1
|
Ma L, Cai L, Pan J, Cheng Z, Lv Y, Zheng J, Xu P, Zhang H, Chen X, Huang Y, Luo X, Zhao J, Xu L. The immunopathology of coronary microembolization and the underlying inflammopathophysiological mechanisms. Allergol Immunopathol (Madr) 2024; 52:137-146. [PMID: 39515808 DOI: 10.15586/aei.v52i6.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
In coronary microembolization, inflammatory cell infiltration, patchy necrosis, and extensive intra-myocardial hemorrhage are dominant, which induce myocardial dysfunction with clinical symptoms of chronic ischemic cardiomyopathy. Microembolization can lead to obstruction of the coronary microvessels and result in the micro-infarction of the heart. The inflammation and elevated expression of the tumor necrosis factor in cardiomyocytes and the activation of extracellular ERK are involved in initiating the inflammatory response mechanism. The PI3K/Akt signaling pathway is the enriched pathway, and for controlling, inhibition of PI3K/Akt is necessary. Furthermore, the release of cytokines and the activation of inflammasomes contribute to the enhancement of vascular permeability, which results in edema within the myocardium. The immune response and inflammation represent the primary triggers in this process. The ability to control immune response and inflammation reactions may lead to the development of new therapies for microembolization.
Collapse
Affiliation(s)
- Li Ma
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Liping Cai
- Health Management Center, Wuhan Third Hospital, Wuhan, China
| | - Jiayue Pan
- Xiangtao College of Medicine, Xiangtao College Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zimin Cheng
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yuanyuan Lv
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Peicheng Xu
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xinyu Chen
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yimeng Huang
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaolei Luo
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jinhe Zhao
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China;
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China;
| |
Collapse
|
2
|
Chen Z, Wang R, Zhu Y, Huang Z, Yang X, Li Q, Zhong M, Zhang W, Chen L, Wu W, Feng L, An N, Yan Y. A novel circular RNA, circSQSTM1, protects the endothelial function in atherosclerosis. Free Radic Biol Med 2023; 209:301-319. [PMID: 37865306 DOI: 10.1016/j.freeradbiomed.2023.10.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
A novel circRNA named circSQSTM1 (hsa_circRNA_075320) was screened out in atorvastatin (ATV) stimulated endothelial cells (ECs) by our group. Considering the anti-atherosclerotic function of ATV, we hypothesized the circSQSTM1 could protect ECs functions in AS progression. The effects of circSQSTM1 on ECs inflammation, oxidative stress and autophagy were measured by qRT-PCR, Western blotting, monocyte-endothelial adhesion assay, dichloro-dihydro-fluorescein diacetate and mCherry-GFP-LC3 labeling. A luciferase reporter assay, RNA immunoprecipitation, MS2-tagging system and fluorescence in situ hybridization were performed to identify the biological functions of circSQSTM1. The partial left carotid artery ligation model and atherosclerosis model were established to analyze the effects of circSQSTM1 on atherosclerosis progression in vivo. Our results revealed that ATV induced the accumulation of circSQSTM1 in ECs via suppressing m6A modified degradation. In the cytoplasm, circSQSTM1 could relieve Sirt1 by competitively sponging miR-23b-3p. In the nucleus, circSQSTM1 directly interacts with eIF4A3 and promoting the efficient nuclear export of FOXO1 mRNA, which encodes FOXO1 transcription factor to directly activate Sirt1 promoter activity. Hence, circSQSTM1 reduced inflammation, inhibited oxidative stress and promoted autophagy by upregulating Sirt1 in ECs. Moreover, circSQSTM1 overexpression in ECs attenuated the progression of atherosclerosis in ApoE-/- mice. Taken together, the unique noncoding RNA known as circSQSTM1 took a protective role to the ECs in atherosclerosis.
Collapse
Affiliation(s)
- Ziqi Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ruoyu Wang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Yinghong Zhu
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ziyao Huang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xuewen Yang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qiushi Li
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Meijun Zhong
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Zhang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Feng
- Department of Cardiology, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528400, China.
| | - Ningbo An
- Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, China.
| | - Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
3
|
Abstract
Mechanical stress from haemodynamic perturbations or interventional manipulation of epicardial coronary atherosclerotic plaques with inflammatory destabilization can release particulate debris, thrombotic material and soluble substances into the coronary circulation. The physical material obstructs the coronary microcirculation, whereas the soluble substances induce endothelial dysfunction and facilitate vasoconstriction. Coronary microvascular obstruction and dysfunction result in patchy microinfarcts accompanied by an inflammatory reaction, both of which contribute to progressive myocardial contractile dysfunction. In clinical studies, the benefit of protection devices to retrieve atherothrombotic debris during percutaneous coronary interventions has been modest, and the treatment of microembolization has mostly relied on antiplatelet and vasodilator agents. The past 25 years have witnessed a relative proportional increase in non-ST-segment elevation myocardial infarction in the presentation of acute coronary syndromes. An associated increase in the incidence of plaque erosion rather than rupture has also been recognized as a key mechanism in the past decade. We propose that coronary microembolization is a decisive link between plaque erosion at the culprit lesion and the manifestation of non-ST-segment elevation myocardial infarction. In this Review, we characterize the features and mechanisms of coronary microembolization and discuss the clinical trials of drugs and devices for prevention and treatment.
Collapse
Affiliation(s)
- Petra Kleinbongard
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| |
Collapse
|
4
|
Coronary microembolization and microvascular dysfunction. Int J Cardiol 2018; 258:17-23. [PMID: 29429637 DOI: 10.1016/j.ijcard.2018.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/16/2023]
Abstract
Plaque erosion, fissuring or rupture occurs spontaneously or during coronary interventions. At some residual blood flow, the atherothrombotic debris is washed into the coronary microcirculation, causing physical obstruction, vasoconstriction, inflammation and ultimately microinfarction. Coronary microembolization also contributes to microvascular obstruction in reperfused acute myocardial infarction. Patients with microvascular obstruction after reperfused myocardial infarction have worse prognosis. Cardioprotective strategies to avoid acute coronary microembolization and rescue myocardium from microvascular obstruction have not yet been established in clinical practice. Subclinical coronary microembolization together with release of thrombogenic, vasoconstrictor and inflammatory substances from a culprit lesion can sensitize the coronary microcirculation and contribute to angina in the absence of major epicardial coronary obstruction. Repetitive coronary microembolization can induce progressive loss of functional cardiomyocytes and induce heart failure in the absence of overt myocardial infarction.
Collapse
|
5
|
Coronary artery calcification - predictor or player in the no-reflow phenomenon? Coron Artery Dis 2015; 26:553-4. [PMID: 26401994 DOI: 10.1097/mca.0000000000000270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
van de Hoef TP, Siebes M, Spaan JAE, Piek JJ. Fundamentals in clinical coronary physiology: why coronary flow is more important than coronary pressure. Eur Heart J 2015; 36:3312-9a. [PMID: 26033981 DOI: 10.1093/eurheartj/ehv235] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/10/2015] [Indexed: 11/13/2022] Open
Abstract
Wide attention for the appropriateness of coronary stenting in stable ischaemic heart disease (IHD) has increased interest in coronary physiology to guide decision making. For many, coronary physiology equals the measurement of coronary pressure to calculate the fractional flow reserve (FFR). While accumulating evidence supports the contention that FFR-guided revascularization is superior to revascularization based on coronary angiography, it is frequently overlooked that FFR is a coronary pressure-derived estimate of coronary flow impairment. It is not the same as the direct measures of coronary flow from which it was derived, and which are critical determinants of myocardial ischaemia. This review describes why coronary flow is physiologically and clinically more important than coronary pressure, details the resulting limitations and clinical consequences of FFR-guided clinical decision making, describes the scientific consequences of using FFR as a gold standard reference test, and discusses the potential of coronary flow to improve risk stratification and decision making in IHD.
Collapse
Affiliation(s)
- Tim P van de Hoef
- AMC Heart Centre, Academic Medical Center, University of Amsterdam, Room B2-213, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Siebes
- AMC Heart Centre, Academic Medical Center, University of Amsterdam, Room B2-213, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jos A E Spaan
- AMC Heart Centre, Academic Medical Center, University of Amsterdam, Room B2-213, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J Piek
- AMC Heart Centre, Academic Medical Center, University of Amsterdam, Room B2-213, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving Therapies for Myocardial Ischemia/Reperfusion Injury. J Am Coll Cardiol 2015; 65:1454-71. [DOI: 10.1016/j.jacc.2015.02.032] [Citation(s) in RCA: 527] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 12/28/2022]
|
8
|
Buch AN, Chen C, Ferguson TB. Revascularization for stable ischemic heart disease: are there new parallels between percutaneous coronary intervention and coronary artery bypass grafting? Interv Cardiol 2015. [DOI: 10.2217/ica.14.76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
9
|
Barbato E, Sarno G, Berza CT, Di Gioia G, Bartunek J, Vanderheyden M, Di Serafino L, Wijns W, Trimarco B, De Bruyne B. Impact of Alpha- and Beta-Adrenergic Receptor Blockers on Fractional Flow Reserve and Index of Microvascular Resistance. J Cardiovasc Transl Res 2014; 7:803-9. [DOI: 10.1007/s12265-014-9599-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022]
|
10
|
Ravandi A, Leibundgut G, Hung MY, Patel M, Hutchins PM, Murphy RC, Prasad A, Mahmud E, Miller YI, Dennis EA, Witztum JL, Tsimikas S. Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol 2014; 63:1961-71. [PMID: 24613321 DOI: 10.1016/j.jacc.2014.01.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study sought to assess whether oxidized lipids are released downstream from obstructive plaques after percutaneous coronary and peripheral interventions using distal protection devices. BACKGROUND Oxidation of lipoproteins generates multiple bioactive oxidized lipids that affect atherothrombosis and endothelial function. Direct evidence of their role during therapeutic procedures, which may result in no-reflow phenomenon, myocardial infarction, and stroke, is lacking. METHODS The presence of specific oxidized lipids was assessed in embolized material captured by distal protection filter devices during uncomplicated saphenous vein graft, carotid, renal, and superficial femoral artery interventions. The presence of oxidized phospholipids (OxPL) and oxidized cholesteryl esters (OxCE) was evaluated in 24 filters using liquid chromatography, tandem mass spectrometry, enzyme-linked immunosorbent assays, and immunostaining. RESULTS Phosphatidylcholine-containing OxPL, including (1-palmitoyl-2-[9-oxo-nonanoyl] PC), representing a major phosphatidylcholine-OxPL molecule quantitated within plaque material, [1-palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphocholine], and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, were identified in the extracted lipid portion from all vascular beds. Several species of OxCE, such as keto, hydroperoxide, hydroxy, and epoxy cholesteryl ester derivatives from cholesteryl linoleate and cholesteryl arachidonate, were also present. The presence of OxPL was confirmed using enzyme-linked immunoassays and immunohistochemistry of captured material. CONCLUSIONS This study documents the direct release and capture of OxPL and OxCE during percutaneous interventions from multiple arterial beds in humans. Entrance of bioactive oxidized lipids into the microcirculation may mediate adverse clinical outcomes during therapeutic procedures.
Collapse
Affiliation(s)
- Amir Ravandi
- St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medicine, University of California-San Diego, La Jolla, California
| | - Gregor Leibundgut
- Department of Medicine, University of California-San Diego, La Jolla, California; University of Basel, Basel, Switzerland
| | - Ming-Yow Hung
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mitul Patel
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Patrick M Hutchins
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Anand Prasad
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ehtisham Mahmud
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Yury I Miller
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Edward A Dennis
- Department of Pharmacology and Chemistry and Biochemistry, University of California, La Jolla, California
| | - Joseph L Witztum
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Sotirios Tsimikas
- Department of Medicine, University of California-San Diego, La Jolla, California.
| |
Collapse
|
11
|
Kleinbongard P, Baars T, Heusch G. Calcium antagonists in myocardial ischemia/reperfusion—update 2012. Wien Med Wochenschr 2012; 162:302-10. [DOI: 10.1007/s10354-012-0113-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/03/2012] [Indexed: 01/10/2023]
|