1
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Mhalhal TR, Washington MC, Heath JC, Sayegh AI. Effect of Vagotomy and Sympathectomy on the Feeding Responses Evoked by Intra-Aortic Cholecystokinin-8 in Adult Male Sprague Dawley Rats. Endocr Res 2021; 46:57-65. [PMID: 33426974 DOI: 10.1080/07435800.2020.1861621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The vagus nerve and the celiaco-mesenteric ganglia (CMG) are required for reduction of meal size (MS) and prolongation of the intermeal interval (IMI) by intraperitoneal (ip) sulfated cholecystokinin-8 (CCK-8). However, recently we have shown that the gut regulates these responses. Therefore, reevaluating the role of the vagus and the CMG in the feeding responses evoked by CCK is necessary because the gut contains the highest concentration of enteric, vagal and splanchnic afferents and CCK-A receptors, which are required for reduction of food intake by this peptide, compared to other abdominal organs. To address this necessity, we injected sulfated CCK-8 (0, 0.1, 0.5, 1 and 3 nmol/kg) in the aorta, near the gastrointestinal sites of action of the peptide, in three groups of free-feeding rats (n = 10 rats per group), subdiaphragmatic vagotomy (VGX), celiaco-mesenteric ganglionectomy (CMGX) and sham-operated, and recorded seven feeding responses. In the sham group, CCK-8 reduced MS (normal chow), prolonged the intermeal interval (IMI, time between first and second meals), increased satiety ratio (SR, IMI/MS), shortened duration of first meal, reduced total (24 hrs) food intake and reduced number of meals relative to saline vehicle. Vagotomy attenuated all of the previous responses except IMI length and SR, and CMGX attenuated all of those responses. In conclusion, the feeding responses evoked by sulfated CCK-8 require, independently, the vagus nerve and the CMG.
Collapse
Affiliation(s)
- Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - John C Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| |
Collapse
|
4
|
Dafalla AI, Mhalhal TR, Hiscocks K, Heath J, Sayegh AI. The Vagus Nerve and the Celiaco-mesenteric Ganglia Participate in the Feeding Responses Evoked by Non-sulfated Cholecystokinin-8 in Male Sprague Dawley Rats. Endocr Res 2020; 45:73-83. [PMID: 31573821 DOI: 10.1080/07435800.2019.1670673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have shown that non-sulfated cholecystokinin-8 (NS CCK-8) reduces food intake in adult male Sprague Dawley rats by activating cholecystokinin-B receptor (CCK-BR). Here, we tested the hypothesis that the vagus nerve and the celiaco-mesenteric ganglia may play a role in this reduction. The hypothesis stems from the following facts. The vagus and the celiaco-mesenteric ganglia contain NS CCK-8, they express and have binding sites for CCK-BR, NS CCK-8 activates CCK-BR on afferent vagal and sympathetic fibers and the two structures link the gastrointestinal tract to central feeding nuclei in the brain, which also contain the peptide and CCK-BR. To test this hypothesis, three groups of free-feeding rats, vagotomy (VGX), celiaco-mesenteric ganglionectomy (CMGX) and sham-operated, received NS CCK-8 (0, 0.5 and 1 nmol/kg) intraperitoneally prior to the onset of the dark cycle and various feeding behaviors were recorded. We found that in sham-operated rats both doses of NS CCK-8 reduced meal size (MS), prolonged the intermeal interval (IMI, time between first and second meal), increased satiety ratio (SR = IMI/MS), reduced 24-h food intake and reduced the number of meals relative to saline control. In the VGX and the CMGX groups, all of the previous responses were attenuated. Consistent with our hypothesis, the findings of the current work suggest a role for the vagus nerve and the celiaco-mesenteric ganglia in the feeding responses evoked by NS CCK-8.
Collapse
Affiliation(s)
- Amged I Dafalla
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
- Department of Anatomy and Histology, College of Veterinary Medicine, Basra University, Basra, Iraq
| | - Kenneth Hiscocks
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - John Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
5
|
Dafalla AI, Mhalhal TR, Washington MC, Spann S, Reguero AM, Morgan AL, Cruz Matos GA, Carson G, Barton KJ, Burke NA, Heath J, Sayegh AI. Non-sulfated cholecystokinin-8 reduces meal size and prolongs the intermeal interval in male Sprague Dawley rats. Neuropeptides 2019; 73:57-65. [PMID: 30470455 PMCID: PMC6613573 DOI: 10.1016/j.npep.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The current study measured seven feeding responses by non-sulfated cholecystokinin-8 (NS CCK-8) in freely fed adult male Sprague Dawley rats. The peptide (0, 0.5, 1, 3, 5 and 10 nmol/kg) was given intraperitoneally (ip) prior to the onset of the dark cycle, and first meal size (MS), second meal size, intermeal interval (IMI) length, satiety ratio (SR = IMI/MS), latency to first meal, duration of first meal, number of meals and 24-hour food intake were measured. We found that NS CCK-8 (0.5 and 1.0 nmol/kg) reduced MS, prolonged IMI length and increased SR during the dark cycle. Furthermore, the specific CCK-B receptor antagonist L365, 260 (1 mg/kg, ip) attenuated these responses. These results support a possible role for NS CCK-8 in regulating food intake.
Collapse
Affiliation(s)
- Amged I Dafalla
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Thaer R Mhalhal
- Department of Anatomy and Histology, College of Veterinary Medicine, Basrah University, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Sharonika Spann
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Adalis Montero Reguero
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Alexandra L Morgan
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Geishly A Cruz Matos
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Gabrielle Carson
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Kenya J Barton
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Nicole A Burke
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - John Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
6
|
Dafalla AI, Mhalhal TR, Hiscocks K, Heath J, Sayegh AI. Non-sulfated cholecystokinin-8 increases enteric and hindbrain Fos-like immunoreactivity in male Sprague Dawley rats. Brain Res 2018; 1708:200-206. [PMID: 30571983 DOI: 10.1016/j.brainres.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Recently, we reported that non-sulfated cholecystokinin-8 (NS CCK-8) reduces food intake by cholecystokinin-B receptors (CCK-BR). To examine a possible site of action for this peptide, and based on the fact that both NS CCK-8 and CCK-BR are found centrally and peripherally, in the current study we hypothesized that NS CCK-8 increases Fos-like immunoreactivity (Fos-LI, a neuronal activation marker) in the dorsal vagal complex (DVC) of the hindbrain and the myenteric and submucosal plexuses of the small intestine. We found that intraperitoneal NS CCK-8 (0.5 nmol/kg) increases Fos-LI in the DVC, the myenteric and the submucosal plexuses of the duodenum and the myenteric plexus of the jejunum. The findings suggest, but does not prove, a potential role for the DVC and the enteric neurons in the feeding responses evoked by NS CCK-8.
Collapse
Affiliation(s)
- Amged I Dafalla
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - Kenneth Hiscocks
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - John Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States.
| |
Collapse
|
7
|
Mhalhal TR, Washington MC, Newman KD, Heath JC, Sayegh AI. Combined gastrin releasing peptide-29 and glucagon like peptide-1 reduce body weight more than each individual peptide in diet-induced obese male rats. Neuropeptides 2018; 67:71-78. [PMID: 29180139 DOI: 10.1016/j.npep.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
To test the hypothesis that gastrin releasing peptide-29 (GRP-29) combined with glucagon like peptide-1 (7-36) (GLP-1 (7-36)) reduce body weight (BW) more than each of the peptides given individually, we infused the two peptides (0.5nmol/kg each) in the aorta of free feeding, diet-induced obese (DIO) male Sprague Dawley rats once daily for 25days and measured BW. We found that GRP-29 and GLP-1 reduce BW, GRP-29 reduced it more than GLP-1 and GRP-29+GLP-1 reduce BW more than each peptide given alone. This reduction was accompanied by decrease 24-hour food intake (normal rat chow), meal size (MS), duration of first meal and number of meals, and increase latency to the first meal, intermeal interval (IMI) and satiety ratio (IMI/MS, amount of food consumed per a unit of time). Furthermore, the peptides and their combination decreased 24-hour glucose levels. In conclusion, GRP-29+GLP-1 reduce BW more than each of the peptides given individually.
Collapse
Affiliation(s)
- Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; Department of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Kayla D Newman
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - John C Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
8
|
Peptide Tyrosine Tyrosine 3-36 Reduces Meal Size and Activates the Enteric Neurons in Male Sprague-Dawley Rats. Dig Dis Sci 2017; 62:3350-3358. [PMID: 29030744 DOI: 10.1007/s10620-017-4788-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Peptide tyrosine tyrosine 3-36 (peptide YY 3-36 or PYY 3-36) reduces food intake by unknown site(s). AIM To test the hypothesis that the gastrointestinal tract contains sites of action regulating meal size (MS) and intermeal interval (IMI) length by PYY 3-36. METHODS Peptide YY 3-36 (0, 1, 5, 10 and 20 nmol/kg) was injected in the aorta, the artery that supplies the gastrointestinal tract, prior to the onset of the dark cycle in free feeding male Sprague-Dawley rats and food intake was measured. Then, PYY 3-36 (25 nmol/kg) was injected intraperitoneally in these rats and Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) was quantified in the small intestinal enteric neurons, both myenteric and submucosal, and the dorsal vagal complex (DVC) of the hindbrain. RESULTS PYY 3-36 reduced first MS, decreased IMI length, shortened duration of first meal and increased Fos-LI in enteric and DVC neurons. However, PYY 3-36 failed to change the size of the second meal, satiety ratio, latency to first meal, number of meals and 24 h intake relative to saline control. CONCLUSION The gastrointestinal tract may contain sites of action regulating MS reduction by PYY 3-36.
Collapse
|
9
|
Mhalhal TR, Washington MC, Newman K, Heath JC, Sayegh AI. Exogenous glucagon-like peptide-1 reduces body weight and cholecystokinin-8 enhances this reduction in diet-induced obese male rats. Physiol Behav 2017. [DOI: 10.1016/j.physbeh.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Infusion of exogenous cholecystokinin-8, gastrin releasing peptide-29 and their combination reduce body weight in diet-induced obese male rats. Appetite 2017; 109:172-181. [DOI: 10.1016/j.appet.2016.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022]
|