1
|
Luo S, Wei X, Zhao J, Zhou Z, Zheng L, Yang Y, Liu L. Effect of Psychosomatic Symptom Intervention on Psychosomatic Symptoms During Initial Treatment in Patients With Differentiated Thyroid Cancer: A Single-blind Randomized Controlled Trial. Cancer Nurs 2025:00002820-990000000-00398. [PMID: 40266664 DOI: 10.1097/ncc.0000000000001511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BACKGROUND There is increasing evidence suggesting that patients with thyroid cancer may experience prolonged anxiety and depression postsurgery, which could potentially impact their treatment outcomes adversely. OBJECTIVES To investigate the impact of a psychosomatic symptom intervention program on the psychological and physical health of patients with differentiated thyroid cancer (DTC). METHODS Eighty-four patients with DTC were recruited from one cancer hospital and were randomly assigned to either the experimental (n = 42) or control group (n = 42). The intervention group received a 12-week psychosomatic symptom intervention. Anxiety and depression, thyroid-stimulating hormone attainment rate, self-management efficacy, and shoulder joint function were evaluated before intervention, after intervention, and during follow-up. RESULTS The generalized estimating equation showed that the intervention group had significantly lower levels of anxiety and depression at T1 and T2 compared with the control group (P < .001). The time, group, and interaction effects were significant (P < .001). The thyroid-stimulating hormone target rate in the intervention group (59.5%) was higher than that in the control group (26.2%) (P = .008). There were significant differences in self-management efficacy and shoulder joint function between the 2 groups (P < .001). CONCLUSIONS These findings hold significant implications for the psychological and physical symptoms of DTC patients. It suggests that early interventions can expedite patient recovery during the initial treatment phase. IMPLICATION FOR PRACTICE During the initial treatment phase, nurses can implement interventions targeting psychological and physical symptoms in DTC patients, aimed at facilitating postoperative self-care and promoting expeditious recovery of overall health.
Collapse
Affiliation(s)
- Shuhua Luo
- Author Affiliations: School of Nursing, Daqing Campus, Harbin Medical University (Mss Luo, Wei, Zhao, and Zhou and Dr Liu); and Department of Thyroid Surgery, Harbin Medical University Cancer Hospital (Mss Zheng and Yang), Daqing, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
2
|
Geiger LT, Balouek JAR, Barrett MR, Thompson JM, Fang LZ, Farrelly LA, Chen AS, Tang M, Bennett SN, Garcia BA, Maze I, Creed MC, Peña CJ. Early-life stress alters chromatin modifications in VTA to prime stress sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.14.584631. [PMID: 38559030 PMCID: PMC10980038 DOI: 10.1101/2024.03.14.584631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Early-life stress increases sensitivity to subsequent stress, which has been observed at behavioral, neural activity, and gene expression levels. However, the molecular mechanisms underlying such long-lasting sensitivity are poorly understood. We tested the hypothesis that persistent changes in transcription and transcriptional potential were maintained at the level of the epigenome, through changes in chromatin. We used a combination of bottom-up mass spectrometry, viral-mediated epigenome-editing, RNA-sequencing, patch clamp electrophysiology of dopamine neurons, and behavioral quantification in a mouse model of early-life stress, focusing on the ventral tegmental area (VTA), a dopaminergic brain region critically implicated in motivation, reward learning, stress response, and mood and drug disorders. We found that early-life stress alters histone dynamics in VTA, including enrichment of histone-3 lysine-4 monomethylation - associated with open chromatin and primed or active enhancers - and the H3K4 monomethylase Setd7. Mimicking early-life stress through postnatal overexpression of Setd7 and enrichment of H3K4me1 in VTA sensitizes transcriptional, physiological, and behavioral response to adult stress. These findings link early-life stress experience to long-term stress hypersensitivity within the brain's dopaminergic circuitry, providing a mechanism by which early-life stress increases risk for mood and anxiety disorders later in life.
Collapse
|
3
|
Bazer A, Denney K, Chacona M, Montgomery C, Vinod S, Datta U, Samuels BA. Male and Female Mice Are Similarly Susceptible to Chronic Nondiscriminatory Social Defeat Stress Despite Differences in Attack Frequency from Aggressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645316. [PMID: 40196656 PMCID: PMC11974878 DOI: 10.1101/2025.03.25.645316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Rationale Mood disorders are often precipitated by chronic stress and can result in an inability to adapt to the environment and increased vulnerability to challenging experiences. While diagnoses of mood disorders are diagnosed twice as frequently in women than in men, most preclinical chronic social defeat stress mouse models exclude females due to decreased aggression toward female intruders. Objectives We previously reported that the chronic non-discriminatory social defeat stress (CNSDS) paradigm is effective in both sexes, allowing for comparisons between male and female mice. We aimed to improve the screening protocol to identify CD-1 aggressors for use in CNSDS and the method for determining susceptibility to CNSDS. Finally, we aimed to determine whether susceptibility to CNSDS correlated with impaired performance in a satiety-based outcome devaluation task. Methods We analyzed CNSDS screening and social defeat sessions to determine appropriate parameters for selecting CD-1 aggressors and investigated aggressions toward male and female intruder mice. We also investigated CNSDS effects on a reward valuation task. Results We observed that despite receiving fewer attacks, female mice are equally susceptible to CNSDS as males and that CNSDS abolished satiety-based outcome devaluation in susceptible male and female mice, but not in resilient male and female mice. Conclusions These data suggest that CNSDS-defined susceptible and resilient phenotypes extend to reward behaviors.
Collapse
Affiliation(s)
- Allyson Bazer
- Department of Psychology, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Behavioral and Systems Neuroscience Graduate Program, Department of Psychology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Katherine Denney
- Department of Psychology, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Maria Chacona
- Department of Psychology, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Behavioral and Systems Neuroscience Graduate Program, Department of Psychology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Catherine Montgomery
- Department of Psychology, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Shriya Vinod
- Department of Psychology, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Urboshi Datta
- Department of Psychology, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Benjamin Adam Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Behavioral and Systems Neuroscience Graduate Program, Department of Psychology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
5
|
Shan X, Li D, Yin H, Tao W, Zhou L, Gao Y, Xing C, Zhang C. Recent Insights on the Role of Nuclear Receptors in Alzheimer's Disease: Mechanisms and Therapeutic Application. Int J Mol Sci 2025; 26:1207. [PMID: 39940973 PMCID: PMC11818835 DOI: 10.3390/ijms26031207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad array of biological processes, including inflammation, lipid metabolism, cell proliferation, and apoptosis. Among the diverse family of NRs, peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), liver X receptor (LXR), farnesoid X receptor (FXR), retinoid X receptor (RXR), and aryl hydrocarbon receptor (AhR) have garnered significant attention for their roles in neurodegenerative diseases, particularly Alzheimer's disease (AD). NRs influence the pathophysiology of AD through mechanisms such as modulation of amyloid-beta (Aβ) deposition, regulation of inflammatory pathways, and improvement of neuronal function. However, the dual role of NRs in AD progression, where some receptors may exacerbate the disease while others offer therapeutic potential, presents a critical challenge for their application in AD treatment. This review explores the functional diversity of NRs, highlighting their involvement in AD-related processes and discussing the therapeutic prospects of NR-targeting strategies. Furthermore, the key challenges, including the necessity for the precise identification of beneficial NRs, detailed structural analysis through molecular dynamics simulations, and further investigation of NR mechanisms in AD, such as tau pathology and autophagy, are also discussed. Collectively, continued research is essential to clarify the role of NRs in AD, ultimately facilitating their potential use in the diagnosis, prevention, and treatment of AD.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dawei Li
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huihui Yin
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenwen Tao
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lele Zhou
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Gao
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengjie Xing
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Caiyun Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
6
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Xia X, Tang J, Peng Y, Liu Y, Chen Y, Yuan M, Yu R, Hou X, Fu Y. Brain alterations in adolescents with first-episode depression who have experienced adverse events: evidence from resting-state functional magnetic resonance imaging. Front Psychiatry 2024; 15:1358770. [PMID: 38654725 PMCID: PMC11036546 DOI: 10.3389/fpsyt.2024.1358770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Adverse life events constitute primary risk factors for major depressive disorder (MDD), influencing brain function and structure. Adolescents, with their brains undergoing continuous development, are particularly susceptible to enduring impacts of adverse events. Methods We investigated differences and correlations among childhood trauma, negative life events, and alterations of brain function in adolescents with first-episode MDD. The study included 23 patients with MDD and 19 healthy controls, aged 10-19 years. All participants underwent resting-state functional magnetic resonance imaging and were assessed using the beck depression inventory, childhood trauma questionnaire, and adolescent self-rating life events checklist. Results Compared with healthy controls, participants with first-episode MDD were more likely to have experienced emotional abuse, physical neglect, interpersonal relationship problems, and learning stress (all p' < 0.05). These adverse life events were significantly correlated with alterations in brain functions (all p < 0.05). Discussion This study contributes novel evidence on the underlying process between adverse life events, brain function, and depression, emphasizing the significant neurophysiological impact of environmental factors.
Collapse
Affiliation(s)
- Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxiang Tang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yadong Peng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Yuan
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Hou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|