1
|
Slone S, Anthony SR, Green LC, Parkins S, Acharya P, Kasprovic DA, Reynolds K, Jaggers RM, Nieman ML, Alam P, Wu X, Roy S, Aubé J, Xu L, Li Z, Lorenz JN, Owens AP, Kanisicak O, Tranter M. HuR inhibition reduces post-ischemic cardiac remodeling by dampening myocyte-dependent inflammatory gene expression and the innate immune response. FASEB J 2025; 39:e70433. [PMID: 40085190 PMCID: PMC11908633 DOI: 10.1096/fj.202400532rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
The RNA-binding protein human antigen R (HuR) has been shown to reduce cardiac remodeling following both myocardial infarction and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium has yet to be elucidated. Wild-type mice were subjected to 30 min of cardiac ischemia (via LAD occlusion) and treated with a novel small molecule inhibitor of HuR at the time of reperfusion, followed by direct in vivo assessment of cardiac structure and function. Direct assessment of HuR-dependent mechanisms was done in vitro using neonatal rat ventricular myocytes (NRVMs) and bone marrow-derived macrophages (BMDMs). HuR activity is increased within 2 h after ischemia/reperfusion (I/R) and is necessary for early post-I/R inflammatory gene expression in the myocardium. Despite an early reduction in inflammatory gene expression, HuR inhibition has no effect on initial infarct size at 24 h post-I/R. However, pathological remodeling is reduced with preserved cardiac function at 2 weeks post-I/R upon HuR inhibition. RNA sequencing analysis of gene expression in NRVMs treated with LPS to model damage-associated molecular pattern (DAMP)-mediated activation of toll-like receptors (TLRs) demonstrates a HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. Importantly, we show that conditioned media transfer from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression and M1-like polarization in bone marrow-derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition reduces macrophage infiltration to the post-ischemic myocardium in vivo. Additionally, we show that LPS-treated NRVMs induce the migration of peripheral blood monocytes in a HuR-dependent endocrine manner. These studies demonstrate that HuR is necessary for early pro-inflammatory gene expression in cardiomyocytes following I/R injury that subsequently mediates monocyte recruitment and macrophage activation in the post-ischemic myocardium.
Collapse
Grants
- HL166326 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20POST35200267 American Heart Association Postdoctoral Fellowship
- PRE35210795 American Heart Association (AHA)
- HL125204 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL132111 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1029875 American Heart Association (AHA)
- R01 HL166326 NHLBI NIH HHS
- CA252158 HHS | NIH | National Cancer Institute (NCI)
- HL148598 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDA34110117 American Heart Association (AHA)
- CA243445 HHS | NIH | National Cancer Institute (NCI)
- R01 HL132111 NHLBI NIH HHS
- R01 CA243445 NCI NIH HHS
- CA191785 HHS | NIH | National Cancer Institute (NCI)
- 23CDA1052132 American Heart Association Career Development Grant
- F31-HL170636 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- PRE35230020 American Heart Association (AHA)
- R33 CA252158 NCI NIH HHS
- HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHS | NIH | National Cancer Institute (NCI)
- American Heart Association (AHA)
Collapse
Affiliation(s)
- Samuel Slone
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Sarah R. Anthony
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Lisa C. Green
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Sharon Parkins
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Pooja Acharya
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Daniel A. Kasprovic
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kelsi Reynolds
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Robert M. Jaggers
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Division of Basic and Translational Science, Department of Emergency MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Michelle L. Nieman
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Perwez Alam
- Department of Biomedical Sciences, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Xiaoqing Wu
- Department of Molecular BiosciencesUniversity of KansasLawrenceKansasUSA
| | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Liang Xu
- Department of Molecular BiosciencesUniversity of KansasLawrenceKansasUSA
| | - Zihai Li
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - John N. Lorenz
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - A. Phillip Owens
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Onur Kanisicak
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Division of Basic and Translational Science, Department of Emergency MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Michael Tranter
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
2
|
Qu Y, Yi L, Tang Y, Yang F, Pan BF, Shi S, Qu C, Li F, Wen S, Pan Y. TSG-6 Protects Against Cerebral Ischemia-Reperfusion Injury via Upregulating Hsp70-1B in Astrocytes. CNS Neurosci Ther 2025; 31:e70354. [PMID: 40130432 PMCID: PMC11933850 DOI: 10.1111/cns.70354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
AIMS This study aimed to investigate the relationship between tumor necrosis factor alpha-induced protein (TNFAIP6/TSG-6) and astrocytes in cerebral ischemia/reperfusion (I/R) injury. METHODS Utilizing in vivo and in vitro cerebral I/R models, cerebral infarct volumes, neurobehavioral outcomes, blood-brain barrier (BBB) permeability, as well as indicators of astrocyte apoptosis, reactivity, and A1 phenotype were assessed to evaluate the effects of recombinant rattus TSG-6 (rrTSG-6) on astrocytes in acute cerebral I/R injury. Following mRNA sequencing of all astrocyte groups, astrocyte apoptosis and reactivity were analyzed through a combined intervention of rrTSG-6 and Apoptozole, a heat shock protein 70-1B (Hsp70-1B) inhibitor, in vitro. RESULTS The findings demonstrated that rrTSG-6 significantly reduced cerebral infarct volumes by nearly half, improved neurobehavioral outcomes, mitigated BBB damage, and suppressed the expressions of astrocyte apoptosis markers, reactivity indicators, and A1 phenotype markers. mRNA sequencing revealed that the Hsp70-1B protein level increased to approximately 1.6 times that of the rrTSG-6 non-intervention group. Furthermore, Apoptozole impeded the expressions of astrocyte apoptosis markers, reactivity indicators, and A1 phenotype markers. CONCLUSION TSG-6 inhibited nuclear factor kappa-B (NF-κB) phosphorylation by upregulating Hsp70-1B in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced astrocytes, thereby exerting a protective effect through anti-apoptotic mechanisms and the suppression of astrocyte reactivity and A1 transformation following cerebral I/R injury.
Collapse
Affiliation(s)
- Yewei Qu
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- NHC Key Laboratory of Cell TransplantationFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Lian Yi
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yushi Tang
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fan Yang
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Byron Fei Pan
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shanshan Shi
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Changda Qu
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fangqin Li
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shirong Wen
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yujun Pan
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
3
|
Morgado LAL, Rodrigues LMZ, Silva DCF, da Silva BD, Irigoyen MCC, Takano APC. NF-κB-Specific Suppression in Cardiomyocytes Unveils Aging-Associated Responses in Cardiac Tissue. Biomedicines 2025; 13:224. [PMID: 39857807 PMCID: PMC11762954 DOI: 10.3390/biomedicines13010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Aging is associated with structural and functional changes in the heart, including hypertrophy, fibrosis, and impaired contractility. Cellular mechanisms such as senescence, telomere shortening, and DNA damage contribute to these processes. Nuclear factor kappa B (NF-κB) has been implicated in mediating cellular responses in aging tissues, and increased NF-κB expression has been observed in the hearts of aging rodents. Therefore, NF-κB is suspected to play an important regulatory role in the cellular and molecular processes occurring in the heart during aging. This study investigates the in vivo role of NF-κB in aging-related cardiac alterations, focusing on senescence and associated cellular events. Methods: Young and old wild-type (WT) and transgenic male mice with cardiomyocyte-specific NF-κB suppression (3M) were used to assess cardiac function, morphology, senescence markers, lipofuscin deposition, DNA damage, and apoptosis. Results: Kaplan-Meier analysis revealed reduced survival in 3M mice compared to WT. Echocardiography showed evidence of eccentric hypertrophy, and both diastolic and systolic dysfunction in 3M mice. Both aged WT and 3M mice exhibited cardiac hypertrophy, with more pronounced hypertrophic changes in cardiomyocytes from 3M mice. Additionally, cardiac fibrosis, senescence-associated β-galactosidase activity, p21 protein expression, and DNA damage (marked by phosphorylated H2A.X) were elevated in aged WT and both young and aged 3M mice. Conclusions: The suppression of NF-κB in cardiomyocytes leads to pronounced cardiac remodeling, dysfunction, and cellular damage associated with the aging process. These findings suggest that NF-κB plays a critical regulatory role in cardiac aging, influencing both cellular senescence and molecular damage pathways. This has important implications for the development of therapeutic strategies aimed at mitigating age-related cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Bruno Durante da Silva
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-000, Brazil
| | - Maria Claudia Costa Irigoyen
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-000, Brazil
| | - Ana Paula Cremasco Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
5
|
Takeuchi T, Kitani Y, Minoshima A, Ota H, Nakagawa N, Sumitomo K, Ishii Y, Hasebe N. Potential Effects of Ischemic Postconditioning and Changes in Heat Shock Protein 72 in Patients with Acute Myocardial Infarction without Prodromal Angina. Int Heart J 2024; 65:395-403. [PMID: 38749746 DOI: 10.1536/ihj.23-651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The effectiveness of ischemic postconditioning (iPoC) in patients with ST-elevation myocardial infarction (STEMI) without ischemic preconditioning has not been determined. Therefore, we investigated the impact of iPoC and its potential mechanism related to heat shock protein 72 (HSP72) induction on myocardial salvage in patients with STEMI without prodromal angina (PA).We retrospectively analyzed data from 102 patients with STEMI with successful reperfusion among 323 consecutive patients with acute coronary syndrome. Among these, 55 patients with iPoC (iPoC (+) ) underwent 4 cycles of 60-second inflation and 30-second deflation of the angioplasty balloon. Both the iPoC (+) and iPoC (-) groups were divided into 2 further subgroups: patients with PA (PA (+) ) and those without (PA (-) ). We analyzed HSP72 levels in neutrophils, which were measured until 48 hours after reperfusion. I-123 β-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) scintigraphy was performed within a week of reperfusion therapy. In 64% of patients, thallium-201 (TL) scintigraphy was performed 6-8 months after STEMI onset.Using BMIPP and TL, in the PA (-) subgroups, the iPoC (+) group had a significantly greater myocardial salvage ratio than the iPoC (-) group. iPoC was identified as an independent predictor of the myocardial salvage ratio. The HSP72 increase ratio was significantly elevated in the iPoC (+) PA (-) group. Importantly, the myocardial salvage effect in patients without PA was significantly correlated with the HSP72 increase ratio, which was greater in patients with iPoC.These results suggest the potential impact of iPoC via HSP72 induction on myocardial salvage; however, the effects may be limited to patients with STEMI without PA.
Collapse
Affiliation(s)
- Toshiharu Takeuchi
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Yuya Kitani
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Akiho Minoshima
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Hisanobu Ota
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Naoki Nakagawa
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Kazuhiro Sumitomo
- Department of Community Medicine, Tohoku Medical and Pharmaceutical University Wakabayashi Hospital
| | - Yoshinao Ishii
- Division of Cardiology, Department of Internal Medicine, Asahikawa City Hospital
| | - Naoyuki Hasebe
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| |
Collapse
|
6
|
Slone S, Anthony SR, Green LC, Nieman ML, Alam P, Wu X, Roy S, Aube J, Xu L, Lorenz JN, Owens AP, Kanisicak O, Tranter M. HuR inhibition reduces post-ischemic cardiac remodeling by dampening acute inflammatory gene expression and the innate immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524420. [PMID: 36711986 PMCID: PMC9882229 DOI: 10.1101/2023.01.17.524420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling. Our results show an early (two hours post-I/R) increase in HuR activity that is necessary for early inflammatory gene expression by cardiomyocytes in response to I/R. Surprisingly, despite the reductions in early inflammatory gene expression at two hours post-I/R, HuR inhibition has no effect on initial infarct size at 24-hours post-I/R. However, in agreement with previously published work, we do see a reduction in pathological remodeling and preserved cardiac function at two weeks post-I/R upon HuR inhibition. RNA-sequencing analysis of neonatal rat ventricular myocytes (NRVMs) at two hours post-LPS treatment to model damage associated molecular pattern (DAMP)-mediated activation of toll like receptors (TLRs) demonstrates a broad HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. We show that conditioned media from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression in bone marrow derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition in NRVMs also reduces their ability to induce endocrine migration of peripheral blood monocytes in vitro and reduces post-ischemic macrophage infiltration to the heart in vivo. In summary, these results suggest a HuR-dependent expression of pro-inflammatory gene expression by cardiomyocytes that leads to subsequent monocyte recruitment and macrophage activation in the post-ischemic myocardium.
Collapse
|
7
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
8
|
Guarnieri AR, Anthony SR, Gozdiff A, Green LC, Fleifil SM, Slone S, Nieman ML, Alam P, Benoit JB, Owens AP, Kanisicak O, Tranter M. Adipocyte-specific deletion of HuR induces spontaneous cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 2021; 321:H228-H241. [PMID: 34018851 DOI: 10.1152/ajpheart.00957.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.
Collapse
Affiliation(s)
- Adrienne R Guarnieri
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sarah R Anthony
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Anamarie Gozdiff
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa C Green
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Salma M Fleifil
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sam Slone
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michelle L Nieman
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
9
|
Anthony SR, Guarnieri A, Lanzillotta L, Gozdiff A, Green LC, O’Grady K, Helsley RN, Owens AP, Tranter M. HuR expression in adipose tissue mediates energy expenditure and acute thermogenesis independent of UCP1 expression. Adipocyte 2020; 9:335-345. [PMID: 32713230 PMCID: PMC7469577 DOI: 10.1080/21623945.2020.1782021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to define the functional role of adipocyte-specific expression of the RNA binding protein Human antigen R (HuR). Mice with an adipocyte-specific deletion of HuR (Adipo-HuR-/- ) were generated by crossing HuR floxed (HuRfl/fl ) mice with mice expressing adiponectin-driven cre-recombinase (Adipoq-cre). Our results show that Adipo-HuR-/- mice display a lean phenotype compared to wild-type littermate controls. HuR deletion results in a diet-independent reduction in percent body fat composition along with an increase in energy expenditure. Functionally, Adipo-HuR-/- mice show a significant impairment in acute adaptive thermogenesis (six hours at 4°C), but uncoupling protein 1 (UCP1) protein expression in brown adipose tissue (BAT) is unchanged compared to control. Pharmacological inhibition of HuR also results in a marked decline in core body temperature following acute cold challenge independent of UCP1 protein expression. Among the 588 HuR-dependent genes in BAT identified by RNA-seq analysis, gene ontology analysis shows a significant enrichment in mediators of calcium transport and signalling, almost all of which are decreased in Adipo-HuR-/- mice compared to control. In conclusion, adipocyte expression of HuR plays a central role in metabolic homoeostasis and mediates UCP1-independent thermogenesis in BAT, potentially through post-transcriptional control of intracellular calcium transport.Abbreviations: Adipo-HuR-/-: Adipocyte-specific HuR deletion mice; BAT: Brown adipose tissue; HuR: Human antigen R; UCP1: Uncoupling protein 1.
Collapse
Affiliation(s)
- Sarah R. Anthony
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Adrienne Guarnieri
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lindsey Lanzillotta
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anamarie Gozdiff
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lisa C. Green
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine O’Grady
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert N. Helsley
- Division of Pediatrics, Department of Gastroenterology, Hepatology, and Nutrition, University of Kentucky College of Medicine and Kentucky Children’s Hospital, Lexington, KY, USA
| | - A. Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Sun J, Niu C, Ye W, An N, Chen G, Huang X, Wang J, Chen X, Shen Y, Huang S, Wang Y, Wang X, Wang Y, Jin L, Cong W, Li X. FGF13 Is a Novel Regulator of NF-κB and Potentiates Pathological Cardiac Hypertrophy. iScience 2020; 23:101627. [PMID: 33089113 PMCID: PMC7567043 DOI: 10.1016/j.isci.2020.101627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
FGF13 is an intracellular FGF factor. Its role in cardiomyopathies has been rarely investigated. We revealed that endogenous FGF13 is up-regulated in cardiac hypertrophy accompanied by increased nuclear localization. The upregulation of FGF13 plays a deteriorating role both in hypertrophic cardiomyocytes and mouse hearts. Mechanistically, FGF13 directly interacts with p65 by its nuclear localization sequence and co-localizes with p65 in the nucleus in cardiac hypertrophy. FGF13 deficiency inhibits NF-κB activation in ISO-treated NRCMs and TAC-surgery mouse hearts, whereas FGF13 overexpression shows the opposite trend. Moreover, FGF13 overexpression alone is sufficient to activate NF-κB in cardiomyocytes. The interaction between FGF13 and p65 or the effects of FGF13 on NF-κB have nothing to do with IκB. Together, an IκB-independent mechanism for NF-κB regulation has been revealed in cardiomyocytes both under basal and stressful conditions, suggesting the promising application of FGF13 as a therapeutic target for pathological cardiac hypertrophy and heart failure. Endogenous FGF13 is up-regulated in cardiomyocytes under pressure overload FGF13 directly interacts with p65 Forced FGF13 overexpression activates NF-κB in cardiomyocytes
Collapse
Affiliation(s)
- Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ning An
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xixi Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shuai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University Wenzhou, 325000, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
11
|
Heat stress induced arginylation of HuR promotes alternative polyadenylation of Hsp70.3 by regulating HuR stability and RNA binding. Cell Death Differ 2020; 28:730-747. [PMID: 32929216 DOI: 10.1038/s41418-020-00619-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/08/2022] Open
Abstract
Arginylation was previously found to promote stabilization of heat shock protein 70.3 (Hsp70.3) mRNA and cell survival in mouse embryonic fibroblasts (MEFs) on exposure to heat stress (HS). In search of a factor responsible for these phenomena, the current study identified human antigen R (HuR) as a direct target of arginylation. HS induced arginylation of HuR affected its stability and RNA binding activity. Arginylated HuR failed to bind Hsp70.3 3' UTR, allowing the recruitment of cleavage stimulating factor 64 (CstF64) in the proximal poly-A-site (PAS), generating transcripts with short 3'UTR. However, HuR from Ate1 knock out (KO) MEFs bound to proximal PAS region with higher affinity, thus excluded CstF64 recruitment. This inhibited the alternative polyadenylation (APA) of Hsp70.3 mRNA and generated the unstable transcripts with long 3'UTR. The inhibition of RNA binding activity of HuR was traced to arginylation-coupled phosphorylation of HuR, by check point kinase 2 (Chk2). Arginylation of HuR occurred at the residue D15 and the arginylation was needed for the phosphorylation. Accumulation of HuR also decreased cell viability upon HS. In conclusion, arginylation dependent modifications of HuR maintained its cellular homeostasis, and promoted APA of Hsp70.3 pre-mRNA, during early HS response.
Collapse
|
12
|
de Vicente LG, Pinto AP, da Rocha AL, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. Role of TLR4 in physical exercise and cardiovascular diseases. Cytokine 2020; 136:155273. [PMID: 32932194 DOI: 10.1016/j.cyto.2020.155273] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases are a leading cause of death for adults worldwide. Published articles have shown that toll-like receptor 4 (TLR4), a member of the toll-like receptor (TLR) family, is involved in several cardiovascular diseases and can be modulated by physical exercise. TLR4 is the most expressed TLR in cardiac tissue and is an essential mediator of the inflammatory and apoptosis processes in the heart, playing a pivotal role in the development of cardiovascular diseases. Physical exercise is recognized as a non-pharmacological strategy for the prevention and treatment of these diseases. In addition, physical exercise can modulate the TLR4 in the mice heart, and its absence attenuates apoptosis, endoplasmic reticulum stress, and inflammation. However, the relationship between TLR4 and physical exercise-induced cardiac adaptations has barely been explored. Thus, the objective of this brief review was to discuss studies describing how TLR4 influences cardiac responses to physical exercise and present a link between these responses and cardiovascular diseases, showing physical activity improves the cardiac function of individuals with cardiovascular diseases through the TLR4 modulation.
Collapse
Affiliation(s)
- Larissa G de Vicente
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson Luiz da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Zheng F, Zhou YT, Zeng YF, Liu T, Yang ZY, Tang T, Luo JK, Wang Y. Proteomics Analysis of Brain Tissue in a Rat Model of Ischemic Stroke in the Acute Phase. Front Mol Neurosci 2020; 13:27. [PMID: 32174813 PMCID: PMC7057045 DOI: 10.3389/fnmol.2020.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Stroke is a leading health issue, with high morbidity and mortality rates worldwide. Of all strokes, approximately 80% of cases are ischemic stroke (IS). However, the underlying mechanisms of the occurrence of acute IS remain poorly understood because of heterogeneous and multiple factors. More potential biomarkers are urgently needed to reveal the deeper pathogenesis of IS. Methods: We identified potential biomarkers in rat brain tissues of IS using an iTRAQ labeling approach coupled with LC-MS/MS. Furthermore, bioinformatrics analyses including GO, KEGG, DAVID, and Cytoscape were used to present proteomic profiles and to explore the disease mechanisms. Additionally, Western blotting for target proteins was conducted for further verification. Results: We identified 4,578 proteins using the iTRAQ-based proteomics method. Of these proteins, 282 differentiated proteins, comprising 73 upregulated and 209 downregulated proteins, were observed. Further bioinformatics analysis suggested that the candidate proteins were mainly involved in energy liberation, intracellular protein transport, and synaptic plasticity regulation during the acute period. KEGG pathway enrichment analysis indicated a series of representative pathological pathways, including energy metabolite, long-term potentiation (LTP), and neurodegenerative disease-related pathways. Moreover, Western blotting confirmed the associated candidate proteins, which refer to oxidative responses and synaptic plasticity. Conclusions: Our findings highlight the identification of candidate protein biomarkers and provide insight into the biological processes involved in acute IS.
Collapse
Affiliation(s)
- Fei Zheng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yan-Tao Zhou
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yi-Fu Zeng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Yu Yang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Lonek L, Puhova A, Griecsova-Kindernay L, Patel SP, Zohdi V, Jezova D, Ravingerova T. Voluntary exercise may activate components of pro-survival risk pathway in the rat heart and potentially modify cell proliferation in the myocardium. Physiol Res 2019; 68:581-588. [PMID: 31177799 DOI: 10.33549/physiolres.934182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although physical exercise is known to reduce size of infarction, incidence of ventricular arrhythmias, and to improve heart function, molecular mechanisms of this protection are not fully elucidated. We explored the hypothesis that voluntary running, similar to adaptive interventions, such as ischemic or remote preconditioning, may activate components of pro-survival (RISK) pathway and potentially modify cell proliferation. Sprague-Dawley adult male rats freely exercised for 23 days in cages equipped with running wheels, while sedentary controls were housed in standard cages. After 23 days, left ventricular (LV) myocardial tissue samples were collected for the detection of expression and activation of RISK proteins (WB). The day before, a marker of cell proliferation 5-bromo-2'-deoxyuridine (BrdU) was given to all animals to detect its incorporation into DNA of the LV cells (ELISA). Running increased phosphorylation (activation) of Akt, as well as the levels of PKC? and phospho-ERK1/2, whereas BrdU incorporation into DNA was unchanged. In contrast, exercise promoted pro-apoptotic signaling - enhanced Bax/Bcl-2 ratio and activation of GSK-3ß kinase. Results suggest that in the rat myocardium adapted to physical load, natural cardioprotective processes associated with physiological hypertrophy are stimulated, while cell proliferation is not modified. Up-regulation of pro-apoptotic markers indicates potential induction of cell death mechanisms that might lead to maladaptation in the long-term.
Collapse
Affiliation(s)
- L Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ren X, Roessler AE, Lynch TL, Haar L, Mallick F, Lui Y, Tranter M, Ren MH, Xie WR, Fan GC, Zhang JM, Kranias EG, Anjak A, Koch S, Jiang M, Miao Q, Wang Y, Cohen A, Rubinstein J, Weintraub NL, Jones WK. Cardioprotection via the skin: nociceptor-induced conditioning against cardiac MI in the NIC of time. Am J Physiol Heart Circ Physiol 2018; 316:H543-H553. [PMID: 30575436 DOI: 10.1152/ajpheart.00094.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Timely reperfusion is still the most effective approach to limit infarct size in humans. Yet, despite advances in care and reduction in door-to-balloon times, nearly 25% of patients develop heart failure postmyocardial infarction, with its attendant morbidity and mortality. We previously showed that cardioprotection results from a skin incision through the umbilicus in a murine model of myocardial infarction. In the present study, we show that an electrical stimulus or topical capsaicin applied to the skin in the same region induces significantly reduced infarct size in a murine model. We define this class of phenomena as nociceptor-induced conditioning (NIC) based on the peripheral nerve mechanism of initiation. We show that NIC is effective both as a preconditioning and postconditioning remote stimulus, reducing infarct size by 86% and 80%, respectively. NIC is induced via activation of skin C-fiber nerves. Interestingly, the skin region that activates NIC is limited to the anterior of the T9-T10 vertebral region of the abdomen. Cardioprotection after NIC requires the integrity of the spinal cord from the region of stimulation to the thoracic vertebral region of the origin of the cardiac nerves but does not require that the cord be intact in the cervical region. Thus, we show that NIC is a reflex and not a central nervous system-mediated effect. The mechanism involves bradykinin 2 receptor activity and activation of PKC, specifically, PKC-α. The similarity of the neuroanatomy and conservation of the effectors of cardioprotection supports that NIC may be translatable to humans as a nontraumatic and practical adjunct therapy against ischemic disease. NEW & NOTEWORTHY This study shows that an electrical stimulus to skin sensory nerves elicits a very powerful cardioprotection against myocardial infarction. This stimulus works by a neurogenic mechanism similar to that previously elucidated for remote cardioprotection of trauma. Nociceptor-induced conditioning is equally potent when applied before ischemia or at reperfusion and has great potential clinically.
Collapse
Affiliation(s)
- Xiaoping Ren
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Anne E Roessler
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Thomas L Lynch
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Lauren Haar
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Faryal Mallick
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Yong Lui
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Michelle Huan Ren
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Wen Rui Xie
- Department of Anesthesiology and Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Guo-Chang Fan
- Department of Pharmacology, University of Cincinnati , Cincinnati, Ohio
| | - Jun-Ming Zhang
- Department of Anesthesiology and Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Ahmad Anjak
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sheryl Koch
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Min Jiang
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Qing Miao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Yang Wang
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Albert Cohen
- Department of Mathematics, Michigan State University , East Lansing, Michigan
| | - Jack Rubinstein
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Neal L Weintraub
- Division of Cardiology, Georgia Regents University, Augusta, Geogia
| | - W Keith Jones
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| |
Collapse
|
16
|
Song Y, Zhong C, Wang X. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:1190-1207. [DOI: 10.1002/jcp.27110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Jun Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
- School of Laboratory Medicine and Biotechnology Southern Medical University Guangzhou China
| | - Chong‐Bin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Xian‐Bao Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
17
|
Falik-Zaccai TC, Barsheshet Y, Mandel H, Segev M, Lorber A, Gelberg S, Kalfon L, Ben Haroush S, Shalata A, Gelernter-Yaniv L, Chaim S, Raviv Shay D, Khayat M, Werbner M, Levi I, Shoval Y, Tal G, Shalev S, Reuveni E, Avitan-Hersh E, Vlodavsky E, Appl-Sarid L, Goldsher D, Bergman R, Segal Z, Bitterman-Deutsch O, Avni O. Sequence variation in PPP1R13L results in a novel form of cardio-cutaneous syndrome. EMBO Mol Med 2017; 9:319-336. [PMID: 28069640 PMCID: PMC5331242 DOI: 10.15252/emmm.201606523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening disorder whose genetic basis is heterogeneous and mostly unknown. Five Arab Christian infants, aged 4-30 months from four families, were diagnosed with DCM associated with mild skin, teeth, and hair abnormalities. All passed away before age 3. A homozygous sequence variation creating a premature stop codon at PPP1R13L encoding the iASPP protein was identified in three infants and in the mother of the other two. Patients' fibroblasts and PPP1R13L-knocked down human fibroblasts presented higher expression levels of pro-inflammatory cytokine genes in response to lipopolysaccharide, as well as Ppp1r13l-knocked down murine cardiomyocytes and hearts of Ppp1r13l-deficient mice. The hypersensitivity to lipopolysaccharide was NF-κB-dependent, and its inducible binding activity to promoters of pro-inflammatory cytokine genes was elevated in patients' fibroblasts. RNA sequencing of Ppp1r13l-knocked down murine cardiomyocytes and of hearts derived from different stages of DCM development in Ppp1r13l-deficient mice revealed the crucial role of iASPP in dampening cardiac inflammatory response. Our results determined PPP1R13L as the gene underlying a novel autosomal-recessive cardio-cutaneous syndrome in humans and strongly suggest that the fatal DCM during infancy is a consequence of failure to regulate transcriptional pathways necessary for tuning cardiac threshold response to common inflammatory stressors.
Collapse
Affiliation(s)
- Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yiftah Barsheshet
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Hanna Mandel
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Meital Segev
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Avraham Lorber
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pediatric Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Shachaf Gelberg
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shani Ben Haroush
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Adel Shalata
- The Winter Genetic Institute, Bnei Zion Medical Center, Haifa, Israel
| | | | - Sarah Chaim
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Dorith Raviv Shay
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Morad Khayat
- The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Michal Werbner
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Inbar Levi
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Galit Tal
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stavit Shalev
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Eli Reuveni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | | | - Eugene Vlodavsky
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Liat Appl-Sarid
- Department of Pathology, Galilee Medical Center, Nahariya, Israel
| | - Dorit Goldsher
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Diagnostic Imaging, Rambam Health Care Campus, Haifa, Israel
| | - Reuven Bergman
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Zvi Segal
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Department of Ophthalmology, Galilee Medical Center, Nahariya, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Orly Avni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
18
|
Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 2017; 119:91-112. [PMID: 27340270 DOI: 10.1161/circresaha.116.303577] [Citation(s) in RCA: 1507] [Impact Index Per Article: 188.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
In adult mammals, massive sudden loss of cardiomyocytes after infarction overwhelms the limited regenerative capacity of the myocardium, resulting in the formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of proinflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand 2 [CCL2]). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response after myocardial infarction. Dysregulation of immune pathways, impaired suppression of postinfarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for the prevention of postinfarction heart failure.
Collapse
Affiliation(s)
- Sumanth D Prabhu
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.)
| | - Nikolaos G Frangogiannis
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.).
| |
Collapse
|
19
|
Hazra J, Mukherjee P, Ali A, Poddar S, Pal M. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock. PLoS One 2017; 12:e0168165. [PMID: 28099440 PMCID: PMC5242496 DOI: 10.1371/journal.pone.0168165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/26/2016] [Indexed: 12/23/2022] Open
Abstract
An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.
Collapse
Affiliation(s)
- Joyita Hazra
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Pooja Mukherjee
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Soumita Poddar
- Bioinformatics Center, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
- * E-mail:
| |
Collapse
|
20
|
Abstract
This study was designed to determine if Resolvin D1 (RvD1), a pro-resolution metabolite of the omega-3 polyunsaturated fatty acid docosahexaenoic acid, could decrease myocardial infarct size with delivered at the onset of ischemia. Male Sprague Dawley rats underwent 40 minutes of myocardial ischemia followed by reperfusion. These animals received 1 intraventricular injection of RvD1 (0.01, 0.1, or 0.3 μg RvD1) or vehicle (saline) before coronary occlusion. Infarct size and neutrophil accumulation were evaluated 24 hours after the onset of reperfusion. Caspase-3, caspase-8, protein kinase B (Akt) activities were evaluated 30 minutes after the reperfusion. Rats receiving 0.1 or 0.3 μg RvD1 showed a significant decrease of infarct size and caspase-3 and caspase-8 activities compared with the vehicle controls. Neutrophil accumulations were reduced in rats administered RvD1 compared with vehicle, independently of dose level. Akt activation was increased only in animals receiving 0.1 or 0.3 μg, whereas no change was observed in the 0.01 μg group. When they were treated with LY-294002, a phosphoinositide 3-kinase (PI3K)/Akt inhibitor, cardioprotection by RvD1 was abrogated. RvD1 treatment at the onset of ischemia decreases infarct size by a mechanism involving the PI3K/Akt pathway.
Collapse
|
21
|
The Regulatory Role of Nuclear Factor Kappa B in the Heart of Hereditary Hypertriglyceridemic Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9814038. [PMID: 27148433 PMCID: PMC4842370 DOI: 10.1155/2016/9814038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Activation of nuclear factor-κB (NF-κB) by increased production of reactive oxygen species (ROS) might induce transcription and expression of different antioxidant enzymes and also of nitric oxide synthase (NOS) isoforms. Thus, we aimed at studying the effect of NF-κB inhibition, caused by JSH-23 (4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine) injection, on ROS and NO generation in hereditary hypertriglyceridemic (HTG) rats. 12-week-old, male Wistar and HTG rats were treated with JSH-23 (bolus, 10 μmol, i.v.). After one week, blood pressure (BP), superoxide dismutase (SOD) activity, SOD1, endothelial NOS (eNOS), and NF-κB (p65) protein expressions were higher in the heart of HTG rats compared to control rats. On the other hand, NOS activity was decreased. In HTG rats, JSH-23 treatment increased BP and heart conjugated dienes (CD) concentration (measured as the marker of tissue oxidative damage). Concomitantly, SOD activity together with SOD1 expression was decreased, while NOS activity and eNOS protein expression were increased significantly. In conclusion, NF-κB inhibition in HTG rats led to decreased ROS degradation by SOD followed by increased oxidative damage in the heart and BP elevation. In these conditions, increased NO generation may represent rather a counterregulatory mechanism activated by ROS. Nevertheless, this mechanism was not sufficient enough to compensate BP increase in HTG rats.
Collapse
|
22
|
Kraynik SM, Gabanic A, Anthony SR, Kelley M, Paulding WR, Roessler A, McGuinness M, Tranter M. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:688-96. [PMID: 25727182 DOI: 10.1016/j.bbagrm.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Heat shock protein 70.3 (Hsp70.3) expression increases in response to cellular stress and plays a cytoprotective role. We have previously shown that Hsp70.3 expression is controlled through coordinated post-transcriptional regulation by miRNAs and alternative polyadenylation (APA), and APA-mediated shortening of the Hsp70.3 3'-UTR facilitates increased protein expression. A stress-induced increase in Hsp70.3 mRNA and protein expression is accompanied by alternative polyadenylation (APA)-mediated truncation of the 3'UTR of the Hsp70.3 mRNA transcript. However, the role that APA plays in stress-induced expression of Hsp70.3 remains unclear. Our results show that APA-mediated truncation of the Hsp70.3 3'UTR increases protein expression through enhanced polyribosome loading. Additionally, we demonstrate that the RNA binding protein HuR, which has been previously shown to play a role in mediating APA, is necessary for heat shock mediated increase in Hsp70.3 mRNA and protein. However, it is somewhat surprising to note that HuR does not play a role in APA of the Hsp70.3 mRNA, and these two regulatory events appear to be mutually exclusive regulators of Hsp70.3 expression. These results not only provide important insight to the regulation of stress response genes following heat shock, but also contribute an enhanced understanding of how alternative polyadenylation contributes to gene regulation.
Collapse
Affiliation(s)
- Stephen M Kraynik
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Andrew Gabanic
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sarah R Anthony
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Melissa Kelley
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | | | - Anne Roessler
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael McGuinness
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
23
|
Caspase-1 cleavage of transcription factor GATA4 and regulation of cardiac cell fate. Cell Death Dis 2014; 5:e1566. [PMID: 25501827 PMCID: PMC4649840 DOI: 10.1038/cddis.2014.524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022]
Abstract
Caspase-1 or interleukin-1β (IL-1β) converting enzyme is a pro-inflammatory member of the caspase family. An IL-1β-independent role for caspase-1 in cardiomyocyte cell death and heart failure has emerged but the mechanisms underlying these effects are incompletely understood. Here, we report that transcription factor GATA4, a key regulator of cardiomyocyte survival and adaptive stress response is an in vivo and in vitro substrate for caspase-1. Caspase-1 mediated cleavage of GATA4 generates a truncated protein that retains the ability to bind DNA but lacks transcriptional activation domains and acts as a dominant negative regulator of GATA4. We show that caspase-1 is rapidly activated in cardiomyocyte nuclei treated with the cell death inducing drug Doxorubicin. We also find that inhibition of caspase-1 alone is as effective as complete caspase inhibition at rescuing GATA4 degradation and myocyte cell death. Caspase-1 inhibition of GATA4 transcriptional activity is rescued by HSP70, which binds directly to GATA4 and masks the caspase recognition motif. The data identify a caspase-1 nuclear substrate and suggest a direct role for caspase-1 in transcriptional regulation. This mechanism may underlie the inflammation-independent action of caspase-1 in other organs.
Collapse
|
24
|
Javan H, Szucsik AM, Li L, Schaaf CL, Salama ME, Selzman CH. Cardiomyocyte p65 nuclear factor-κB is necessary for compensatory adaptation to pressure overload. Circ Heart Fail 2014; 8:109-18. [PMID: 25480781 DOI: 10.1161/circheartfailure.114.001297] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nuclear factor κB (NF-κB) is often implicated in contributing to the detrimental effects of cardiac injury. This ostensibly negative view of NF-κB competes with its important role in the normal host inflammatory and immune response. We have previously demonstrated that pharmacological inhibition of NF-κB at the time of acute pressure overload accelerates the progression of left ventricular hypertrophy to heart failure in mice. NF-κB regulates angiogenesis and other factors responsible for compensatory reaction to intracellular hypoxia. We hypothesized that impaired angiogenesis may be the trigger, not the result, of pathological left ventricular hypertrophy through NF-κB-related pathways. METHODS AND RESULTS Transgenic mice were generated with cardiomyocyte-specific deletion of the p65 subunit of NF-κB. Mice underwent transverse aortic constriction and serially followed up with echocardiography for 6 weeks. Cardiomyocyte p65 NF-κB deletion promoted maladaptive left ventricular hypertrophy and accelerated progression toward heart failure as measured by ejection fraction, left ventricular mass, and lung congestion. Transgenic mice had higher levels of fibrosis and periostin expression. Whole-field digital microscopy revealed increased capillary domain areas in knockout mice while concurrently demonstrating decreased microvessel density. This observation was associated with decreased expression of hypoxia-inducible factor 1α. CONCLUSIONS Rather than developing compensatory left ventricular hypertrophy, pressure overload in cardiomyocyte NF-κB-deficient mice resulted in functional deterioration that was associated with increased fibrosis, decreased hypoxia-inducible factor expression, and decreased microvessel density. These observations mechanistically implicate NF-κB, and its regulation of hypoxic stress, as an important factor determining the path between adaptive hypertrophy and maladaptive heart failure.
Collapse
Affiliation(s)
- Hadi Javan
- From the Division of Cardiothoracic Surgery, Department of Surgery and Molecular Medicine (H.J., A.M.S., L.L., C.L.S., C.H.S.) and Department of Pathology, ARUP Institute for Research and Development (M.E.S.), University of Utah, Salt Lake City
| | - Amanda M Szucsik
- From the Division of Cardiothoracic Surgery, Department of Surgery and Molecular Medicine (H.J., A.M.S., L.L., C.L.S., C.H.S.) and Department of Pathology, ARUP Institute for Research and Development (M.E.S.), University of Utah, Salt Lake City
| | - Ling Li
- From the Division of Cardiothoracic Surgery, Department of Surgery and Molecular Medicine (H.J., A.M.S., L.L., C.L.S., C.H.S.) and Department of Pathology, ARUP Institute for Research and Development (M.E.S.), University of Utah, Salt Lake City
| | - Christin L Schaaf
- From the Division of Cardiothoracic Surgery, Department of Surgery and Molecular Medicine (H.J., A.M.S., L.L., C.L.S., C.H.S.) and Department of Pathology, ARUP Institute for Research and Development (M.E.S.), University of Utah, Salt Lake City
| | - Mohamed E Salama
- From the Division of Cardiothoracic Surgery, Department of Surgery and Molecular Medicine (H.J., A.M.S., L.L., C.L.S., C.H.S.) and Department of Pathology, ARUP Institute for Research and Development (M.E.S.), University of Utah, Salt Lake City
| | - Craig H Selzman
- From the Division of Cardiothoracic Surgery, Department of Surgery and Molecular Medicine (H.J., A.M.S., L.L., C.L.S., C.H.S.) and Department of Pathology, ARUP Institute for Research and Development (M.E.S.), University of Utah, Salt Lake City.
| |
Collapse
|
25
|
Yu L, Zhao Y, Xu S, Jin C, Wang M, Fu G. Leptin confers protection against TNF-α-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun 2014; 455:126-32. [DOI: 10.1016/j.bbrc.2014.10.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
|
26
|
Cumming KT, Raastad T, Holden G, Bastani NE, Schneeberger D, Paronetto MP, Mercatelli N, Ostgaard HN, Ugelstad I, Caporossi D, Blomhoff R, Paulsen G. Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training. Physiol Rep 2014; 2:2/10/e12142. [PMID: 25293598 PMCID: PMC4254089 DOI: 10.14814/phy2.12142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen and nitrogen species are important signal molecules for adaptations to training. Due to the antioxidant properties of vitamin C and E, supplementation has been shown to blunt adaptations to endurance training. In this study, we investigated the effects of vitamin C and E supplementation and endurance training on adaptations in endogenous antioxidants and heat shock proteins (HSP). Thirty seven males and females were randomly assigned to receive Vitamin C and E (C + E; C: 1000 mg, E: 235 mg daily) or placebo (PLA), and underwent endurance training for 11 weeks. After 5 weeks, a subgroup conducted a high intensity interval session to investigate acute stress responses. Muscle and blood samples were obtained to investigate changes in proteins and mRNA related to the antioxidant and HSP system. The acute response to the interval session revealed no effects of C + E supplementation on NFκB activation. However, higher stress responses to exercise in C + E group was indicated by larger translocation of HSPs and a more pronounced gene expression compared to PLA. Eleven weeks of endurance training decreased muscle GPx1, HSP27 and αB‐crystallin, while mnSOD, HSP70 and GSH remained unchanged, with no influence of supplementation. Plasma GSH increased in both groups, while uric acid decreased in the C + E group only. Our results showed that C + E did not affect long‐term training adaptations in the antioxidant‐ and HSP systems. However, the greater stress responses to exercise in the C + E group might indicate that long‐term adaptations occurs through different mechanisms in the two groups. Reactive oxygen species are important signal molecules for adaptations to training. Previously vitamin C and E supplements has been shown to blunt adaptations to endurance training. In this study, we investigated the effects of vitamin C and E supplementation and endurance training on adaptations in endogenous antioxidants and heat shock proteins.
Collapse
Affiliation(s)
- Kristoffer T Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Geir Holden
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Damaris Schneeberger
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Hege N Ostgaard
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ingrid Ugelstad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway Norwegian Olympic Sports Center, Oslo, Norway
| |
Collapse
|
27
|
Haar L, Ren X, Liu Y, Koch SE, Goines J, Tranter M, Engevik MA, Nieman M, Rubinstein J, Jones WK. Acute consumption of a high-fat diet prior to ischemia-reperfusion results in cardioprotection through NF-κB-dependent regulation of autophagic pathways. Am J Physiol Heart Circ Physiol 2014; 307:H1705-13. [PMID: 25239807 DOI: 10.1152/ajpheart.00271.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated improvement of cardiac function occurs with acute consumption of a high-fat diet (HFD) after myocardial infarction (MI). However, no data exist addressing the effects of acute HFD upon the extent of injury after MI. This study investigates the hypothesis that short-term HFD, prior to infarction, protects the heart against ischemia-reperfusion (I/R) injury through NF-κB-dependent regulation of cell death pathways in the heart. Data show that an acute HFD initiates cardioprotection against MI (>50% reduction in infarct size normalized to risk region) after 24 h to 2 wk of HFD, but protection is completely absent after 6 wk of HFD, when mice are reported to develop pathophysiology related to the diet. Furthermore, cardioprotection after 24 h of HFD persists after an additional 24 h of normal chow feeding and was found to be dependent upon NF-κB activation in cardiomyocytes. This study also indicates that short-term HFD activates autophagic processes (beclin-1, LC-3) preischemia, as seen in other protective stimuli. Increases in beclin-1 and LC-3 were found to be NF-κB-dependent, and administration of chloroquine, an inhibitor of autophagy, abrogated cardioprotection. Our results support that acute high-fat feeding mediates cardioprotection against I/R injury associated with a NF-κB-dependent increase in autophagy and reduced apoptosis, as has been found for ischemic preconditioning.
Collapse
Affiliation(s)
- Lauren Haar
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Xiaoping Ren
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Yong Liu
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Jillian Goines
- Department of Molecular Pharmacology and Therapeutics Loyola University Chicago, Maywood, Illinois; and Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Melinda A Engevik
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Michelle Nieman
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - W Keith Jones
- Department of Molecular Pharmacology and Therapeutics Loyola University Chicago, Maywood, Illinois; and Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
28
|
High mobility group box 1 (HMGB1) mediates high-glucose-induced calcification in vascular smooth muscle cells of saphenous veins. Inflammation 2014; 36:1592-604. [PMID: 23928875 DOI: 10.1007/s10753-013-9704-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes accelerates saphenous vein grafts calcification after years of coronary artery bypass grafting (CABG) surgery. Vascular smooth muscle cells (VSMC) undergoing a phenotypic switch to osteoblast-like cells play a key role in this process. The receptor for advanced glycation and products (RAGE) and toll-like receptors (TLRs) are all involved in various cardiovascular calcification processes. Therefore, the role of their common ligand, high mobility group box 1 (HMGB1), in high-glucose-induced calcification in VSMC of saphenous vein was investigated. In this study, VSMC were cultured from saphenous vein of patients arranged for CABG. We first demonstrated high-glucose-induced HMGB1 translocation from nucleus to cytosol, and this translocation was induced through a NADPH oxidase and PKC-dependent pathway. We next found high glucose also increased TLR2, TLR4, and RAGE expression. Then, we revealed downregulating HMGB1 expression abolished high-glucose-induced calcification accompanied by NFκB inactivation and low expression of bone morphogenetic protein-2 (BMP-2). We further demonstrated NFκB activation was necessary in high-glucose-induced BMP-2 expression and calcification. Finally, by using a chromatin immunoprecipitation assay, we demonstrated NFκB transcriptional regulation of BMP-2 promoter was induced by NFκB binding to its κB element on the BMP-2 promoter. Our findings thus suggest HMGB1 plays an important role in mediating the calcification process induced by high glucose through NFκB activation and BMP-2 expression in VSMC of saphenous vein.
Collapse
|
29
|
Liu Y, Li G, Lu H, Li W, Li X, Liu H, Li X, Li T, Yu B. Expression profiling and ontology analysis of long noncoding RNAs in post-ischemic heart and their implied roles in ischemia/reperfusion injury. Gene 2014; 543:15-21. [PMID: 24726549 DOI: 10.1016/j.gene.2014.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/22/2014] [Accepted: 04/07/2014] [Indexed: 02/03/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in cellular physiology. The contributions of lncRNAs to ischemic heart disease remain largely unknown. The aim of this study was to investigate the profile of myocardial lncRNAs and their potential roles at early stage of reperfusion. lncRNAs and mRNAs were profiled by microarray and the expression of some highly-dysregulated lncRNAs was further validated using polymerase chain reaction. Our results revealed that 64 lncRNAs were up-regulated and 87 down-regulated, while 50 mRNAs were up-regulated and 60 down-regulated in infarct region at all reperfusion sampled. Gene ontology analysis indicated that dysregulated transcripts were associated with immune response, spermine catabolic process, taxis, chemotaxis, polyamine catabolic process, spermine metabolic process, chemokine activity and chemokine receptor binding. Target gene-related pathway analysis showed significant changes in cytokine-cytokine receptor interaction, the chemokine signaling pathway and nucleotide oligomerization domain (NOD)-like receptor signaling pathway which have a close relationship with myocardial ischemia/reperfusion injury (MI/RI). Besides, a gene co-expression network was constructed to identify correlated targets of 10 highly-dysregulated lncRNAs. These lncRNAs may play their roles by this network in post-ischemic heart. Such results provide a foundation for understanding the roles and mechanisms of myocardial lncRNAs at early stage of reperfusion.
Collapse
Affiliation(s)
- Youbin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Guangnan Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Wei Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xianglu Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Huimin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xingda Li
- Department of Pharmacology, Harbin Medical University, Harbin, PR China
| | - Tianyu Li
- Department of Pharmacology, Harbin Medical University, Harbin, PR China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
30
|
Place RF, Noonan EJ. Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 2014; 19:159-72. [PMID: 24002685 PMCID: PMC3933615 DOI: 10.1007/s12192-013-0456-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
The field of non-coding RNA (ncRNA) has expanded over the last decade following the discoveries of several new classes of regulatory ncRNA. A growing amount of evidence now indicates that ncRNAs are involved even in the most fundamental of cellular processes. The heat shock response is no exception as ncRNAs are being identified as integral components of this process. Although this area of research is only in its infancy, this article focuses on several classes of regulatory ncRNA (i.e., miRNA, lncRNA, and circRNA), while summarizing their activities in mammalian heat shock. We also present an updated model integrating the traditional heat shock response with the activities of regulatory ncRNA. Our model expands on the mechanisms for efficient execution of the stress response, while offering a more comprehensive summary of the major regulators and responders in heat shock signaling. It is our hope that much of what is discussed herein may help researchers in integrating the fields of heat shock and ncRNA in mammals.
Collapse
Affiliation(s)
- Robert F. Place
- />Anvil Biosciences, 3475 Edison Way, Ste J, Menlo Park, CA 94025 USA
| | - Emily J. Noonan
- />Division of Cancer Prevention, Cancer Prevention Fellowship Program, Rockville, MD USA
- />Laboratory of Human Carcinogenesis, Center for Cancer Research, 37 Convent Dr., Bldg. 37 Room 3060, Bethesda, MD 20892-4258 USA
| |
Collapse
|
31
|
Coordinated Transcriptional Regulation of Hspa1a Gene by Multiple Transcription Factors: Crucial Roles for HSF-1, NF-Y, NF-κB, and CREB. J Mol Biol 2014; 426:116-35. [DOI: 10.1016/j.jmb.2013.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022]
|
32
|
Hsu SF, Chao CM, Huang WT, Lin MT, Cheng BC. Attenuating heat-induced cellular autophagy, apoptosis and damage in H9c2 cardiomyocytes by pre-inducing HSP70 with heat shock preconditioning. Int J Hyperthermia 2013; 29:239-47. [PMID: 23590364 DOI: 10.3109/02656736.2013.777853] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We sought to assess whether heat-induced autophagy, apoptosis and cell damage in H9c2 cells can be affected by pre-inducing HSP70 (heat shock protein 70). MATERIALS AND METHODS Cell viability was determined using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide staining and a lactate dehydrogenase assay. Apoptosis was evidenced using both flow cytometry and counting caspase-3 positive cells, whereas autophagy was evidenced by the increased LC3-II expression and lysosomal activity. RESULTS The viability of H9c2 cells was temperature-dependently (40-44 °C) and time-dependently (90-180 min) significantly (p < 0.05) reduced by severe heat, which caused cell damage, apoptosis and autophagy. Heat-induced cell injury could be attenuated by pretreatment with 3-methylademine (an autophagy inhibitor) or Z-DEVD-FMK (a caspase-3 inhibitor). Neither apoptosis nor autophagy over the levels found in normothermic controls was induced in heat-shock preconditioned controls (no subsequent heat injury). The beneficial effects of mild heat preconditioning (preventing heat-induced cell damage, apoptosis and autophagy) were significantly attenuated by inhibiting HSP70 overexpression with triptolide (Tripterygium wilfordii) pretreatment. CONCLUSION We conclude that pre-inducing HSP70 attenuates heat-stimulated cell autophagy, apoptosis and damage in the heart. However, this requires in vivo confirmation.
Collapse
Affiliation(s)
- Shu-Fen Hsu
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Dungan JR, Hauser ER, Qin X, Kraus WE. The genetic basis for survivorship in coronary artery disease. Front Genet 2013; 4:191. [PMID: 24143143 PMCID: PMC3784965 DOI: 10.3389/fgene.2013.00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/06/2013] [Indexed: 01/14/2023] Open
Abstract
Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD.
Collapse
|
34
|
Zhang XQ, Tang R, Li L, Szucsik A, Javan H, Saegusa N, Spitzer KW, Selzman CH. Cardiomyocyte-specific p65 NF-κB deletion protects the injured heart by preservation of calcium handling. Am J Physiol Heart Circ Physiol 2013; 305:H1089-97. [PMID: 23913709 DOI: 10.1152/ajpheart.00067.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-κB is a well-known transcription factor that is intimately involved with inflammation and immunity. We have previously shown that NF-κB promotes inflammatory events and mediates adverse cardiac remodeling following ischemia reperfusion (I/R). Conversely, others have pointed to the beneficial influence of NF-κB in I/R injury related to its anti-apoptotic effects. Understanding the seemingly disparate influence of manipulating NF-κB is hindered, in part, by current approaches that only indirectly interfere with the function of its most transcriptionally active unit, p65 NF-κB. Mice were generated with cardiomyocyte-specific deletion of p65 NF-κB. Phenotypically, these mice and their hearts appeared normal. Basal and stimulated p65 expression were significantly reduced in whole hearts and completely ablated in isolated cardiomyocytes. When compared with wild-type mice, transgenic animals were protected from both global I/R by Langendorff as well as regional I/R by coronary ligation and release. The protected, transgenic hearts had less cytokine activity and decreased apoptosis. Furthermore, p65 ablation was associated with enhanced calcium reuptake by the sarcoplasmic reticulum. This influence on calcium handling was related to increased expression of phosphorylated phospholamban in conditional p65 null mice. In conclusion, cardiomyocyte-specific deletion of the most active, canonical NF-κB subunit affords cardioprotection to both global and regional I/R injury. The beneficial effects of NF-κB inhibition are related, in part, to modulation of intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Xiu Q Zhang
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yadav HN, Singh M, Sharma PL. Pharmacological inhibition of GSK-3β produces late phase of cardioprotection in hyperlipidemic rat: possible involvement of HSP 72. Mol Cell Biochem 2012; 369:227-33. [DOI: 10.1007/s11010-012-1386-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
|
36
|
Andersen NM, Tang R, Li L, Javan H, Zhang XQ, Selzman CH. Inhibitory kappa-B kinase-β inhibition prevents adaptive left ventricular hypertrophy. J Surg Res 2012; 178:105-9. [PMID: 22464396 DOI: 10.1016/j.jss.2012.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Most cardiovascular studies have implicated the central transcription factor nuclear factor kappa-B (NF-κB) as contributing to the detrimental effects of cardiac injury. This ostensibly negative view of NF-κB competes with its important role in the normal host inflammatory and immune response. Pressure overload, left ventricular hypertrophy (LVH), and heart failure represent a spectrum of disease that has both adaptive and maladaptive components. In contrast to its known effects related to myocardial ischemia-reperfusion, we hypothesized that NF-κB is necessary for the compensatory phase of cardiac remodeling. METHODS C57BL6 mice underwent minimally invasive transverse aortic constriction with or without inhibition of the proximal NF-κB kinase, inhibitory kappa-B kinase-β. Isolated cardiomyocytes were cultured. Transthoracic echocardiography was performed on all mice. RESULTS Inhibitory kappa-B kinase-β inhibition successfully decreased cardiomyocyte expression of phosphorylated p65 NF-κB and decreased expression of hypertrophic markers with stimulation in vitro. Three weeks after transverse aortic constriction, the mice treated with inhibitory kappa-B kinase-β inhibition more aggressively developed LVH, as measured by heart weight/body weight ratio, left ventricular mass, and wall thickness. These mice also demonstrated a functional decline, as measured by decreased fractional shortening and ejection fraction. These findings were associated with decreased protein expression of p65 NF-κB. CONCLUSIONS Although short-term pressure-overload results in compensatory LVH with normal cardiac function, NF-κB inhibition resulted in increased LVH that was associated with functional deterioration. These observations suggest that NF-κB is an important part of the adaptive phase of LVH, and its inhibition detrimentally affects cardiac remodeling.
Collapse
Affiliation(s)
- Nancy M Andersen
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
37
|
Chen Y, Krishan M, Nebert DW, Shertzer HG. Glutathione-deficient mice are susceptible to TCDD-Induced hepatocellular toxicity but resistant to steatosis. Chem Res Toxicol 2011; 25:94-100. [PMID: 22082335 DOI: 10.1021/tx200242a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) generates both hepatocellular injury and steatosis, processes that involve oxidative stress. Herein, we evaluated the role of the antioxidant glutathione (GSH) in TCDD-induced hepatotoxicity. Glutamate-cysteine ligase (GCL), comprising catalytic (GCLC) and modifier (GCLM) subunits, is rate limiting in de novo GSH biosynthesis; GCLM maintains GSH homeostasis by optimizing the catalytic efficiency of GCL holoenzyme. Gclm(-/-) transgenic mice exhibit 10-20% of normal tissue GSH levels. Gclm(-/-) and Gclm(+/+) wild-type (WT) female mice received TCDD for 3 consecutive days and were then examined 21 days later. As compared with WT littermates, Gclm(-/-) mice were more sensitive to TCDD-induced hepatocellular toxicity, exhibiting lower reduction potentials for GSH, lower ATP levels, and elevated levels of plasma glutamic oxaloacetic transaminase (GOT) and γ-glutamyl transferase (GGT). However, the histopathology showed that TCDD-mediated steatosis, which occurs in WT mice, was absent in Gclm(-/-) mice. This finding was consistent with cDNA microarray expression analysis, revealing striking deficiencies in lipid biosynthesis pathways in Gclm(-/-) mice; qrt-PCR analysis confirmed that Gclm(-/-) mice are deficient in expression of several lipid metabolism genes including Srebp2, Elovl6, Fasn, Scd1/2, Ppargc1a, and Ppara. We suggest that whereas GSH protects against TCDD-mediated hepatocellular damage, GSH deficiency confers resistance to TCDD-induced steatosis due to impaired lipid metabolism.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver , Aurora, Colorado 80045, United States
| | | | | | | |
Collapse
|
38
|
Wang RP, Yao Q, Xiao YB, Zhu SB, Yang L, Feng JM, Li DZ, Li XL, Wu JJ, Chen J. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model. Stress 2011; 14:567-75. [PMID: 21675862 DOI: 10.3109/10253890.2011.571729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic stress is considered to predispose to various cardiovascular events such as coronary artery disease, hypertension, and even heart failure. In this study, rats were exposed to stress for 1 day, 1, 2, 3, and 4 weeks to establish a chronic stress model. A specific toll-like receptor 4 (TLR4) antagonist eritoran was used to block the activity of TLR4. On the second day after the last stress exposure, the animals were killed. The expression of TLR4 mRNA and nuclear factor-kappa B (NF-κB) DNA-binding activity in the myocardium were measured using reverse transcriptase polymerase chain reaction and electrophoretic mobility shift assay. The proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL-6) in myocardium were assayed by enzyme-linked immunosorbent assay. Myocardial injury was evident after chronic stress for 2 weeks. The TLR4 mRNA expression reached a peak after stress for 1 week. It was sustained at a stable level after stress exposure for 3 weeks and was restored to a nearly normal level in the fourth week. NF-κB DNA-binding activity was significantly enhanced after the stress for 1 day and markedly enhanced again after a 2-week stress exposure. It was weakened and reached a normal level after stress exposure for 4 weeks. The levels of TNF-α and IL-6 gradually increased and reached peaks after stress for 4 weeks. Meanwhile, eritoran significantly decreased the TLR4 mRNA expression and NF-κB activity in rats from the 2-week stress group. However, it did not downregulate the levels of TNF-α and IL-6. Importantly, it significantly improved the myocardial injury induced by the chronic stress. In conclusion, TLR4/NF-κB participates in myocardial injury during chronic stress.
Collapse
Affiliation(s)
- Rong-Ping Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, 400037, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tranter M, Helsley RN, Paulding WR, McGuinness M, Brokamp C, Haar L, Liu Y, Ren X, Jones WK. Coordinated post-transcriptional regulation of Hsp70.3 gene expression by microRNA and alternative polyadenylation. J Biol Chem 2011; 286:29828-37. [PMID: 21757701 DOI: 10.1074/jbc.m111.221796] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is well documented to possess general cytoprotective properties in protecting the cell against stressful and noxious stimuli. We have recently shown that expression of the stress-inducible Hsp70.3 gene in the myocardium in response to ischemic preconditioning is NF-κB-dependent and necessary for the resulting late phase cardioprotection against a subsequent ischemia/reperfusion injury. Here we show that the Hsp70.3 gene product is subject to post-transcriptional regulation through parallel regulatory processes involving microRNAs and alternative polyadenylation of the mRNA transcript. First, we show that cardiac ischemic preconditioning of the in vivo mouse heart results in decreased levels of two Hsp70.3-targeting microRNAs: miR-378* and miR-711. Furthermore, an ischemic or heat shock stimulus induces alternative polyadenylation of the expressed Hsp70.3 transcript that results in the accumulation of transcripts with a shortened 3'-UTR. This shortening of the 3'-UTR results in the loss of the binding site for the suppressive miR-378* and thus renders the alternatively polyadenylated transcript insusceptible to miR-378*-mediated suppression. Results also suggest that the alternative polyadenylation-mediated shortening of the Hsp70.3 3'-UTR relieves translational suppression observed in the long 3'-UTR variant, allowing for a more robust increase in protein expression. These results demonstrate alternative polyadenylation of Hsp70.3 in parallel with ischemic or heat shock-induced up-regulation of mRNA levels and implicate the importance of this process in post-transcriptional control of Hsp70.3 expression.
Collapse
Affiliation(s)
- Michael Tranter
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wilhide ME, Tranter M, Ren X, Chen J, Sartor MA, Medvedovic M, Jones WK. Identification of a NF-κB cardioprotective gene program: NF-κB regulation of Hsp70.1 contributes to cardioprotection after permanent coronary occlusion. J Mol Cell Cardiol 2011; 51:82-9. [PMID: 21439970 DOI: 10.1016/j.yjmcc.2011.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/30/2023]
Abstract
The transcription factor Nuclear Factor Kappa B (NF-κB) has been shown to be cardioprotective after permanent coronary occlusion (PO) and late ischemic preconditioning (IPC), and yet it is cell injurious after ischemia/reperfusion (I/R) in the heart. There is limited information regarding NF-κB-dependent cardioprotection, and the NF-κB-dependent genes that contribute to the cardioprotection after PO are completely unknown. The objective of the study was to identify NF-κB-dependent genes that contribute to cardioprotection after PO. Microarray analysis was used to delineate genes that potentially contribute to the NF-κB-dependent cardioprotection by determining the overlap between the set of PO regulated genes and genes regulated by NF-κB, using mice with genetic abrogation of NF-κB activation in the heart. This analysis identified 16 genes as candidates for NF-κB-dependent effects after PO. This set of genes overlaps with, but is significantly different from the set of genes we previously identified as regulated by NF-κB after IPC. The genes encoding heat shock protein 70.3 (hspa1a) and heat shock protein 70.1 (hspa1b) were the most significantly regulated genes after PO and were up-regulated by NF-κB. Results using knockout mice show that Hsp70.1 contributes to NF-κB-dependent cardioprotection after PO and likely underlies, at least in part, the NF-κΒ-dependent cardioprotective effect. Our previous results show that Hsp70.1 is injurious after I/R injury. This demonstrates that, like NF-κB itself, Hsp70.1 has antithetical effects on myocardial survival and suggests that this may underlie the similar antithetical effects of NF-κB after different ischemic stimuli. The significance of the research is that understanding the gene network regulated by NF-κB after ischemic insult may lead to identification of therapeutic targets more appropriate for clinical development.
Collapse
Affiliation(s)
- Michael E Wilhide
- Department of Pharmacology & Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Khodiyar VK, Hill DP, Howe D, Berardini TZ, Tweedie S, Talmud PJ, Breckenridge R, Bhattarcharya S, Riley P, Scambler P, Lovering RC. The representation of heart development in the gene ontology. Dev Biol 2011; 354:9-17. [PMID: 21419760 DOI: 10.1016/j.ydbio.2011.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/14/2011] [Accepted: 03/09/2011] [Indexed: 11/25/2022]
Abstract
An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development. This work also aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Rayne Institute, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|