza S, Grünblatt E. The role of astrocytes in attention-deficit hyperactivity disorder: An update. Psychiatry Res 2025; 350:116558. [PMID: 40424648 DOI: 10.1016/j.psychres.2025.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Attention-deficit hyperactivity disorder (ADHD), the most prevalent neurodevelopmental disorder, is characterized by inattention, hyperactivity, and impulsivity, manifesting in distinct symptoms and varying degrees of severity among patients. While the cellular processes underlying the neurobiology of ADHD are still being explored, in vitro studies suggest the involvement of certain cellular pathways in its clinical manifestations. Neurodevelopmental disorders such as ADHD are caused by malfunctions in numerous cells in the central nervous system (CNS) throughout development; nevertheless, most of the research focuses on neuronal dysfunction. In the last decade, it has become evident that glia and astrocytes play a crucial role in neurodevelopmental processes, which, if deficient, may result in neurodevelopmental disorders. Besides contributing to homeostatic maintenance of the blood-brain barrier (BBB) and other glial cell types, astrocytes provide neurons with structural, trophic, and metabolic support, which is indispensable for their proper functionality. Emerging evidence implicates that astrocytes are involved in processes associated with the etiopathology of ADHD, including oxidative stress, aberrant synaptic formation, neuroinflammation, and excitatory/inhibitory imbalance. This review will summarize the current knowledge addressing astrocyte dysfunction in ADHD, the remaining caveats in clinical data, and the possibilities for drug therapy. Findings substantiated by in vivo, in vitro, and genetic data will be provided, along with the impact of methylphenidate on astrocyte condition.
Collapse
Affiliation(s)
- Louisa Charlotte Dury
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Biomedicine PhD Program, University of Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland
| | - Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Klaus-Peter Lesch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland.
| |
Collapse
|
3
|
Santos BM, de Souza JPA, Goulart LRDP, Petrine JCP, Alves FHF, Del Bianco-Borges B. Impacts of Anabolic-androgenic steroid supplementation on female health and offspring: Mechanisms, side effects, and medical perspectives. Saudi Pharm J 2024; 32:102205. [PMID: 39697477 PMCID: PMC11653648 DOI: 10.1016/j.jsps.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The increasing prevalence of Anabolic-androgenic steroids (AAS) among women, driven by the pursuit of improved body aesthetics, characterized by higher lean mass and reduced adipose tissue, raises significant health concerns, particularly due to the limited knowledge regarding their effects on the female organism. Prolonged use and/or high doses of AAS are linked to various harmful side effects, including mood changes, psychiatric disorders, voice deepening, clitoromegaly, menstrual irregularities, and cardiovascular complications, prompting medical societies to discourage their widespread use due to insufficient evidence supporting their safety and efficacy. Studies in female rodents have shown that AAS can lead to increased aggression, inflammation, reduced neuronal density, and negative impacts on the myocardium and blood vessels. Additionally, maternal administration of androgens during pregnancy can adversely affect offspring's reproductive, neuronal, and metabolic health, resulting in long-term impairments. The complexity of the mechanisms underlying AAS effects, and their potential genotoxicity remains poorly understood. This review aims to elucidate the various ways in which AAS can impact female physiology and that of their offspring, highlight commonly used anabolic substances, and discuss the positions of medical societies regarding AAS use.
Collapse
Affiliation(s)
- Beatriz Menegate Santos
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jessica Peres Alves de Souza
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Luísa Rodrigues de Paula Goulart
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jéssica Castro Pereira Petrine
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Fernando Henrique Ferrari Alves
- Institute of Science, Technology and Innovation – Federal University of Lavras, Jardim Califórnia Garden 37950-000, São Sebastião do Paraíso, Minas Gerais, Brazil
| | - Bruno Del Bianco-Borges
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| |
Collapse
|
4
|
Liang Q, Liu D, Zhu B, Wang F. NMDAR-CaMKII Pathway as a Central Regulator of Aggressiveness: Evidence from Transcriptomic and Metabolomic Analysis in Swimming Crabs Portunus trituberculatus. Int J Mol Sci 2024; 25:12560. [PMID: 39684272 DOI: 10.3390/ijms252312560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Aggressiveness is one of the personality traits of crustaceans, playing a crucial role in their growth, life history, and adaptability by influencing resource acquisition. However, the neuroregulatory mechanisms of aggressiveness in crustaceans remain poorly understood. The thoracic ganglion offers valuable insights into complementary aspects of aggression control. This study identified the aggressiveness of swimming crabs Portunus trituberculatus, conducted transcriptomic and metabolomic analyses of the thoracic ganglia, and confirmed the neural regulatory effects on aggressiveness. Behavioral analyses showed that highly aggressive individuals exhibited increased frequency and duration of chela extension, more frequent attacks, approaches and retreats, as well as extended movement distances. Omics analysis revealed 11 key candidate genes and three metabolites associated with aggressiveness, which were primarily enriched in pathways related to energy metabolism and neurodegeneration. Injection of an NMDAR activator significantly decreased aggressiveness in highly aggressive crabs, accompanied by a significant increase in NMDAR protein fluorescence intensity and downregulation of NR2B, CaMKII, and CREB genes. Conversely, when lowly aggressive crabs were injected with an NMDAR inhibitor, they showed increased aggressiveness alongside significantly decreased NMDAR protein fluorescence intensity, upregulated NR2B expression, and downregulated CaMKII and CREB genes. These results suggest that NMDAR within the thoracic ganglia serves as a key receptor in modulating aggressiveness in P. trituberculatus, potentially by influencing neural energy state via the NMDAR-CaMKII pathway, which in turn affects oxidative phosphorylation, cAMP, and FoxO pathways.
Collapse
Affiliation(s)
- Qihang Liang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dapeng Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Boshan Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
6
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 PMCID: PMC12042733 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
7
|
Strogulski NR, Kopczynski A, de Oliveira VG, Carteri RB, Hansel G, Venturin GT, Greggio S, DaCosta JC, De Bastiani MA, Rodolphi MS, Portela LV. Nandrolone Supplementation Promotes AMPK Activation and Divergent 18[FDG] PET Brain Connectivity in Adult and Aged Mice. Neurochem Res 2022; 47:2032-2042. [PMID: 35415802 DOI: 10.1007/s11064-022-03592-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Decreased anabolic androgen levels are followed by impaired brain energy support and sensing with loss of neural connectivity during physiological aging, providing a neurobiological basis for hormone supplementation. Here, we investigated whether nandrolone decanoate (ND) administration mediates hypothalamic AMPK activation and glucose metabolism, thus affecting metabolic connectivity in brain areas of adult and aged mice. Metabolic interconnected brain areas of rodents can be detected by positron emission tomography using 18FDG-mPET. Albino CF1 mice at 3 and 18 months of age were separated into 4 groups that received daily subcutaneous injections of either ND (15 mg/kg) or vehicle for 15 days. At the in vivo baseline and on the 14th day, brain 18FDG-microPET scans were performed. Hypothalamic pAMPKT172/AMPK protein levels were assessed, and basal mitochondrial respiratory states were evaluated in synaptosomes. A metabolic connectivity network between brain areas was estimated based on 18FDG uptake. We found that ND increased the pAMPKT172/AMPK ratio in both adult and aged mice but increased 18FDG uptake and mitochondrial basal respiration only in adult mice. Furthermore, ND triggered rearrangement in the metabolic connectivity of adult mice and aged mice compared to age-matched controls. Altogether, our findings suggest that ND promotes hypothalamic AMPK activation, and distinct glucose metabolism and metabolic connectivity rearrangements in the brains of adult and aged mice.
Collapse
Affiliation(s)
- N R Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - A Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - V G de Oliveira
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - R B Carteri
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - G Hansel
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - G T Venturin
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - S Greggio
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - J C DaCosta
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - M A De Bastiani
- Zimmer Neuroimaging Lab, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - M S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - L V Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Niromand E, Javanmardy S, Salimi Z, Zarei F, Khazaei MR. Association between nandrolone and behavioral alterations: A systematic review of preclinical studies. Steroids 2021; 174:108901. [PMID: 34407462 DOI: 10.1016/j.steroids.2021.108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM In recent years the expanding misuse of Nandrolone among non-athletes, particularly adolescent males is a prevalent global concern due to its adverse effects. This article provides a summary of the experimental studies to clarify the relationship between Nandrolone exposure and behavioral and cognitive performances. MATERIALS AND METHODS The present systematic review was conducted using PubMed, Embase and ScienceDirect databases, from 2000 to 2020, using the following key terms: Nandrolone AND Cognition, Nandrolone AND Learning, Nandrolone AND Memory, Nandrolone AND (Synaptic plasticity or Hippocampal synaptic plasticity), Nandrolone AND (Aggression or Aggressive-like behavior), Nandrolone AND (Anxiety or Anxiety-like behavior), Nandrolone AND (Depression or Depressive-like behavior). RESULTS 33 qualified papers were selected from the 2498 sources found. Of the 33 cases, 32 (96.97%) were males while only 1 (3.03%) was female and male. From 33 selected articles 8 reported studies were related to spatial memory, 2 reported studies were related to avoidance memory, 11 studies reported information on synaptic plasticity, 11 reported studies were related to aggressive behavior, 8 reported studies were related to aggressive behavior and 6 reported studies were related to depression. CONCLUSION Nandrolone can change spatial ability, avoidance memory and hippocampal synaptic plasticity. Also, Nandrolone exposure produces variable effects on behavioral function such as aggression, depression and anxiety. This despite the fact that the results are contradictory. These discrepancies might be due to the differences in sex, age, dosage and treatment duration, and administration route. However, the negative results are more common than the published positive ones.
Collapse
Affiliation(s)
- Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Setareh Javanmardy
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Salimi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Zarei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Carteri RB, Kopczynski A, Rodolphi MS, Strogulski NR, Wannmacher CMD, Franceschi ID, Hammerschmitt ME, Driemeier D, Portela LV. Anabolic-androgenic steroids impair mitochondrial function and redox status in the heart and liver of mice. Steroids 2021; 172:108861. [PMID: 33984388 DOI: 10.1016/j.steroids.2021.108861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Supraphysiological doses of anabolic-androgenic steroids (AAS) may cause long-term functional abnormalities, particularly in the heart and liver, which may only represent the later-stage of the cumulative damage caused by dysfunctional organelles. We investigated whether mid-term supraphysiological doses of Testosterone and Nandrolone impair mitochondrial Ca2+ and membrane potential (ΔΨm) dynamics, and redox machinery in the heart and liver of mice. CF1 albino mice were treated daily with 15 mg/kg of Nandrolone (ND) or Testosterone (T), or oil (vehicle) for 19 days. Preparations enriched in mitochondria from the heart or liver were used to perform assays of Ca2+ influx/efflux, ΔΨm, and H2O2 production. ND significantly impaired mitochondrial Ca2+ influx in the heart, and ΔΨm in both organs. ND and T increased H2O2 levels in the heart and liver relative to controls. Also, ND increased oxidative damage to lipids and proteins (TBARS and carbonyls) in the heart, and both AAS decreased glutathione peroxidase activity in the heart and liver. In summary, supraphysiological doses of ND, and in a lesser extend T, impaired mitochondrial Ca2+ influx and ΔΨm, and redox homeostasis being early mechanistic substrates for inducing heart and liver tissue damage.
Collapse
Affiliation(s)
- Randhall B Carteri
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Centro Universitário Metodista - Instituto Porto Alegre (IPA), Porto Alegre, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Nathan R Strogulski
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Clovis M D Wannmacher
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Itiane D Franceschi
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcia E Hammerschmitt
- Setor de Patologia Veterinária, Faculdade de Veterinária da Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária da Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Luis V Portela
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Rodolphi MS, Kopczynski A, Carteri RB, Sartor M, Fontella FU, Feldmann M, Hansel G, Strogulski NR, Portela LV. Glutamate transporter-1 link astrocytes with heightened aggressive behavior induced by steroid abuse in male CF1 mice. Horm Behav 2021; 127:104872. [PMID: 33069754 DOI: 10.1016/j.yhbeh.2020.104872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/21/2022]
Abstract
The astrocytic glutamate transporter GLT-1 performs glutamate uptake thereby mediating NMDAr responses in neurons. Ceftriaxone (CEF) upregulates astrocytic GLT-1 expression/activity, which could counteract excessive glutamate levels and aggressive behavior induced by anabolic synthetic steroids such as nandrolone decanoate (ND). Here, adult male CF-1 mice were allocated to oil (VEH), ND, CEF, and ND/CEF groups. Mice were subcutaneously (s.c.) injected with ND (15 mg/kg) or VEH for 19 days, and received intraperitoneal (i.p.) injections of CEF (200 mg/kg) or saline for 5 days. The ND/CEF group received ND for 19 days plus coadministration of CEF in the last 5 days. On the 19th day, the aggressive phenotypes were evaluated through the resident-intruder test. After 24 h, cerebrospinal fluid was collected to measure glutamate levels, and the pre-frontal cortex was used to assess GLT-1, pGluN2BTyr1472, and pGluN2ATyr1246 by Western blot. Synaptosomes from the left brain hemisphere was used to evaluate mitochondrial function including complex II-succinate dehydrogenase (SDH), Ca2+ handling, membrane potential (ΔѰm), and H2O2 production. ND decreased the latency for the first attack and increased the number of attacks by the resident mice against the intruder, mechanistically associated with an increase in glutamate levels and pGluN2BTyr1472 but not pGluN2ATyr1244, and GLT-1 downregulation. The abnormalities in mitochondrial Ca2+ influx, SDH, ΔѰm, and H2O2 implies in deficient energy support to the synaptic machinery. The ND/CEF group displayed a decreased aggressive behavior, normalization of glutamate and pGluN2BTyr1472levels, and mitochondrial function at synaptic terminals. In conclusion, the pharmacological modulation of GLT-1 highlights its relevance as an astrocytic target against highly impulsive and aggressive phenotypes.
Collapse
Affiliation(s)
- Marcelo S Rodolphi
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Afonso Kopczynski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Randhall B Carteri
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil; Centro Universitário Metodista - Instituto Porto Alegre (IPA), Coronel Joaquim Pedro Salgado 80, Porto Alegre, RS 90420-060, Brazil
| | - Monia Sartor
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Fernanda U Fontella
- Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Marceli Feldmann
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Gisele Hansel
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil; Robert A. Groff Professor of Teaching and Research in Neurosurgery Department: Neurosurgery, University of Pennsylvania, 105 Hayden Hall 3320 Smith Walk, Philadelphia, PA 19104-6316, USA; Laboratório de Neuroinflamação e Neuroimunologia, Instituto do Cérebro do Rio Grande do Sul, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Nathan R Strogulski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Luis V Portela
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
11
|
Cattelan Souza L, de Brito MLO, Jesse CR, Boeira SP, de Gomes MG, Goes ATR, Fabbro LD, Machado FR, Prigol M, Nogueira CW. Involvement of kynurenine pathway in depressive-like behaviour induced by nandrolone decanoate in mice. Steroids 2020; 164:108727. [PMID: 32891681 DOI: 10.1016/j.steroids.2020.108727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/17/2022]
Abstract
Nandrolone decanoate (ND) belongs to the class II of anabolic-androgenic steroids (AAS), which is composed of 19-nor-testosterone-derivatives. AAS represent a group of synthetic testosterone that is used in clinical treatment. However, these drugs are widely abused among individuals as a means of promoting muscle growth or enhancing athletic performance. AAS in general and ND in particular have been associated with several behavioral disturbances, such as anxiety, aggressiveness and depression. A factor that contributes to the development of depression is the brain activation of indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of kynurenine pathway (KP). In the present study, we examined the involvement of KP in depressive phenotype induced by a ND treatment (10 mg/kg/day/s.c., for 28 days) that mimics human abuse system (e.g. supraphysiological doses) in C57B/6J mice. Our results showed that ND caused depressive like-behavior in the tail suspension test and anhedonic-like state measured in the sucrose preference test. ND administration decreased the levels of brain-derived neurotrophic factor and neurotrophin-3 and reduced Na+,K+-ATPase activity in the hippocampus, striatum and prefrontal cortex. We also found that ND elicited KP activation, as reflected by the increase of IDO activity and kynurenine levels in these brain regions. Moreover, ND decreased serotonin levels and increased 5-hydroxyindoleacetic acid levels in the brain. Treatment with IDO inhibitor 1-methyl-dl-trypthophan (1 mg/kg/i.p.) reversed the behavioral and neurochemical alterations induced by ND. These results indicate for the first time that KP plays a key role in depressive-like behavior and neurotoxicity induced by supraphysiologicaldoses of ND in mice.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Maicon Lenon Otenio de Brito
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - André Tiago Rossito Goes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Lucian Del Fabbro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Franciele Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
12
|
Bontempi L, Bonci A. µ-Opioid receptor-induced synaptic plasticity in dopamine neurons mediates the rewarding properties of anabolic androgenic steroids. Sci Signal 2020; 13:13/647/eaba1169. [PMID: 32873724 DOI: 10.1126/scisignal.aba1169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anabolic androgenic steroids (AAS) have medical utility but are often abused, and the effects of AAS on reward circuits in the brain have been suggested to lead to addiction. We investigated the previously reported correlations between AAS and the endogenous μ-opioid system in the rewarding properties of AAS in mice. We found that a single injection of a supraphysiological dose of natural or synthetic AAS strengthened excitatory synaptic transmission in putative ventral tegmental area (VTA) dopaminergic neurons. This effect was associated with the activation of μ-opioid receptors (MORs) and an increase in β-endorphins released into the VTA and the plasma. Irreversible blockade of MORs in the VTA counteracted two drug-seeking behaviors, locomotor activity and place preference. These data suggest that AAS indirectly stimulate a dopaminergic reward center of the brain through activation of endogenous opioid signaling and that this mechanism mediates the addictive effects of AAS.
Collapse
Affiliation(s)
- Leonardo Bontempi
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | | |
Collapse
|
13
|
Carteri RB, Kopczynski A, Menegassi LN, Salimen Rodolphi M, Strogulski NR, Portela LV. Anabolic-androgen steroids effects on bioenergetics responsiveness of synaptic and extrasynaptic mitochondria. Toxicol Lett 2019; 307:72-80. [DOI: 10.1016/j.toxlet.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
|
14
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Joksimovic J, Selakovic D, Jovicic N, Mitrovic S, Mihailovic V, Katanic J, Milovanovic D, Rosic G. Exercise Attenuates Anabolic Steroids-Induced Anxiety via Hippocampal NPY and MC4 Receptor in Rats. Front Neurosci 2019; 13:172. [PMID: 30863280 PMCID: PMC6399386 DOI: 10.3389/fnins.2019.00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of our study was to evaluate the effects of chronic administration of nandrolone-decanoate (ND) or testosterone-enanthate (TE) in supraphysiological doses and a prolonged swimming protocol, alone and in combination with ND or TE, on anxiety-like behavior in rats. We investigated the immunohistochemical alterations of the hippocampal neuropeptide Y (NPY) and melanocortin 4 receptor (MC4R) neurons, as a possible underlying mechanism in a modulation of anxiety-like behavior in rats. Both applied anabolic androgenic steroids (AASs) induced anxiogenic effect accompanied with decreased serum and hippocampal NPY. The exercise-induced anxiolytic effect was associated with increased hippocampal NPY expression. ND and TE increased the number of MC4R, while the swimming protocol was followed by the reduction of MC4R in the CA1 region of the hippocampus. However, NPY/MC4R ratio in hippocampus was lowered by AASs and elevated by exercise in all hippocampal regions. An augmentation of this ratio strongly and positively correlated to increased time in open arms of elevated plus maze, in the context that indicates anxiolytic effect. Our findings support the conclusion that alterations in both hippocampal NPY and MC4R expression are involved in anxiety level changes in rats, while their quantitative relationship (NPY/MC4R ratio) is even more valuable in the estimation of anxiety regulation than individual alterations for both NPY and MC4R expression in the hippocampus.
Collapse
Affiliation(s)
- Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Katanic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
16
|
Haller J. Preclinical models of conduct disorder – principles and pharmacologic perspectives. Neurosci Biobehav Rev 2018; 91:112-120. [DOI: 10.1016/j.neubiorev.2016.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
|
17
|
Bueno A, Carvalho FB, Gutierres JM, Lhamas C, Andrade CM. A comparative study of the effect of the dose and exposure duration of anabolic androgenic steroids on behavior, cholinergic regulation, and oxidative stress in rats. PLoS One 2017; 12:e0177623. [PMID: 28594925 PMCID: PMC5464548 DOI: 10.1371/journal.pone.0177623] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to assess if the dose and exposure duration of the anabolic androgenic steroids (AAS) boldenone (BOL) and stanazolol (ST) affected memory, anxiety, and social interaction, as well as acetylcholinesterase (AChE) activity and oxidative stress in the cerebral cortex (CC) and hippocampus (HC). Male Wistar rats (90 animals) were randomly assigned to three treatment protocols: (I) 5 mg/kg BOL or ST, once a week for 4 weeks; (II) 2.5 mg/kg BOL or ST, once a week for 8 weeks; and (III) 1.25 mg/kg BOL or ST, once a week for 12 weeks. Each treatment protocol included a control group that received an olive oil injection (vehicle control) and AAS were administered intramuscularly (a total volume of 0.2 ml) once a week in all three treatment protocols. In the BOL and ST groups, a higher anxiety level was observed only for Protocol I. BOL and ST significantly affected social interaction in all protocols. Memory deficits and increased AChE activity in the CC and HC were found in the BOL groups treated according to Protocol III only. In addition, BOL and ST significantly increased oxidative stress in both the CC and HC in the groups treated according to Protocol I and III. In conclusion, our findings show that the impact of BOL and ST on memory, anxiety, and social interaction depends on the dose and exposure duration of these AAS.
Collapse
Affiliation(s)
- Andressa Bueno
- Programa de Pós Graduação em Medicina Veterinária, Hospital Veterinário, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria/RS, Brazil
| | - Fabiano B. Carvalho
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria/RS, Brazil
| | - Jessié M. Gutierres
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria/RS, Brazil
- * E-mail: (JMG); (CMA)
| | - Cibele Lhamas
- Programa de Pós Graduação em Medicina Veterinária, Hospital Veterinário, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria/RS, Brazil
| | - Cinthia M. Andrade
- Programa de Pós Graduação em Medicina Veterinária, Hospital Veterinário, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria/RS, Brazil
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria/RS, Brazil
- * E-mail: (JMG); (CMA)
| |
Collapse
|
18
|
Portela LV, Brochier AW, Haas CB, de Carvalho AK, Gnoato JA, Zimmer ER, Kalinine E, Pellerin L, Muller AP. Hyperpalatable Diet and Physical Exercise Modulate the Expression of the Glial Monocarboxylate Transporters MCT1 and 4. Mol Neurobiol 2016; 54:5807-5814. [DOI: 10.1007/s12035-016-0119-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
|
19
|
Zimmermann FF, Gaspary KV, Siebel AM, Bonan CD. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav Brain Res 2016; 311:368-374. [PMID: 27247142 DOI: 10.1016/j.bbr.2016.05.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia.
Collapse
Affiliation(s)
- Fernanda Francine Zimmermann
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Karina Vidarte Gaspary
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Wolmarans DW, Stein DJ, Harvey BH. Social behavior in deer mice as a novel interactive paradigm of relevance for obsessive-compulsive disorder (OCD). Soc Neurosci 2016; 12:135-149. [PMID: 26821758 DOI: 10.1080/17470919.2016.1145594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Greater obsessive-compulsive (OC) symptom severity may be associated with poor social adjustment. Rather than possessing deficits in social skill per se, OCD patients may be more socially isolative in the presence of normal controls. We aimed to apply a novel social interaction challenge (SIC) to an established animal model of OCD, viz., the deer mouse, to assess complex social behavior in animals by investigating group sociability and its response to chronic escitalopram treatment (50 mg/kg/day × 28 days), both within and between non (N)- (viz., normal) and high (H)- (viz., OCD-like) stereotypical cohorts. Using automated screening, we scored approach behavior, episodes of proximity, duration of proximity, and relative net weighted movement. H animals socialized more with one another within cohort in all of the above parameters compared to the within-cohort behavior of N animals. Furthermore, the social behavior of H animals toward one another, both within and between cohort demonstrated significant improvements following chronic escitalopram treatment. However, the study also demonstrates that the social interaction between H and N animals remain poor even after chronic escitalopram treatment. To conclude, findings from the current investigation support clinical data demonstrating altered sociability in patients with OCD.
Collapse
Affiliation(s)
- De Wet Wolmarans
- a Division of Pharmacology , North-West University (Potchefstroom Campus) , Potchefstroom , South Africa
| | - Dan J Stein
- b Department of Psychiatry and Mental Health, MRC Unit on Anxiety & Stress Disorders , University of Cape Town, Observatory , Cape Town , South Africa
| | - Brian H Harvey
- c Center of Excellence for Pharmaceutical Sciences, MRC Unit on Anxiety and Stress and Disorders , North-West University (Potchefstroom Campus) , Potchefstroom , South Africa
| |
Collapse
|
21
|
Mad men, women and steroid cocktails: a review of the impact of sex and other factors on anabolic androgenic steroids effects on affective behaviors. Psychopharmacology (Berl) 2016; 233:549-69. [PMID: 26758282 PMCID: PMC4751878 DOI: 10.1007/s00213-015-4193-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE For several decades, elite athletes and a growing number of recreational consumers have used anabolic androgenic steroids (AAS) as performance enhancing drugs. Despite mounting evidence that illicit use of these synthetic steroids has detrimental effects on affective states, information available on sex-specific actions of these drugs is lacking. OBJECTIVES The focus of this review is to assess information to date on the importance of sex and its interaction with other environmental factors on affective behaviors, with an emphasis on data derived from non-human studies. METHODS The PubMed database was searched for relevant studies in both sexes. RESULTS Studies examining AAS use in females are limited, reflecting the lower prevalence of use in this sex. Data, however, indicate significant sex-specific differences in AAS effects on anxiety-like and aggressive behaviors, interactions with other drugs of abuse, and the interplay of AAS with other environmental factors such as diet and exercise. CONCLUSIONS Current methods for assessing AAS use have limitations that suggest biases of both under- and over-reporting, which may be amplified for females who are poorly represented in self-report studies of human subjects and are rarely used in animal studies. Data from animal literature suggest that there are significant sex-specific differences in the impact of AAS on aggression, anxiety, and concomitant use of other abused substances. These results have relevance for human females who take these drugs as performance-enhancing substances and for transgender XX individuals who may illicitly self-administer AAS as they transition to a male gender identity.
Collapse
|
22
|
Fukuyama T, Tschernig T, Qi Y, Volmer DA, Bäumer W. Aggression behaviour induced by oral administration of the Janus-kinase inhibitor tofacitinib, but not oclacitinib, under stressful conditions. Eur J Pharmacol 2015; 764:278-282. [DOI: 10.1016/j.ejphar.2015.06.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
|
23
|
Hwa LS, Nathanson AJ, Shimamoto A, Tayeh JK, Wilens AR, Holly EN, Newman EL, DeBold JF, Miczek KA. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice. Psychopharmacology (Berl) 2015; 232:2889-902. [PMID: 25899790 PMCID: PMC4515187 DOI: 10.1007/s00213-015-3925-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE Disrupted social behavior, including occasional aggressive outbursts, is characteristic of withdrawal from long-term alcohol (EtOH) use. Heavy EtOH use and exaggerated responses during withdrawal may be treated using glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonists. OBJECTIVES The current experiments explore aggression and medial prefrontal cortex (mPFC) glutamate as consequences of withdrawal from intermittent access to EtOH and changes in aggression and mPFC glutamate caused by NMDAR antagonists memantine and ketamine. METHODS Swiss male mice underwent withdrawal following 1-8 weeks of intermittent access to 20 % EtOH. Aggressive and nonaggressive behaviors with a conspecific were measured 6-8 h into EtOH withdrawal after memantine or ketamine (0-30 mg/kg, i.p.) administration. In separate mice, extracellular mPFC glutamate after memantine was measured during withdrawal using in vivo microdialysis. RESULTS At 6-8 h withdrawal from EtOH, mice exhibited more convulsions and aggression and decreased social contact compared to age-matched water controls. Memantine, but not ketamine, increased withdrawal aggression at the 5-mg/kg dose in mice with a history of 8 weeks of EtOH but not 1 or 4 weeks of EtOH or in water drinkers. Tonic mPFC glutamate was higher during withdrawal after 8 weeks of EtOH compared to 1 week of EtOH or 8 weeks of water. Five milligrams per kilogram of memantine increased glutamate in 8-week EtOH mice, but also in 1-week EtOH and water drinkers. CONCLUSIONS These studies reveal aggressive behavior as a novel symptom of EtOH withdrawal in outbred mice and confirm a role of NMDARs during withdrawal aggression and for disrupted social behavior.
Collapse
Affiliation(s)
- Lara S. Hwa
- Tufts University Department of Psychology, Medford, MA 02155
| | | | - Akiko Shimamoto
- Tufts University Department of Psychology, Medford, MA 02155
| | | | | | | | - Emily L. Newman
- Tufts University Department of Psychology, Medford, MA 02155
| | | | - Klaus A. Miczek
- Tufts University Department of Psychology, Medford, MA 02155
- Tufts University Department of Neuroscience, Boston, MA 02111
| |
Collapse
|
24
|
Ahmed MAE, El-Awdan SA. Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression. Horm Behav 2015; 73:186-99. [PMID: 26187709 DOI: 10.1016/j.yhbeh.2015.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/29/2022]
Abstract
Behavioral perturbations associated with nandrolone decanoate abuse by athletes and adolescents may be attributed to oxidative stress and inflammation. However, the underlying mechanisms are not yet fully explored. On the other hand, the natural antioxidant lipoic acid can pass the blood brain barrier and enhance Nrf2/HO-1 (nuclear factor erythroid-2 related factor 2/heme oxygenase-1) pathway. In addition, the phosphodiesterase-IV inhibitor xanthine derivative pentoxifylline has a remarkable inhibitory effect on tumor necrosis factor-alpha (TNF-α). Therefore, this study aimed at investigation of the possible protective effects of lipoic acid and/or pentoxifylline against nandrolone-induced neurobehavioral alterations in rats. Accordingly, male albino rats were randomly distributed into seven groups and treated with either vehicle, nandrolone (15mg/kg, every third day, s.c.), lipoic acid (100mg/kg/day, p.o.), pentoxifylline (200mg/kg/day, i.p.), or nandrolone with lipoic acid and/or pentoxifylline. Rats were challenged in the open field, rewarded T-maze, Morris water maze, and resident-intruder aggression behavioral tests. The present findings showed that nandrolone induced hyperlocomotion, anxiety, memory impairment, and aggression in rats. These behavioral abnormalities were accompanied by several biochemical changes, including altered levels of brain monoamines, GABA, and acetylcholine, enhanced levels of malondialdehyde and TNF-α, elevated activity of acetylcholinesterase, and up-regulated expression of TNF-α receptor-1 (TNFR1). In addition, inhibited catalase activity, down-regulated Nrf2/HO-1 pathway, and suppressed acetylcholine receptor expression were observed. Lipoic acid and pentoxifylline combination significantly mitigated all the previously mentioned deleterious effects mainly via up-regulation of Nrf2/HO-1 pathway, inhibition of TNF-α and down-regulation of TNFR1 expression. In conclusion, the biochemical and histopathological findings of this study revealed the protective mechanisms of lipoic acid and pentoxifylline against nandrolone-induced behavioral changes and neurotoxicity in rats.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Sally A El-Awdan
- Department of Pharmacology, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
25
|
Kaufman MJ, Janes AC, Hudson JI, Brennan BP, Kanayama G, Kerrigan AR, Jensen JE, Pope HG. Brain and cognition abnormalities in long-term anabolic-androgenic steroid users. Drug Alcohol Depend 2015; 152:47-56. [PMID: 25986964 PMCID: PMC4458166 DOI: 10.1016/j.drugalcdep.2015.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anabolic-androgenic steroid (AAS) use is associated with psychiatric symptoms including increased aggression as well as with cognitive dysfunction. The brain effects of long-term AAS use have not been assessed in humans. METHODS This multimodal magnetic resonance imaging study of the brain compared 10 male weightlifters reporting long-term AAS use with 10 age-matched weightlifters reporting no AAS exposure. Participants were administered visuospatial memory tests and underwent neuroimaging. Brain volumetric analyses were performed; resting-state fMRI functional connectivity (rsFC) was evaluated using a region-of-interest analysis focused on the amygdala; and dorsal anterior cingulate cortex (dACC) metabolites were quantified by proton magnetic resonance spectroscopy (MRS). RESULTS AAS users had larger right amygdala volumes than nonusers (P=0.002) and reduced rsFC between right amygdala and frontal, striatal, limbic, hippocampal, and visual cortical areas. Left amygdala volumes were slightly larger in AAS users (P=0.061) but few group differences were detected in left amygdala rsFC. AAS users also had lower dACC scyllo-inositol levels (P=0.004) and higher glutamine/glutamate ratios (P=0.028), possibly reflecting increased glutamate turnover. On a visuospatial cognitive task, AAS users performed more poorly than nonusers, with the difference approaching significance (P=0.053). CONCLUSIONS Long-term AAS use is associated with right amygdala enlargement and reduced right amygdala rsFC with brain areas involved in cognitive control and spatial memory, which could contribute to the psychiatric effects and cognitive dysfunction associated with AAS use. The MRS abnormalities we detected could reflect enhanced glutamate turnover and increased vulnerability to neurotoxic or neurodegenerative processes, which could contribute to AAS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Marc J. Kaufman
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Amy C. Janes
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - James I. Hudson
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Brian P. Brennan
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Andrew R. Kerrigan
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - J. Eric Jensen
- McLean Imaging Center, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Harrison G. Pope
- Biological Psychiatry Laboratory, McLean Hospital, and the Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, Massachusetts, 02478, USA
| |
Collapse
|
26
|
Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period. Brain Res 2014; 1591:53-62. [PMID: 25451092 DOI: 10.1016/j.brainres.2014.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
Abstract
Dramatic structural and functional remodeling occurs in the postpartum brain for the establishment of maternal care, which is essential for the growth and development of young offspring. Glutamate and GABA signaling are critically important in modulating multiple behavioral performances. Large scale signaling changes occur in the postpartum brain, but it is still not clear to what extent the neurotransmitters glutamate and GABA change and whether the ratio of glutamate/GABA remains balanced. In this study, we examined the glutamate/GABA-glutamine cycle in the lateral septum (LS) of postpartum female mice. In postpartum females (relative to virgins), tissue levels of glutamate and GABA were elevated in LS and increased mRNA was found for the respective enzymes producing glutamate and GABA, glutaminase (Gls) and glutamate decarboxylase 1 and 2 (Gad1 and Gad2). The common precursor, glutamine, was elevated as was the enzyme that produces it, glutamate-ammonia ligase (Glul). Additionally, glutamate, GABA, and glutamine were positively correlated and the glutamate/GABA ratio was almost identical in the postpartum and virgin females. Collectively, these findings indicate that glutamate and GABA signaling are increased and that the ratio of glutamate/GABA is well balanced in the maternal LS. The postpartum brain may provide a useful model system for understanding how glutamate and GABA are linked despite large signaling changes. Given that some mental health disorders, including depression and schizophrenia display dysregulated glutamate/GABA ratio, and there is increased vulnerability to mental disorders in mothers, it is possible that these postpartum disorders emerge when glutamate and GABA changes are not properly coordinated.
Collapse
|