1
|
Leskinen S, Alsalek S, Wernicke AG. Effects of radiotherapy on the hippocampus and hippocampal neurogenesis: a systematic review of preclinical studies. Strahlenther Onkol 2025; 201:383-397. [PMID: 39800777 DOI: 10.1007/s00066-024-02341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/18/2024] [Indexed: 03/22/2025]
Abstract
PURPOSE A comprehensive literature review was undertaken to understand the effects and underlying mechanisms of cranial radiotherapy (RT) on the hippocampus and hippocampal neurogenesis as well as to explore protective factors and treatments that might mitigate these effects in preclinical studies. METHODS PubMed/MEDLINE, Web of Science, and Embase were queried for studies involving the effects of radiation on the hippocampus and hippocampal neurogenesis. Data extraction followed the Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines, and a risk of bias assessment was conducted for the included animal studies using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias tool. RESULTS Ninety studies were included, with 48 assessing radiation-induced changes and 42 examining possible interventions. The majority of studies (97.8%) used experimental animal models. Studies demonstrated that cranial irradiation reduces hippocampal neurogenesis, particularly in the neurogenic niches of the dentate gyrus; causes alterations in gene expression and enzymatic activity; induces inflammation; promotes apoptosis; and often results in cognitive impairment. Potential protective strategies include pharmacological agents like metformin and peroxisome proliferator-activated receptor-α (PPAR-α) agonists or behavioral interventions like voluntary running. In a risk of bias assessment, many studies were rated as having an unclear risk of bias. CONCLUSION Radiotherapy, while essential for managing brain tumors, can have adverse effects on hippocampal function and structure in animal models. These effects manifest in reduced neurogenesis, molecular alterations, and increased inflammation, leading to cognitive deficits. Further research is needed to identify and improve interventions and develop comprehensive therapeutic approaches that balance effective tumor control with the preservation of cognitive health.
Collapse
Affiliation(s)
- Sandra Leskinen
- State University of New York Downstate Medical Center, Brooklyn, NY, USA.
| | - Samir Alsalek
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - A Gabriella Wernicke
- Department of Radiation Medicine, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| |
Collapse
|
2
|
Wang Q, Guo C, Wang T, Shuai P, Wu W, Huang S, Li Y, Zhao P, Zeng C, Yi L. Drug protection against radiation-induced neurological injury: mechanisms and developments. Arch Toxicol 2025; 99:851-863. [PMID: 39724149 DOI: 10.1007/s00204-024-03933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In daily life, individuals are frequently exposed to various forms of radiation, which, when adhering to safety standards, typically result in relatively minor health effects. However, accidental exposure to radiation levels that exceed these safety standards can lead to significant health consequences. This study focuses on the analysis of radiation-induced damage to the nervous system and the mechanisms of pharmacological protection. The findings indicate that radiation can adversely affect neural structures, memory, and neurobehaviour. A range of pharmacological agents, including traditional Chinese medicine, Western medicine, and other therapeutic drugs, can be employed to safeguard the nervous system from radiation damage. The primary protective mechanisms of these agents encompass antioxidant effects, attenuation of apoptosis, and reduction of neurogenesis. A comprehensive review of these topics will offer new insights for the development and investigation of drugs aimed at mitigating radiation-induced damage to the nervous system.
Collapse
Affiliation(s)
- Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pei Zhao
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chengkai Zeng
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Kuil L, Seigers R, Loos M, de Gooijer M, Compter A, Boogerd W, van Tellingen O, Smit A, Schagen S. Fractionated brain X-irradiation profoundly reduces hippocampal immature neuron numbers without affecting spontaneous behavior in mice. Heliyon 2024; 10:e29947. [PMID: 38707355 PMCID: PMC11066401 DOI: 10.1016/j.heliyon.2024.e29947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Whole brain radiotherapy (WBRT) is used to improve tumor control in patients with primary brain tumors, or brain metastasis from various primary tumors to improve tumor control. However, WBRT can lead to cognitive decline in patients. We assessed whether fractionated WBRT (fWBRT) affects spontaneous behavior of mice in automated home cages and cognition (spatial memory) using the Barnes maze. Male C57Bl/6j mice received bi-lateral fWBRT at a dosage of 4 Gy/day on 5 consecutive days. In line with previous reports, immunohistochemical analysis of doublecortin positive cells in the dentate gyrus showed a profound reduction in immature neurons 4 weeks after fWBRT. Surprisingly, spontaneous behavior as measured in automated home cages was not affected. Moreover, learning and memory measured with Barnes maze, was also not affected 4-6 weeks after fWBRT. At 10-11 weeks after fWBRT a significant difference in escape latency during the learning phase, but not in the probe test of the Barnes maze was observed. In conclusion, although we confirmed the serious adverse effect of fWBRT on neurogenesis 4 weeks after fWBRT, we did not find similar profound effects on spontaneous behavior in the automated home cage nor on learning abilities as measured by the Barnes maze. The relationship between the neurobiological effects of fWBRT and cognition seems more complex than often assumed and the choice of animal model, cognitive tasks, neurobiological parameters, and experimental set-up might be important factors in these types of experiments.
Collapse
Affiliation(s)
- L.E. Kuil
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - R. Seigers
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M. Loos
- Sylics (Synaptologics BV), Bilthoven, the Netherlands
| | - M.C. de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A. Compter
- Department of Neuro-Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W. Boogerd
- Department of Neuro-Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - O. van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A.B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - S.B. Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Zhou Z, Li Y, Peng R, Shi M, Gao W, Lei P, Zhang J. Progesterone induces neuroprotection associated with immune/inflammatory modulation in experimental traumatic brain injury. Neuroreport 2024; 35:352-360. [PMID: 38526937 PMCID: PMC10965124 DOI: 10.1097/wnr.0000000000002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 03/27/2024]
Abstract
An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1β, TNF-α, IL-10, and TGF-β. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1β and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Yadan Li
- Department of Geriatrics, Tianjin Medical University General Hospital
- Intensive Care Units, Tianjin Huanhu Hospital
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital
| |
Collapse
|
5
|
Castle J, Shaw G, Weller D, Fielder E, Egnuni T, Singh M, Skinner R, von Zglinicki T, Clifford SC, Short SC, Miwa S, Hicks D. In vivo modeling recapitulates radiotherapy delivery and late-effect profile for childhood medulloblastoma. Neurooncol Adv 2024; 6:vdae091. [PMID: 38946880 PMCID: PMC11212071 DOI: 10.1093/noajnl/vdae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant pediatric brain tumor, with 5-year survival rates > 70%. Cranial radiotherapy (CRT) to the whole brain, with posterior fossa boost (PFB), underpins treatment for non-infants; however, radiotherapeutic insult to the normal brain has deleterious consequences to neurocognitive and physical functioning, and causes accelerated aging/frailty. Approaches to ameliorate radiotherapy-induced late-effects are lacking and a paucity of appropriate model systems hinders their development. Methods We have developed a clinically relevant in vivo model system that recapitulates the radiotherapy dose, targeting, and developmental stage of childhood medulloblastoma. Consistent with human regimens, age-equivalent (postnatal days 35-37) male C57Bl/6J mice received computerized tomography image-guided CRT (human-equivalent 37.5 Gy EQD2, n = 12) ± PFB (human-equivalent 48.7 Gy EQD2, n = 12), via the small animal radiation research platform and were longitudinally assessed for > 12 months. Results CRT was well tolerated, independent of PFB receipt. Compared to a sham-irradiated group (n = 12), irradiated mice were significantly frailer following irradiation (frailty index; P = .0002) and had reduced physical functioning; time to fall from a rotating rod (rotarod; P = .026) and grip strength (P = .006) were significantly lower. Neurocognitive deficits were consistent with childhood MB survivors; irradiated mice displayed significantly worse working memory (Y-maze; P = .009) and exhibited spatial memory deficits (Barnes maze; P = .029). Receipt of PFB did not induce a more severe late-effect profile. Conclusions Our in vivo model mirrored childhood MB radiotherapy and recapitulated features observed in the late-effect profile of MB survivors. Our clinically relevant model will facilitate both the elucidation of novel/target mechanisms underpinning MB late effects and the development of novel interventions for their amelioration.
Collapse
Affiliation(s)
- Jemma Castle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Shaw
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett St, Leeds, UK
| | - Dominic Weller
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Fielder
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Teklu Egnuni
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett St, Leeds, UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roderick Skinner
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas von Zglinicki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Susan C Short
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett St, Leeds, UK
| | - Satomi Miwa
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Neuroprotective effect of oxytocin on cognitive dysfunction, DNA damage, and intracellular chloride disturbance in young mice after cranial irradiation. Biochem Biophys Res Commun 2022; 612:1-7. [DOI: 10.1016/j.bbrc.2022.04.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
|
7
|
Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron 2022; 110:2215-2241. [PMID: 35523175 DOI: 10.1016/j.neuron.2022.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments. We further emphasize the potential of neuroimaging as a key component of cross-translation to contextualize laboratory research within broader clinical findings. This cross-translational approach has the potential to accelerate discovery to improve pediatric cancer survivors' long-term quality of life.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
8
|
Zhu L, Zhang S, Yu X, Zhu S, Ou G, Li Q, Zhang Y, Wang L, Zhuang X, Du L, Jin Y. Application of armodafinil-loaded microneedle patches against the negative influence induced by sleep deprivation. Eur J Pharm Biopharm 2021; 169:178-188. [PMID: 34700002 DOI: 10.1016/j.ejpb.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Cognition maintenance is essential for healthy and safe life if sleep deprivation happens. Armodafinil is a wake-promoting agent against sleep deprivation related disorders. However, only the tablet formulation is available, which may limit its potential in some circumstances. Here, we report the synthesis of a new formulation of armodafinil, microneedle patches, which can be conveniently used by any individual and removed in time if not wanted. To produce the needles of higher mechanical strength and higher drug loading, polyvinylpyrrolidone (PVP) K90 was used to fabricate armodafinil-loaded microneedles by applying the mold casting method after dissolving in methanol and drying. The higher mechanical strength was validated by COMSOL Multiphysics® software stimulation and universal mechanical testing machines. The obtained armodafinil microneedles can withstand a force of 70 N and penetrate the skin to a depth of 230 μm, and quickly released the drug within 1.5 h in vitro. The pharmacokinetic analysis showed that microneedle administration can maintain a more lasting and stable blood concentration as compared to oral administration. After the treatment of sleep deprived mice with microneedles, the in vivo pharmacodynamics study clearly demonstrated that armodafinil microneedles could eliminate the effects of sleep deprivation and improve the cognitive functions of sleep-deprived mice. A self-administered, high drug-loaded microneedle patch were prepared successfully, which appeared to be highly promising in preserving cognition by transdermal administration.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shouguo Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Siqing Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ge Ou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qian Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaomei Zhuang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
9
|
Shi W, Wu H, Liu S, Wu Z, Wu H, Liu J, Hou Y. Progesterone Suppresses Cholesterol Esterification in APP/PS1 mice and a cell model of Alzheimer's Disease. Brain Res Bull 2021; 173:162-173. [PMID: 34044033 DOI: 10.1016/j.brainresbull.2021.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
AIMS Cholesteryl ester(CE), generated from the mitochondria associated membrane (MAM), is involved in the pathogenesis of Alzheimer's Disease (AD). In theory, the different neuroprotective effects of progesterone in AD are all linked to MAM, yet the effect on cholesterol esterification has not been reported. Therefore, this study was aimed to investigate the regulation of progesterone on intracerebral CE in AD models and the underlying mechanism. METHODS APP/PS1 mice and AD cell model induced by Aβ 25-35 were selected as the research objects. APP/PS1 mice were daily administrated intragastrically with progesterone and The Morris Water Maze test was performed to detect the learning and memory abilities. Intracellular cholesterol was measured by Cholesterol/Cholesteryl Ester Quantitation Assay. The structure of MAMs were observed with transmission electron microscopy. The expression of acyl-CoA: cholesterol acyltransferase 1 (ACAT1), ERK1/2 and p-ERK1/2 were detected with western blotting, immunohistochemistry or immunofluorescence. RESULTS Progesterone suppressed the accumulation of intracellular CE, shortened the length of abnormally prolonged MAM in cortex of APP/PS1 mice. Progesterone decreased the expression of ACAT1, which could be blocked by progesterone receptor membrane component 1 (PGRMC1) inhibitor AG205. The ERK1/2 pathway maybe involved in the progesterone mediated regulation of ACAT1 in AD models, rather than the PI3K/Akt and the P38 MEPK pathways. SIGNIFICANCE The results supported a line of evidence that progesterone regulates CE level and the structure of MAM in neurons of AD models, providing a promising treatment against AD on the dysfunction of cholesterol metabolism.
Collapse
Affiliation(s)
- Wenjing Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China.
| | - Hang Wu
- Department of Pharmacy, Heze University, Heze 274000, Shandong Province, China.
| | - Sha Liu
- Department of Pharmacy, the Third Hospital of Shijiazhuang, Shijiazhuang 050000, Hebei Province, China.
| | - Zhigang Wu
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China.
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Jianfang Liu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Yanning Hou
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| |
Collapse
|
10
|
Stanojlović M, Guševac Stojanović I, Zarić M, Martinović J, Mitrović N, Grković I, Drakulić D. Progesterone Protects Prefrontal Cortex in Rat Model of Permanent Bilateral Common Carotid Occlusion via Progesterone Receptors and Akt/Erk/eNOS. Cell Mol Neurobiol 2020; 40:829-843. [PMID: 31865501 PMCID: PMC11448933 DOI: 10.1007/s10571-019-00777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Sustained activation of pro-apoptotic signaling due to a sudden and prolonged disturbance of cerebral blood circulation governs the neurodegenerative processes in prefrontal cortex (PFC) of rats whose common carotid arteries are permanently occluded. The adequate neuroprotective therapy should minimize the activation of toxicity pathways and increase the activity of endogenous protective mechanisms. Several neuroprotectants have been proposed, including progesterone (P4). However, the underlying mechanism of its action in PFC following permanent bilateral occlusion of common carotid arteries is not completely investigated. We, thus herein, tested the impact of post-ischemic P4 treatment (1.7 mg/kg for seven consecutive days) on previously reported aberrant neuronal morphology and amount of DNA fragmentation, as well as the expression of progesterone receptors along with the key elements of Akt/Erk/eNOS signal transduction pathway (Bax, Bcl-2, cytochrome C, caspase 3, PARP, and the level of nitric oxide). The obtained results indicate that potential amelioration of histological changes in PFC might be associated with the absence of activation of Bax/caspase 3 signaling cascade and the decline of DNA fragmentation. The study also provides the evidence that P4 treatment in repeated regiment of administration might be effective in neuronal protection against ischemic insult due to re-establishment of the compromised action of Akt/Erk/eNOS-mediated signaling pathway and the upregulation of progesterone receptors.
Collapse
Affiliation(s)
- Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Guševac Stojanović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia.
| |
Collapse
|
11
|
Wu H, Wu ZG, Shi WJ, Gao H, Wu HH, Bian F, Jia PP, Hou YN. Effects of progesterone on glucose uptake in neurons of Alzheimer's disease animals and cell models. Life Sci 2019; 238:116979. [PMID: 31647947 DOI: 10.1016/j.lfs.2019.116979] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023]
Abstract
AIMS Alzheimer's disease (AD) is closely related to abnormal glucose metabolism in the central nervous system. Progesterone has been shown to have obvious neuroprotective effects in the pathogenesis of AD, but the specific mechanism has not been fully elucidated. Therefore, the purpose of this study was to investigate the effect of progesterone on the glucose metabolism of neurons in amyloid precursor protein (APP)/presenilin 1 (PS1) mice and Aβ-induced AD cell model. MATERIALS AND METHODS APP/PS1 mice were treated with 40 mg/kg progesterone for 40 days and primary cultured cortical neurons were treated with 1 μM progesterone for 48 h.Then behavior tests,2-NBDG glucose uptake tests and the protein levels of glucose transporter 3 (GLUT3), GLUT4, cAMP-response element binding protein (CREB) and proliferator-activated receptor γ (PPARγ) were examined. KEY FINDINGS Progesterone increased the expression levels of GLUT3 and GLUT4 in the cortex of APP/PS1 mice, accompanied by an improvement in learning and memory. Progesterone increased the levels of CREB and PPARγ in the cerebral cortex of APP/PS1 mice. In vitro, progesterone increased glucose uptake in primary cultured cortical neurons, this effect was blocked by the progesterone receptor membrane component 1 (PGRMC1)-specific blocker AG205 but not by the progesterone receptor (PR)-specific blocker RU486. Meanwhile, progesterone increased the expression of GLUT3, GLUT4, CREB and PPARγ, and AG205 blocked this effect. SIGNIFICANCE These results confirm that progesterone significantly improves the glucose metabolism of neurons.One of the mechanisms of this effect is that progesterone upregulates protein expression of GLUT3 and GLUT4 through pathways PGRMC1/CREB/GLUT3 and PGRMC1/PPARγ/GLUT4.
Collapse
Affiliation(s)
- Hang Wu
- Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Zhi-Gang Wu
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, 075000, China.
| | - Wen-Jing Shi
- Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China; Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050051, Hebei Province, China.
| | - Hui Gao
- Department of Clinical Medicine, Heze Medical College, Heze, 274000, Shandong Province, China.
| | - Hong-Hai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, 050082, Hebei Province, China.
| | - Fang Bian
- Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Peng-Peng Jia
- Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yan-Ning Hou
- Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China; Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, 050082, Hebei Province, China.
| |
Collapse
|
12
|
Theis V, Theiss C. Progesterone Effects in the Nervous System. Anat Rec (Hoboken) 2019; 302:1276-1286. [PMID: 30951258 DOI: 10.1002/ar.24121] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022]
Abstract
The sex hormone progesterone is mainly known as a key factor in establishing and maintaining pregnancy. In addition, progesterone has been shown to induce morphological changes in the central and peripheral nervous system by increasing dendrito-, spino-, and synaptogenesis in Purkinje cells (Wessel et al.: Cell Mol Life Sci (2014a) 1723-1740) and increasing axonal outgrowth in dorsal root ganglia (Olbrich et al.: Endocrinology (2013) 3784-3795). These effects mediated mainly by the classical progesterone receptors (PRs) A and B seem to be limited to young neurons. It may be assumed that microRNAs (miRNAs), which are potent regulators of nervous system maturation and degeneration, are also involved in the regulation of progesterone-mediated neuronal plasticity by altering the expression patterns of the corresponding PR A/B receptors (Theis and Theiss: Neural Regen Res (2015) 547-549, Pieczora et al.: Cerebellum (2017) 376-387). This review critically discusses current data on the neuroprotective effect of progesterone and its corresponding receptors in the nervous system, with possible regulatory processes by miRNAs. Preclinical studies on stroke and traumatic brain injury revealed neuroprotective and neuroregenerative effects of progesterone in the treatment of severe neurological diseases in animal models, but have so far failed in humans. In this context, the identification of specific miRNAs that regulate the expression of progesterone and PR could help to exploit the neuroprotective potential of progesterone for the treatment of various neurological disorders. Anat Rec, 302:1276-1286, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|