1
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
2
|
Lu W, Jiang Z, Tang C, Wang P, Yang L. Molecular mechanisms by which targeted muscle reinnervation improves the microenvironment of spinal cord motor neurons and target muscles. Neurosci Lett 2022; 789:136879. [PMID: 36152746 DOI: 10.1016/j.neulet.2022.136879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Targeted muscle reinnervation is a clinically valuable nerve transfers technology used to reconstruct the information sources reconstruct the motor nerve information sources lost because of nerve injury. This study aimed to investigate the effects and underlying molecular mechanisms of hind limb TMR on motor neurons and target muscles in rats after tibial nerve transection (TNT). Immunohistochemistry was performed to detect acetylcholinesterase expression in the target muscles and myelin basic protein, neuregulin-1 (NRG1), and ErbB2 expression in the tibial nerve of rats. Masson's trichrome staining was performed to observe fibrillar collagen expression in the target muscles. Western blot analysis was used to detect the protein expression of NRG1 and its receptor, ErbB2, in the target muscles. TMR significantly enhanced NRG1, ErbB2, and myelin basic protein expression in nerve fibers compared with those in the TNT group and exerted a protective effect on the maintenance of a large number of nerve fibers and myelin sheath thickness. The above results indicated that TMR can regulate NRG1 and ErbB2 expression in residual nerve fibers and protect the integrity of the myelin sheath, thus improving the functional status of the target muscles, which is beneficial for restoring hind limb motor function after TNT.
Collapse
Affiliation(s)
- Wei Lu
- College of Basic Medicine, Guangdong Jiangmen Chinese Medical College, Jiangmen, China
| | - Zhendong Jiang
- Department of Human Anatomy, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chunxiao Tang
- Department of Human Anatomy, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ping Wang
- Department of Human Anatomy, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Lin Yang
- Department of Human Anatomy, Zhuhai Campus of Zunyi Medical University, Zhuhai, China; Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
3
|
Yu YD, Xiu YP, Li YF, Zhang J, Xue YT, Li Y. To Explore the Mechanism and Equivalent Molecular Group of Radix Astragali and Semen Lepidii in Treating Heart Failure Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5518192. [PMID: 34285700 PMCID: PMC8275399 DOI: 10.1155/2021/5518192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Radix Astragali and Semen Lepidii (HQ-TLZ) is a commonly used herbal medicine combination for treatment of heart failure, which has a good clinical effect. However, its active components and mechanism of action are not clear, which limits its clinical application and development. In this study, we explored the mechanism of action of HQ-TLZ in the treatment of heart failure based on network pharmacology. We obtained 11 active ingredients and 109 targets from the TCMSP database and SwissTargetPrediction database. Next, we constructed the action network and carried out enrichment analysis. The results showed that HQ-TLZ treatment of heart failure is primarily achieved by regulating the insulin resistance, erbB signaling pathway, PI3K-Akt signaling pathway, and VEGF signaling pathway. After inverse targeting, molecular docking, and literature search, we determined that the equivalent molecular groups of HQ-TLZ in the treatment of heart failure were quercetin and kaempferol. Based on network pharmacology, we reveal the mechanism of action of HQ-TLZ in the treatment of heart failure to a certain extent. At the same time, we determined the composition of the equivalent molecular group. This provides a bridge for the consistency evaluation of natural herbs and molecular compounds, which is beneficial to the development of novel drugs and further research.
Collapse
Affiliation(s)
- Yi-ding Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yi-ping Xiu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yang-fan Li
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Juan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yi-tao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
4
|
Shakeri H, Boen JRA, De Moudt S, Hendrickx JO, Leloup AJA, Jacobs G, De Meyer GRY, De Keulenaer GW, Guns PJDF, Segers VFM. Neuregulin-1 compensates for endothelial nitric oxide synthase deficiency. Am J Physiol Heart Circ Physiol 2021; 320:H2416-H2428. [PMID: 33989083 DOI: 10.1152/ajpheart.00914.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelial cells (ECs) secrete different paracrine signals that modulate the function of adjacent cells; two examples of these paracrine signals are nitric oxide (NO) and neuregulin-1 (NRG1), a cardioprotective growth factor. Currently, it is undetermined whether one paracrine factor can compensate for the loss of another. Herein, we hypothesized that NRG1 can compensate for endothelial NO synthase (eNOS) deficiency. We characterized eNOS null and wild-type (WT) mice by cardiac ultrasound and histology and we determined circulating NRG1 levels. In a separate experiment, eight groups of mice were divided into four groups of eNOS null mice and WT mice; half of the mice received angiotensin II (ANG II) to induce a more severe phenotype. Mice were randomized to daily injections with NRG1 or vehicle for 28 days. eNOS deficiency increased NRG1 plasma levels, indicating that ECs increase their NRG1 expression when NO production is deleted. eNOS deficiency also increased blood pressure, lowered heart rate, induced cardiac fibrosis, and affected diastolic function. In eNOS null mice, ANG II administration not only increased cardiac fibrosis but also induced cardiac hypertrophy and renal fibrosis. NRG1 administration prevented cardiac and renal hypertrophy and fibrosis caused by ANG II infusion and eNOS deficiency. Moreover, Nrg1 expression in the myocardium is shown to be regulated by miR-134. This study indicates that administration of endothelium-derived NRG1 can compensate for eNOS deficiency in the heart and kidneys.NEW & NOTEWORTHY ECs compensate for eNOS deficiency by increasing the secretion of NRG1. NRG1 administration prevents cardiac and renal hypertrophy and fibrosis caused by ANG II infusion and eNOS deficiency. NRG1 expression is regulated by miR-134.
Collapse
Affiliation(s)
- Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jente R A Boen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Sofie De Moudt
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jhana O Hendrickx
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Arthur J A Leloup
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Griet Jacobs
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Hartcentrum ZNA, Antwerp, Belgium
| | | | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
5
|
Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond) 2021; 134:2623-2643. [PMID: 33063822 PMCID: PMC7557502 DOI: 10.1042/cs20200230] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a rapidly evolving field. While initial concepts focused on the role that NRG may play in regulating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and proliferation, emerging data support a broader role for NRGs in the regulation of metabolism, inflammation, and fibrosis in response to injury. The constellation of effects modulated by NRGs may account for the findings that two distinct forms of recombinant NRG-1 have beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has recently emerged as an adipokine with similar potential to regulate cardiovascular responses to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac dysfunction associated with sepsis. Collectively, this literature supports the further examination of how this developmentally critical signaling system functions and how it might be leveraged to treat cardiovascular disease.
Collapse
|
6
|
Shakeri H, Gevaert AB, Schrijvers DM, De Meyer GRY, De Keulenaer GW, Guns PJDF, Lemmens K, Segers VF. Neuregulin-1 attenuates stress-induced vascular senescence. Cardiovasc Res 2019. [PMID: 29528383 DOI: 10.1093/cvr/cvy059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aims Cardiovascular ageing is a key determinant of life expectancy. Cellular senescence, a state of irreversible cell cycle arrest, is an important contributor to ageing due to the accumulation of damaged cells. Targeting cellular senescence could prevent age-related cardiovascular diseases. In this study, we investigated the effects of neuregulin-1 (NRG-1), an epidermal growth factor with cardioprotective and anti-atherosclerotic effects, on cellular senescence. Methods and results Senescence was induced in cultured rat aortic endothelial cells (ECs) and aortic smooth muscle cells (SMCs) by 2 h exposure to 30 µM hydrogen peroxide (H2O2). Cellular senescence was confirmed after 72 h using senescence-associated-β-galactosidase staining (SA-β-gal), cell surface area, and western blot analyses of SA pathways (acetyl-p53, p21). Recombinant human NRG-1 (rhNRG-1, 20 ng/mL) significantly reduced H2O2-induced senescence, as shown by a lower number of SA-β-gal positive cells, smaller surface area and lower expression of acetyl-p53. In C57BL/6 male mice rendered diabetic with streptozotocin (STZ), rhNRG-1 attenuated cellular senescence in aortic ECs and SMCs. Next, we created mice with SMC-specific knockdown of the NRG-1 receptor ErbB4. Aortic SMCs isolated from SMC-specific ErbB4 deficient mice (ErbB4f/+ SM22α-Cre+) showed earlier cellular senescence in vitro compared with wild-type (ErbB4+/+ SM22α-Cre+) SMCs. Furthermore, when rendered diabetic with STZ, ErbB4f/+ SM22α-Cre+ male mice showed significantly more vascular senescence than their diabetic wild-type littermates and had increased mortality. Conclusions This study is the first to explore the role of NRG-1 in vascular senescence. Our data demonstrate that NRG-1 markedly inhibits stress-induced premature senescence in vascular cells in vitro and in the aorta of diabetic mice in vivo. Consistently, deficiency in the NRG-1 receptor ErbB4 provokes cellular senescence in vitro as well as in vivo.
Collapse
Affiliation(s)
- Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Andreas B Gevaert
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology.,Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Dorien M Schrijvers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Pieter-Jan D F Guns
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Katrien Lemmens
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Vincent F Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology
| |
Collapse
|
7
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6595437. [PMID: 31317035 PMCID: PMC6601481 DOI: 10.1155/2019/6595437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is an essential mechanism in myocardial fibrosis (MF). Tongxinluo (TXL) has been confirmed to protect the endothelium against reperfusion injury after acute myocardial infarction (AMI). However, whether TXL can inhibit MF after AMI via inhibiting EndMT remained unknown. This study aims to identify the role of EndMT in MF after AMI as well as the protective effects and underlying mechanisms of TXL on MF. The AMI model was established in rats by ligating left anterior descending coronary artery. Then, rats were administered with high- (0.8 g·kg−1·d−1), mid- (0.4 g·kg−1·d−1), and low- (0.2 g·kg−1·d−1) dose Tongxinluo and benazepril for 4 weeks, respectively. Cardiac function, infarct size, MF, and related indicators of EndMT were measured. In vitro, human cardiac microvascular endothelial cells (HCMECs) were pretreated with TXL for 4 h and then incubated in hypoxia conditions for 3 days to induce EndMT. Under this hypoxic condition, neuregulin-1 (NRG-1) siRNA were further applied to silence NRG-1 expression. Immunofluorescence microscopy was used to assess expression of endothelial marker of vWF and fibrotic marker of Vimentin. Related factors of EndMT were determined by Western blot analysis. TXL treatment significantly improved cardiac function, ameliorated MF, reduced collagen of fibrosis area (types I and III collagen) and limited excessive extracellular matrix deposition (mmp2 and mmp9). In addition, TXL inhibited EndMT in cardiac tissue and hypoxia-induced HCMECs. In hypoxia-induced HCMECs, TXL increased the expression of endothelial markers, whereas decreasing the expression of fibrotic markers, partially through enhanced expressions of NRG-1, phosphorylation of ErbB2, ErbB4, AKT, and downregulated expressions of hypoxia inducible factor-1a and transcription factor snail. After NRG-1 knockdown, the protective effect of TXL on HCMEC was partially abolished. In conclusion, TXL attenuates MF after AMI by inhibiting EndMT and through activating the NRG-1/ErbB- PI3K/AKT signalling cascade.
Collapse
|
9
|
Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, Mercurio V, Monte I, Novo G, Parrella P, Pirozzi F, Pecoraro A, Spallarossa P, Zito C, Mercuro G, Pagliaro P, Tocchetti CG. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol 2018; 9:167. [PMID: 29563880 PMCID: PMC5846016 DOI: 10.3389/fphys.2018.00167] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Antineoplastic drugs can be associated with several side effects, including cardiovascular toxicity (CTX). Biochemical studies have identified multiple mechanisms of CTX. Chemoterapeutic agents can alter redox homeostasis by increasing the production of reactive oxygen species (ROS) and reactive nitrogen species RNS. Cellular sources of ROS/RNS are cardiomyocytes, endothelial cells, stromal and inflammatory cells in the heart. Mitochondria, peroxisomes and other subcellular components are central hubs that control redox homeostasis. Mitochondria are central targets for antineoplastic drug-induced CTX. Understanding the mechanisms of CTX is fundamental for effective cardioprotection, without compromising the efficacy of anticancer treatments. Type 1 CTX is associated with irreversible cardiac cell injury and is typically caused by anthracyclines and conventional chemotherapeutic agents. Type 2 CTX, associated with reversible myocardial dysfunction, is generally caused by biologicals and targeted drugs. Although oxidative/nitrosative reactions play a central role in CTX caused by different antineoplastic drugs, additional mechanisms involving directly and indirectly cardiomyocytes and inflammatory cells play a role in cardiovascular toxicities. Identification of cardiologic risk factors and an integrated approach using molecular, imaging, and clinical data may allow the selection of patients at risk of developing chemotherapy-related CTX. Although the last decade has witnessed intense research related to the molecular and biochemical mechanisms of CTX of antineoplastic drugs, experimental and clinical studies are urgently needed to balance safety and efficacy of novel cancer therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Pietro Ameri
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Christian Cadeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, Center of Excellence on Aging, Università degli Studi “G. d'Annunzio” Chieti – Pescara, Chieti, Italy
- Department of Internal Medicine, Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center, Houston, TX, United States
| | - Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy
- Monaldi Hospital Pharmacy, Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Parrella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Flora Pirozzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Paolo Spallarossa
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Concetta Zito
- Division of Clinical and Experimental Cardiology, Department of Medicine and Pharmacology, Policlinico “G. Martino” University of Messina, Messina, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA. Heart Failure With Preserved Ejection Fraction in Diabetes: Mechanisms and Management. Can J Cardiol 2018; 34:632-643. [PMID: 29731023 DOI: 10.1016/j.cjca.2018.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a major cause of heart failure in the Western world, either secondary to coronary artery disease or from a distinct entity known as "diabetic cardiomyopathy." Furthermore, heart failure with preserved ejection fraction (HFpEF) is emerging as a significant clinical problem for patients with DM. Current clinical data suggest that between 30% and 40% of patients with HFpEF suffer from DM. The typical structural phenotype of the HFpEF heart consists of endothelial dysfunction, increased interstitial and perivascular fibrosis, cardiomyocyte stiffness, and hypertrophy along with advanced glycation end products deposition. There is a myriad of mechanisms that result in the phenotypical HFpEF heart including impaired cardiac metabolism and substrate utilization, altered insulin signalling leading to protein kinase C activation, advanced glycated end products deposition, prosclerotic cytokine activation (eg, transforming growth factor-β activation), along with impaired nitric oxide production from the endothelium. Moreover, recent investigations have focused on the role of endothelial-myocyte interactions. Despite intense research, current therapeutic strategies have had little effect on improving morbidity and mortality in patients with DM and HFpEF. Possible explanations for this include a limited understanding of the role that direct cell-cell communication or indirect cell-cell paracrine signalling plays in the pathogenesis of DM and HFpEF. Additionally, integrins remain another important mediator of signals from the extracellular matrix to cells within the failing heart and might play a significant role in cell-cell cross-talk. In this review we discuss the characteristics and mechanisms of DM and HFpEF to stimulate potential future research for patients with this common, and morbid condition.
Collapse
Affiliation(s)
- Patrick Meagher
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed Adam
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Robert Civitarese
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Antoinette Bugyei-Twum
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Cardiology, St Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Disintegrin and metalloproteinases (ADAMs and ADAM-TSs), the emerging family of proteases in heart physiology and pathology. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Dang R, Guo Y, Cai H, Yang R, Liang D, Lv C, Jiang P. Effects of prolonged antipsychotic administration on neuregulin-1/ErbB signaling in rat prefrontal cortex and myocardium: implications for the therapeutic action and cardiac adverse effect. J Toxicol Sci 2016; 41:303-9. [PMID: 26961615 DOI: 10.2131/jts.41.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Patients with schizophrenia (SCZ) are at higher risk for developing cardiovascular disease (CVD) and neuregulin-1 (NRG1)/ErbB signaling has been identified as a common susceptibility pathway for the comorbidity. Antipsychotic treatment can change NRG1/ErbB signaling in the brain, which has been implicated in their therapeutic actions, whereas the drug-induced alterations of NRG1/ErbB pathway in cardiovascular system might be associated with the prominent cardiac side-effects of antipsychotic medication. To test this hypothesis, we examined NRG1/ErbB system in rat prefrontal cortex (PFC) and myocardium following 4-week intraperitoneal administration of haloperidol, risperidone or clozapine. Generally, the antipsychotics significantly enhanced NRG1/ErbB signaling with increased expression of NRG1 and phosphorylation of ErbB4 and ErbB2 in the brain and myocardium, except that clozapine partly blocked the cardiac NRG1/ErbB2 activation, which could be associated with its more severe cardiac adverse actions. Combined, our data firstly showed evidence of the effect of antipsychotic exposure on myocardial NRG1/ErbB signaling, along with the activated NRG1/ErbB system in brain, providing a potential link between the therapeutic actions and cardiotoxicity.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital of Jining Medical University, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Dang R, Guo Y, Zhang L, Chen L, Yang R, Jiang P. Chronic stress and excessive glucocorticoid exposure both lead to altered Neuregulin-1/ErbB signaling in rat myocardium. Steroids 2016; 112:47-53. [PMID: 27133902 DOI: 10.1016/j.steroids.2016.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022]
Abstract
Exposure to chronic stress or excess glucocorticoids is associated with the development of depression and heart disease, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in cardiac function, much is still unknown concerning the biological link between NRG1/ErbB pathway and the stress-induced comorbidity of depression and cardiac dysfunction. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the myocardium of rats following chronic unpredictable mild stress (CUMS) or rats treated with two different doses (0.2 and 2mg/kg/day, respectively) of dexamethasone (Dex). The stressed rats showed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the myocardium, whereas ErbB2 and pErbB2 were inhibited. The lower dose of Dex enhanced myocardial NRG1/ErbB signaling, but as the dose is increased, while ErbB4 remained activated, the expression of ErbB2 and pErbB2 became compromised. Both CUMS and 2mg/kg of Dex suppressed the downstream Akt and ERK phosphorylation. Although the lower dose of Dex increased myocardial antiapoptotic Bcl-xl expression, a significant decrease of Bcl-xl expression was found in rats treated with the higher dose. Meanwhile, both CUMS and two different doses of Dex induced proapoptotic Bax level. Combined, our data firstly showed (mal)adaptive responses of NRG1/ErbB system in the stressed heart, indicating the potential involvement of NRG1/ErbB pathway in the stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Ling Zhang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Lei Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Ranyao Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
14
|
Mercurio V, Pirozzi F, Lazzarini E, Marone G, Rizzo P, Agnetti G, Tocchetti CG, Ghigo A, Ameri P. Models of Heart Failure Based on the Cardiotoxicity of Anticancer Drugs. J Card Fail 2016; 22:449-58. [PMID: 27103426 DOI: 10.1016/j.cardfail.2016.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a complication of oncological treatments that may have dramatic clinical impact. It may acutely worsen a patient's condition or it may present with delayed onset, even years after treatment, when cancer has been cured or is in stable remission. Several studies have addressed the mechanisms of cancer therapy-related HF and some have led to the definition of disease models that hold valid for other and more common types of HF. Here, we review these models of HF based on the cardiotoxicity of antineoplastic drugs and classify them in cardiomyocyte-intrinsic, paracrine, or potentially secondary to effects on cardiac progenitor cells. The first group includes HF resulting from the combination of oxidative stress, mitochondrial dysfunction, and activation of the DNA damage response, which is typically caused by anthracyclines, and HF resulting from deranged myocardial energetics, such as that triggered by anthracyclines and sunitinib. Blockade of the neuregulin-1/ErbB4/ErbB2, vascular endothelial growth factor/vascular endothelial growth factor receptor and platelet-derived growth factor /platelet-derived growth factor receptor pathways by trastuzumab, sorafenib and sunitinib is proposed as paradigm of cancer therapy-related HF associated with alterations of myocardial paracrine pathways. Finally, anthracyclines and trastuzumab are also presented as examples of antitumor agents that induce HF by affecting the cardiac progenitor cell population.
Collapse
Affiliation(s)
- Valentina Mercurio
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Flora Pirozzi
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Edoardo Lazzarini
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Giulio Agnetti
- Johns Hopkins University, Cardiology, Baltimore, Maryland; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo G Tocchetti
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| |
Collapse
|
15
|
Sysa-Shah P, Tocchetti CG, Gupta M, Rainer PP, Shen X, Kang BH, Belmonte F, Li J, Xu Y, Guo X, Bedja D, Gao WD, Paolocci N, Rath R, Sawyer DB, Naga Prasad SV, Gabrielson K. Bidirectional cross-regulation between ErbB2 and β-adrenergic signalling pathways. Cardiovasc Res 2015; 109:358-73. [PMID: 26692570 DOI: 10.1093/cvr/cvv274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
AIMS Despite the observation that ErbB2 regulates sensitivity of the heart to doxorubicin or ErbB2-targeted cancer therapies, mechanisms that regulate ErbB2 expression and activity have not been studied. Since isoproterenol up-regulates ErbB2 in kidney and salivary glands and β2AR and ErbB2 complex in brain and heart, we hypothesized that β-adrenergic receptors (AR) modulate ErbB2 signalling status. METHODS AND RESULTS ErbB2 transfection of HEK293 cells up-regulates β2AR, and β2AR transfection of HEK293 up-regulates ErbB2. Interestingly, cardiomyocytes isolated from myocyte-specific ErbB2-overexpressing (ErbB2(tg)) mice have amplified response to selective β2-agonist zinterol, and right ventricular trabeculae baseline force generation is markedly reduced with β2-antagonist ICI-118 551. Consistently, receptor binding assays and western blotting demonstrate that β2ARs levels are markedly increased in ErbB2(tg) myocardium and reduced by EGFR/ErbB2 inhibitor, lapatinib. Intriguingly, acute treatment of mice with β1- and β2-AR agonist isoproterenol resulted in myocardial ErbB2 increase, while inhibition with either β1- or β2-AR antagonist did not completely prevent isoproterenol-induced ErbB2 expression. Furthermore, inhibition of ErbB2 kinase predisposed mice hearts to injury from chronic isoproterenol treatment while significantly reducing isoproterenol-induced pAKT and pERK levels, suggesting ErbB2's role in transactivation in the heart. CONCLUSION Our studies show that myocardial ErbB2 and βAR signalling are linked in a feedback loop with βAR activation leading to increased ErbB2 expression and activity, and increased ErbB2 activity regulating β2AR expression. Most importantly, ErbB2 kinase activity is crucial for cardioprotection in the setting of β-adrenergic stress, suggesting that this mechanism is important in the pathophysiology and treatment of cardiomyopathy induced by ErbB2-targeting antineoplastic drugs.
Collapse
Affiliation(s)
- Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Carlo G Tocchetti
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Manveen Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Peter P Rainer
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Byung-Hak Kang
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Frances Belmonte
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jian Li
- Clinical Laboratory, Chinese PLA General Hospital, Beijing, China
| | - Yi Xu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rutwik Rath
- Cardiovascular Services, Maine Medical Center, Portland, ME, USA
| | - Douglas B Sawyer
- Cardiovascular Services, Maine Medical Center, Portland, ME, USA
| | | | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol 2015; 93:186-99. [PMID: 26522853 DOI: 10.1016/j.yjmcc.2015.10.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of membrane-bound proteases. ADAM-TSs (ADAMs with thrombospondin domains) are a close relative of ADAMs that are present in soluble form in the extracellular space. Dysregulated production or function of these enzymes has been associated with pathologies such as cancer, asthma, Alzheimer's and cardiovascular diseases. ADAMs contribute to angiogenesis, hypertrophy and apoptosis in a stimulus- and cell type-dependent manner. Among the ADAMs identified so far (34 in mouse, 21 in human), ADAMs 8, 9, 10, 12, 17 and 19 have been shown to be involved in cardiovascular development or cardiomyopathies; and among the 19 ADAM-TSs, ADAM-TS1, 5, 7 and 9 are important in development of the cardiovascular system, while ADAM-TS13 can contribute to vascular disorders. Meanwhile, there remain a number of ADAMs and ADAM-TSs whose function in the cardiovascular system has not been yet explored. The current knowledge about the role of ADAMs and ADAM-TSs in the cardiovascular pathologies is still quite limited. The most detailed studies have been performed in other cell types (e.g. cancer cells) and organs (nervous system) which can provide valuable insight into the potential functions of ADAMs and ADAM-TSs, their mechanism of action and therapeutic potentials in cardiomyopathies. Here, we review what is currently known about the structure and function of ADAMs and ADAM-TSs, and their roles in development, physiology and pathology of the cardiovascular system.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Tenin G, Clowes C, Wolton K, Krejci E, Wright JA, Lovell SC, Sedmera D, Hentges KE. Erbb2 is required for cardiac atrial electrical activity during development. PLoS One 2014; 9:e107041. [PMID: 25269082 PMCID: PMC4182046 DOI: 10.1371/journal.pone.0107041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/13/2014] [Indexed: 01/16/2023] Open
Abstract
The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart's electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation.
Collapse
Affiliation(s)
- Gennadiy Tenin
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Kathryn Wolton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Eliska Krejci
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, and Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Simon C. Lovell
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, and Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kathryn E. Hentges
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Parodi EM, Kuhn B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res 2014; 102:194-204. [PMID: 24477642 PMCID: PMC3989448 DOI: 10.1093/cvr/cvu021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/23/2013] [Accepted: 01/10/2014] [Indexed: 12/26/2022] Open
Abstract
Heterocellular communication in the heart is an important mechanism for matching circulatory demands with cardiac structure and function, and neuregulins (Nrgs) play an important role in transducing this signal between the hearts' vasculature and musculature. Here, we review the current knowledge regarding Nrgs, explaining their roles in transducing signals between the heart's microvasculature and cardiomyocytes. We highlight intriguing areas being investigated for developing new, Nrg-mediated strategies to heal the heart in acquired and congenital heart diseases, and note avenues for future research.
Collapse
Affiliation(s)
| | - Bernhard Kuhn
- Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Enders Building, Room 1212, Brookline, MA 02115, USA
| |
Collapse
|
19
|
Mendes-Ferreira P, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Therapeutic potential of neuregulin-1 in cardiovascular disease. Drug Discov Today 2013; 18:836-42. [DOI: 10.1016/j.drudis.2013.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
|
20
|
Sysa-Shah P, Xu Y, Guo X, Belmonte F, Kang B, Bedja D, Pin S, Tsuchiya N, Gabrielson K. Cardiac-specific over-expression of epidermal growth factor receptor 2 (ErbB2) induces pro-survival pathways and hypertrophic cardiomyopathy in mice. PLoS One 2012; 7:e42805. [PMID: 22912742 PMCID: PMC3415416 DOI: 10.1371/journal.pone.0042805] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/11/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored. METHODOLOGY/PRINCIPAL FINDINGS We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2-3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib. CONCLUSIONS/SIGNIFICANCE These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling pathways and induce a phenotype consistent with Hypertrophic Cardiomyopathy. Furthermore, our work suggests that in the situation where ErbB2 signaling contributes to cardiac hypertrophy, inhibition of this pathway may reverse this process.
Collapse
Affiliation(s)
- Polina Sysa-Shah
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Yi Xu
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Xin Guo
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Frances Belmonte
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Byunghak Kang
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Djahida Bedja
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Scott Pin
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Noriko Tsuchiya
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
- Drug Safety Evaluation, Drug Developmental Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | - Kathleen Gabrielson
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Wadugu B, Kühn B. The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 2012; 302:H2139-47. [PMID: 22427524 DOI: 10.1152/ajpheart.00063.2012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The signaling complex consisting of the growth factor neuregulin-1 (NRG1) and its tyrosine kinase receptors ErbB2 and ErbB4 has a critical role in cardiac development and homeostasis of the structure and function of the adult heart. Recent research results suggest that targeting this signaling complex may provide a viable strategy for treating heart failure. Clinical trials are currently evaluating the effectiveness and safety of intravenous administration of recombinant NRG1 formulations in heart failure patients. Endogenous as well as administered NRG1 has multiple possible activities in the adult heart, but how these are related is unknown. It has recently been demonstrated that NRG1 administration can stimulate proliferation of cardiomyocytes, which may contribute to repair failing hearts. This review summarizes the current knowledge of how NRG1 and its receptors control cardiac physiology and biology, with special emphasis on its role in cardiomyocyte proliferation during myocardial growth and regeneration.
Collapse
Affiliation(s)
- Brian Wadugu
- Department of Cardiology, Children's Hospital Boston, Massachusetts, USA
| | | |
Collapse
|
22
|
Lemmens K, De Keulenaer GW. Paving new paths for neuregulin-1-assisted cardiac regenerative medicine. Focus on “Improving murine embryonic stem cell differentiation into cardiomyocytes with neuregulin-1: differential expression of microRNA”. Am J Physiol Cell Physiol 2011; 301:C16-7. [DOI: 10.1152/ajpcell.00137.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Katrien Lemmens
- Laboratory of Physiology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
23
|
Sawyer DB, Caggiano A. Neuregulin-1β for the treatment of systolic heart failure. J Mol Cell Cardiol 2011; 51:501-5. [PMID: 21729703 DOI: 10.1016/j.yjmcc.2011.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/13/2011] [Accepted: 06/20/2011] [Indexed: 01/26/2023]
Abstract
The Neuregulin-1 gene encodes a family of ligands that act through the ErbB family of receptor tyrosine kinases to regulate morphogenesis of many tissues. Work in isolated cardiac cells as well as genetically altered mice demonstrates that neuregulin-1/ErbB signaling is a paracrine signaling system that functions in endocardial-endothelial/cardiomyocyte interactions to regulate tissue organization during development as well as maintain cardiac function throughout life. Treatment of animals with cardiac dysfunction with recombinant neuregulin-1beta improves cardiac function. This has led to ongoing early phase clinical studies examining neuregulin-1beta as a potential novel therapeutic for heart failure. In this review we synthesize the literature behind this rapidly evolving area of translational research. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Douglas B Sawyer
- Cardiovascular Division, Department of Medicine, Vanderbilt University Medical School, Nashville, TN, USA.
| | | |
Collapse
|
24
|
Lemmens K, Doggen K, De Keulenaer GW. Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. Am J Physiol Heart Circ Physiol 2010; 300:H931-42. [PMID: 21186272 DOI: 10.1152/ajpheart.00385.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The neuregulin-1 (NRG1)/ErbB system has emerged as a paracrine endothelium-controlled system in the heart, which preserves left ventricular (LV) performance in pathophysiological conditions. Here, we analyze the activity and function of this system in pregnancy, which imparts a physiological condition of LV hemodynamic overload. NRG1 expression and ErbB receptor activation were studied by Western blot analyses in rats and mice at different stages of pregnancy. LV performance was evaluated by transthoracic echocardiography, and myocardial performance was assessed from twitches of isolated papillary muscles. NRG1/ErbB signaling was inhibited by oral treatment of animals with the dual ErbB1/ErbB2 tyrosine kinase inhibitor lapatinib. Analyses of LV tissue revealed that protein expression of different NRG1 isoforms and levels of phosphorylated ErbB2 and ErbB4 significantly increased after 1-2 wk of pregnancy. Lapatinib prevented phosphorylation of ErbB2 and ERK1/2, but not of ErbB4 and protein kinase B (Akt), revealing that lapatinib only partially inhibited NRG1/ErbB signaling in the LV. Lapatinib did not prevent pregnancy-induced changes in LV mass and did not cause apoptotic cell death or fibrosis in the LV. Nevertheless, lapatinib led to premature maternal death of ∼25% during pregnancy and it accentuated pregnancy-induced LV dilatation, significantly reduced LV fractional shortening, and induced abnormalities of twitch relaxation (but not twitch amplitude) of isolated papillary muscles. This is the first study showing that the NRG1/ErbB system is activated, and plays a modulatory role, during physiological hemodynamic overload associated with pregnancy. Inhibiting this system during physiological overload may cause LV dysfunction in the absence of myocardial cell death.
Collapse
Affiliation(s)
- Katrien Lemmens
- Laboratory of Physiology, University of Antwerp, Antwerp, Belgium.
| | | | | |
Collapse
|
25
|
Abstract
Anthracyclines and many other antitumor drugs induce cardiotoxicity that occurs "on treatment" or long after completing chemotherapy. Dose reductions limit the incidence of early cardiac events but not that of delayed sequelae, possibly indicating that any dose level of antitumor drugs would prime the heart to damage from sequential stressors. Drugs targeted at tumor-specific moieties raised hope for improving the cardiovascular safety of antitumor therapies; unfortunately, however, many such drugs proved unable to spare the heart, aggravated cardiotoxicity induced by anthracyclines, or were safe in selected patients of clinical trials but not in the general population. Cardio-oncology is the discipline aimed at monitoring the cardiovascular safety of antitumor therapies. Although popularly perceived as a clinical discipline that brings oncologists and cardiologists working together, cardio-oncology is in fact a pharmacology-oriented translational discipline. The cardiovascular performance of survivors of cancer will only improve if clinicians joined pharmacologists in the search for new predictive models of cardiotoxicity or mechanistic approaches to explain how a given drug might switch from causing systolic failure to inducing ischemia. The lifetime risk of cardiotoxicity from antitumor drugs needs to be reconciled with the identification of long-lasting pharmacological signatures that overlap with comorbidities. Research on targeted drugs should be reshaped to appreciate that the terminal ballistics of new "magic bullets" might involve cardiomyocytes as innocent bystanders. Finally, the concepts of prevention and treatment need to be tailored to the notion that late-onset cardiotoxicity builds on early asymptomatic cardiotoxicity. The heart of cardio-oncology rests with such pharmacological foundations.
Collapse
Affiliation(s)
- Giorgio Minotti
- Center for Integrated Research, Drug Sciences, University Campus Bio-Medico, Rome, Italy.
| | | | | |
Collapse
|
26
|
De Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 2010; 106:35-46. [PMID: 20056944 DOI: 10.1161/circresaha.109.205906] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, we address clinical aspects and mechanisms of ventricular dysfunction induced by anticancer drugs targeted to the ErbB2 receptor. ErbB2 antagonists prolong survival in cancer, but also interfere with homeostatic processes in the heart. ErbB2 is a coreceptor for ErbB4, which is activated by neuregulin-1. This epidermal growth factor-like growth factor is released from endothelial cells in the endocardium and in the myocardial microcirculation, hence contributing to intercellular crosstalk in the ventricle. We look at the physiological aspects of neuregulin-1/ErbB signaling in the ventricle, and review its (mal)adaptive responses in chronic heart failure. We also compare structural aspects of ErbB receptor activation in cancer and cardiac cells, and analyze the mode of action of current ErbB2 antagonists. This allows us to predict how these drugs interfere with paracrine processes in the ventricle. Differences in the mode of action of individual ErbB2 antagonists affect their impact on the function of the ventricle, considered to be "on-target" or "off-target." Establishing the relation between the cardiac side effects of ErbB2 antagonists and their impact on paracrine ventricular control mechanisms may direct the design of a next generation of ErbB2 inhibitors. For cardiologists, there are lessons to be learned from the unexpected side effects of ErbB2-targeted cancer therapy. The vulnerability of the heart as a pluricellular paracrine system appears greater than anticipated and intercellular crosstalk an essential component of its functional and structural integrity.
Collapse
|