1
|
Huang Y, Zhao J, Zhou Z, Guo X, Xu Y, Huang T, Meng S, Cao Z, Xu D, Zhao Q, Yin Z, Jiang H, Yu L, Wang H. Persistent hypertension induces atrial remodeling and atrial fibrillation through DNA damage and ATM/CHK2/p53 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167534. [PMID: 39366645 DOI: 10.1016/j.bbadis.2024.167534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, with hypertension emerging as an independent risk factor. Previous literature has established associations between DNA damage response (DDR) and autophagy in relation to the pathogenesis of AF. The aim of this study was to evaluate the effect of atrial DNA damage response in persistent hypertension-induced atrial electrical and structural remodeling, and to further explore the potential therapeutic targets. Patient samples, spontaneous hypertensive rats (SHR) and angiotensin II (Ang II)-challenged HL-1 cells were employed to elucidate the detailed mechanisms. Bioinformatics analysis and investigation on human atrial samples revealed a critical role of DDR in the pathogenesis of AF. The markers of atrial DNA damage, DDR, autophagy, inflammation and fibrosis were detected by western blot, immunofluorescence, monodansyl cadaverine (MDC) assay and transmission electron microscopy. Compared with the control group, SHR exhibited significant atrial electrical and structural remodeling, abnormal increase of autophagy, inflammation, and fibrosis, which was accompanied by excessive activation of DDR mediated by the ATM/CHK2/p53 pathway. These detrimental changes were validated by in vitro experiments. Ang II-challenged HL-1 cells also exhibited significantly elevated γH2AX expression, and markers related to autophagy, inflammation as well as structural remodeling. Additionally, inhibition of ATM with KU55933 (a specific ATM inhibitor) significantly reversed these effects. Collectively, these data demonstrate that DNA damage and the subsequently overactivated ATM/CHK2/p53 pathway play critical roles in hypertension-induced atrial remodeling and the susceptibility to AF. Targeting ATM/CHK2/p53 signaling may serve as a potential therapeutic strategy against AF.
Collapse
Affiliation(s)
- Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaodong Guo
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yinli Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Dengyue Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Qiusheng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zongtao Yin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hui Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
2
|
Baena-Montes JM, Kraśny MJ, O’Halloran M, Dunne E, Quinlan LR. In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation. J Pers Med 2023; 13:1237. [PMID: 37623487 PMCID: PMC10455620 DOI: 10.3390/jpm13081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this condition through both pharmacological and non-pharmacological approaches. To test and validate any of these treatments, an appropriate preclinical model must be carefully chosen to refine and optimise the therapy features to correctly reverse this condition. A broad range of preclinical models have been developed over the years, with specific features and advantages to closely mimic the pathophysiology of atrial fibrillation. In this review, currently available models are described, from traditional animal models and in vitro cell cultures to state-of-the-art organoids and organs-on-a-chip. The advantages, applications and limitations of each model are discussed, providing the information to select the appropriate model for each research application.
Collapse
Affiliation(s)
- Jara M. Baena-Montes
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
| | - Marcin J. Kraśny
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, School of Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Eoghan Dunne
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
- CÚRAM SFI Centre for Research in Medical Devices, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
3
|
Kim S, Park SY, Kim B, Min C, Cho W, Yon DK, Kim JY, Han KD, Rhee EJ, Lee WY, Rhee SY. Association between antidiabetic drugs and the incidence of atrial fibrillation in patients with type 2 diabetes: A nationwide cohort study in South Korea. Diabetes Res Clin Pract 2023; 198:110626. [PMID: 36933806 DOI: 10.1016/j.diabres.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Although diabetes is a risk factor for atrial fibrillation (AF), studies on the AF risk according to the antidiabetic drugs are lacking. This study evaluated the effects of antidiabetic drugs on AF incidence in Korean patients with type 2 diabetes. METHODS We included 2,515,468 patients with type 2 diabetes from the Korean National Insurance Service database without a history of AF who underwent health check-ups between 2009 and 2012. Newly diagnosed AF incidence was recorded until December 2018 according to the main antidiabetic drug combinations used in the real world. RESULTS Of the patients included (mean age, 62 ± 11 years; 60 % men), 89,125 were newly diagnosed with AF. Metformin (MET) alone (hazard ratio [HR] 0.959, 95 % CI 0.935-0.985) and MET combination therapy (HR < 1) significantly decreased the risk of AF compared to the no-medication group. The antidiabetic drugs consistently showing a protective effect against AF incidence were MET (HR 0.977, 95 % CI 0.964-0.99) and thiazolidinedione (TZD; HR 0.926, 95 % CI 0.898-0.956), even after adjusting for various factors. Moreover, this protective effect was more remarkable with MET and TZD combination therapy (HR 0.802, 95 % CI 0.754-0.853) than with other drug combinations. In the subgroup analysis, the preventive effect of MET and TZD treatment against AF remained consistent, regardless of age, sex, duration, and diabetes severity. CONCLUSION The combination therapy of MET and TZD is the most effective antidiabetic drug for preventing AF in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Sunyoung Kim
- Department of Family Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea; Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Bongseong Kim
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chanyang Min
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Wonyoung Cho
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Joo Young Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanil General Hospital, Seoul, Republic of Korea
| | - Kyung-Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Youl Rhee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea; Department of Endocrinology and Metabolism, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Scheen AJ. Antidiabetic agents and risk of atrial fibrillation/flutter: A comparative critical analysis with a focus on differences between SGLT2 inhibitors and GLP-1 receptor agonists. DIABETES & METABOLISM 2022; 48:101390. [DOI: 10.1016/j.diabet.2022.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 04/11/2023]
|
5
|
Giglio RV, Papanas N, Rizvi AA, Ciaccio M, Patti AM, Ilias I, Pantea Stoian A, Sahebkar A, Janez A, Rizzo M. An Update on the Current and Emerging Use of Thiazolidinediones for Type 2 Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1475. [PMID: 36295635 PMCID: PMC9609741 DOI: 10.3390/medicina58101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Guidelines have increasingly stressed the concept that adequate glycemic control is required to prevent or decrease the macro- and microvascular complications of type 2 diabetes mellitus (T2DM). PPAR-gamma agonists ("glitazones") are no longer prioritized due to their effects on heart failure. However, the association between these drugs and innovative therapies could be a valuable tool to attenuate the risk factors of the metabolic syndrome. Glitazones are used for the treatment of diabetes and associated comorbidities. There is substantial scientific evidence demonstrating the effect of glitazones at a cardiometabolic level, as well as on hematological and neurological pathologies that point to their usefulness. The use of glitazones has always been controversial both for the type of patients who must take these drugs and for the side effects associated with them. Unfortunately, the recent guidelines do not include them among the preferred drugs for the treatment of hyperglycemia and rosiglitazone is out of the market in many countries due to an adverse cardiovascular risk profile. Even though real-life studies have proven otherwise, and their pleiotropic effects have been highlighted, they have been unable to achieve primacy in the choice of antihyperglycemic drugs. It would be appropriate to demonstrate the usefulness of pioglitazone and its therapeutic benefit with further cardiovascular safety studies.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68132 Alexandroupoli, Greece
| | - Ali Abbas Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy
| | - Angelo Maria Patti
- Promise Department, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, 11521 Athens, Greece
| | - Anca Pantea Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania
| | - Amirhossein Sahebkar
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90133 Palermo, Italy
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Poggi AL, Gaborit B, Schindler TH, Liberale L, Montecucco F, Carbone F. Epicardial fat and atrial fibrillation: the perils of atrial failure. Europace 2022; 24:1201-1212. [PMID: 35274140 DOI: 10.1093/europace/euac015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Obesity is a heterogeneous condition, characterized by different phenotypes and for which the classical assessment with body mass index may underestimate the real impact on cardiovascular (CV) disease burden. An epidemiological link between obesity and atrial fibrillation (AF) has been clearly demonstrated and becomes even more tight when ectopic (i.e. epicardial) fat deposition is considered. Due to anatomical and functional features, a tight paracrine cross-talk exists between epicardial adipose tissue (EAT) and myocardium, including the left atrium (LA). Alongside-and even without-mechanical atrial stretch, the dysfunctional EAT may determine a pro-inflammatory environment in the surrounding myocardial tissue. This evidence has provided a new intriguing pathophysiological link with AF, which in turn is no longer considered a single entity but rather the final stage of atrial remodelling. This maladaptive process would indeed include structural, electric, and autonomic derangement that ultimately leads to overt disease. Here, we update how dysfunctional EAT would orchestrate LA remodelling. Maladaptive changes sustained by dysfunctional EAT are driven by a pro-inflammatory and pro-fibrotic secretome that alters the sinoatrial microenvironment. Structural (e.g. fibro-fatty infiltration) and cellular (e.g. mitochondrial uncoupling, sarcoplasmic reticulum fragmentation, and cellular protein quantity/localization) changes then determine an electrophysiological remodelling that also involves the autonomic nervous system. Finally, we summarize how EAT dysfunction may fit with the standard guidelines for AF. Lastly, we focus on the potential benefit of weight loss and different classes of CV drugs on EAT dysfunction, LA remodelling, and ultimately AF onset and recurrence.
Collapse
Affiliation(s)
- Andrea Lorenzo Poggi
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN Marseille, France
| | - Thomas Hellmut Schindler
- Department of Radiology, Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Luca Liberale
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
7
|
MiR-21-3p Inhibits Adipose Browning by Targeting FGFR1 and Aggravates Atrial Fibrosis in Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9987219. [PMID: 34484568 PMCID: PMC8413063 DOI: 10.1155/2021/9987219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 12/29/2022]
Abstract
A relationship between excess epicardial adipose tissue (EAT) and the risk of atrial fibrillation (AF) has been reported. Browning of EAT may be a novel approach for the prevention or treatment of AF by attenuating atrial fibrosis. Previous studies have identified microRNA-21 (miR-21) as a regulatory factor in atrial fibrosis. The present study examined the role of different subtypes of miR-21 in adipose browning and atrial fibrosis under hyperglycemic conditions. Wild type and miR-21 knockout C57BL/6 mice were used to establish a diabetic model via intraperitoneal injection of streptozotocin. A coculture model of atrial fibroblasts and adipocytes was also established. We identified miR-21-3p as a key regulator that controls adipocyte browning and participates in atrial fibrosis under hyperglycemic conditions. Moreover, fibroblast growth factor receptor (FGFR) 1, a direct target of miR-21-3p, decreased in this setting and controlled adipose browning. Gain and loss-of-function experiments identified a regulatory pathway in adipocytes involving miR-21a-3p, FGFR1, FGF21, and PPARγ that regulated adipocyte browning and participated in hyperglycemia-induced atrial fibrosis. Modulation of this signaling pathway may provide a therapeutic option for the prevention and treatment of atrial fibrosis or AF in DM.
Collapse
|
8
|
Fong SPT, Agrawal S, Gong M, Zhao J. Modulated Calcium Homeostasis and Release Events Under Atrial Fibrillation and Its Risk Factors: A Meta-Analysis. Front Cardiovasc Med 2021; 8:662914. [PMID: 34355025 PMCID: PMC8329373 DOI: 10.3389/fcvm.2021.662914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Atrial fibrillation (AF) is associated with calcium (Ca2+) handling remodeling and increased spontaneous calcium release events (SCaEs). Nevertheless, its exact mechanism remains unclear, resulting in suboptimal primary and secondary preventative strategies. Methods: We searched the PubMed database for studies that investigated the relationship between SCaEs and AF and/or its risk factors. Meta-analysis was used to examine the Ca2+ mechanisms involved in the primary and secondary AF preventative groups. Results: We included a total of 74 studies, out of the identified 446 publications from inception (1982) until March 31, 2020. Forty-five were primary and 29 were secondary prevention studies for AF. The main Ca2+ release events, calcium transient (standardized mean difference (SMD) = 0.49; I2 = 35%; confidence interval (CI) = 0.33–0.66; p < 0.0001), and spark amplitude (SMD = 0.48; I2 = 0%; CI = −0.98–1.93; p = 0.054) were enhanced in the primary diseased group, while calcium transient frequency was increased in the secondary group. Calcium spark frequency was elevated in both the primary diseased and secondary AF groups. One of the key cardiac currents, the L-type calcium current (ICaL) was significantly downregulated in primary diseased (SMD = −1.07; I2 = 88%; CI = −1.94 to −0.20; p < 0.0001) and secondary AF groups (SMD = −1.28; I2 = 91%; CI = −2.04 to −0.52; p < 0.0001). Furthermore, the sodium–calcium exchanger (INCX) and NCX1 protein expression were significantly enhanced in the primary diseased group, while only NCX1 protein expression was shown to increase in the secondary AF studies. The phosphorylation of the ryanodine receptor at S2808 (pRyR-S2808) was significantly elevated in both the primary and secondary groups. It was increased in the primary diseased and proarrhythmic subgroups (SMD = 0.95; I2 = 64%; CI = 0.12–1.79; p = 0.074) and secondary AF group (SMD = 0.66; I2 = 63%; CI = 0.01–1.31; p < 0.0001). Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) expression was elevated in the primary diseased and proarrhythmic drug subgroups but substantially reduced in the secondary paroxysmal AF subgroup. Conclusions: Our study identified that ICaL is reduced in both the primary and secondary diseased groups. Furthermore, pRyR-S2808 and NCX1 protein expression are enhanced. The remodeling leads to elevated Ca2+ functional activities, such as increased frequencies or amplitude of Ca2+ spark and Ca2+ transient. The main difference identified between the primary and secondary diseased groups is SERCA expression, which is elevated in the primary diseased group and substantially reduced in the secondary paroxysmal AF subgroup. We believe our study will add new evidence to AF mechanisms and treatment targets.
Collapse
Affiliation(s)
- Sarah Pei Ting Fong
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shaleka Agrawal
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mengqi Gong
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Zhang Z, Zhang X, Meng L, Gong M, Li J, Shi W, Qiu J, Yang Y, Zhao J, Suo Y, Liang X, Wang X, Tse G, Jiang N, Li G, Zhao Y, Liu T. Pioglitazone Inhibits Diabetes-Induced Atrial Mitochondrial Oxidative Stress and Improves Mitochondrial Biogenesis, Dynamics, and Function Through the PPAR-γ/PGC-1α Signaling Pathway. Front Pharmacol 2021; 12:658362. [PMID: 34194324 PMCID: PMC8237088 DOI: 10.3389/fphar.2021.658362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/06/2022] Open
Abstract
Background: Oxidative stress contributes to adverse atrial remodeling in diabetes mellitus. This remodeling can be prevented by the PPAR-γ agonist pioglitazone via its antioxidant and anti-inflammatory effects. In this study, we examined the molecular mechanisms underlying the protective effects of pioglitazone on atrial remodeling in a rabbit model of diabetes. Methods: Rabbits were randomly divided into control, diabetic, and pioglitazone-treated diabetic groups. Echocardiographic, hemodynamic, and electrophysiological parameters were measured. Serum PPAR-γ levels, serum and tissue oxidative stress and inflammatory markers, mitochondrial morphology, reactive oxygen species (ROS) production rate, respiratory function, and mitochondrial membrane potential (MMP) levels were measured. Protein expression of the pro-fibrotic marker TGF-β1, the PPAR-γ coactivator-1α (PGC-1α), and the mitochondrial proteins (biogenesis-, fusion-, and fission-related proteins) was measured. HL-1 cells were transfected with PGC-1α small interfering RNA (siRNA) to determine the underlying mechanisms of pioglitazone improvement of mitochondrial function under oxidative stress. Results: The diabetic group demonstrated a larger left atrial diameter and fibrosis area than the controls, which were associated with a higher incidence of inducible atrial fibrillation (AF). The lower serum PPAR-γ level was associated with lower PGC-1α and higher NF-κB and TGF-β1 expression. Lower mitochondrial biogenesis (PGC-1α, NRF1, and TFAM)-, fusion (Opa1 and Mfn1)-, and fission (Drp1)-related proteins were detected. Mitochondrial swelling, higher mitochondrial ROS, lower respiratory control rate, and lower MMP were observed. The pioglitazone group showed a reversal of structural remodeling and a lower incidence of inducible AF, which were associated with higher PPAR-γ and PGC-1α. The pioglitazone group had lower NF-κB and TGF-β1 expression levels, whereas biogenesis-, fusion-, and fission-related protein expression was higher. Further, mitochondrial structure and function were improved. In HL-1 cells, PGC-1α siRNA transfection blunted the effect of pioglitazone on Mn-SOD protein expression and MMP collapse in H2O2-treated cells. Conclusion: Diabetes mellitus induces adverse atrial structural, electrophysiological remodeling, and mitochondrial damage and dysfunction. Pioglitazone prevented these abnormalities through the PPAR-γ/PGC-1α pathway.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lei Meng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wen Shi
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiao Tong University, Shanxi, China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianping Zhao
- Department of Cardiology, Tianjin Hospital, Tianjin, China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Nesti L, Tricò D, Mengozzi A, Natali A. Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol 2021; 20:109. [PMID: 34006325 PMCID: PMC8130304 DOI: 10.1186/s12933-021-01294-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since 1985, the thiazolidinedione pioglitazone has been widely used as an insulin sensitizer drug for type 2 diabetes mellitus (T2DM). Although fluid retention was early recognized as a safety concern, data from clinical trials have not provided conclusive evidence for a benefit or a harm on cardiac function, leaving the question unanswered. We reviewed the available evidence encompassing both in vitro and in vivo studies in tissues, isolated organs, animals and humans, including the evidence generated by major clinical trials. Despite the increased risk of hospitalization for heart failure due to fluid retention, pioglitazone is consistently associated with reduced risk of myocardial infarction and ischemic stroke both in primary and secondary prevention, without any proven direct harm on the myocardium. Moreover, it reduces atherosclerosis progression, in-stent restenosis after coronary stent implantation, progression rate from persistent to permanent atrial fibrillation, and reablation rate in diabetic patients with paroxysmal atrial fibrillation after catheter ablation. In fact, human and animal studies consistently report direct beneficial effects on cardiomyocytes electrophysiology, energetic metabolism, ischemia–reperfusion injury, cardiac remodeling, neurohormonal activation, pulmonary circulation and biventricular systo-diastolic functions. The mechanisms involved may rely either on anti-remodeling properties (endothelium protective, inflammation-modulating, anti-proliferative and anti-fibrotic properties) and/or on metabolic (adipose tissue metabolism, increased HDL cholesterol) and neurohormonal (renin–angiotensin–aldosterone system, sympathetic nervous system, and adiponectin) modulation of the cardiovascular system. With appropriate prescription and titration, pioglitazone remains a useful tool in the arsenal of the clinical diabetologist.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy. .,Cardiopulmonary Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Domenico Tricò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Alessandro Mengozzi
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Andrea Natali
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.,Cardiopulmonary Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Lee TW, Lee TI, Lin YK, Chen YC, Kao YH, Chen YJ. Effect of antidiabetic drugs on the risk of atrial fibrillation: mechanistic insights from clinical evidence and translational studies. Cell Mol Life Sci 2021; 78:923-934. [PMID: 32965513 PMCID: PMC11072414 DOI: 10.1007/s00018-020-03648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia and is associated with substantial morbidity and mortality. Advanced glycation end product and its receptor activation, cardiac energy dysmetabolism, structural and electrical remodeling, and autonomic dysfunction are implicated in AF pathophysiology in diabetic hearts. Antidiabetic drugs have been demonstrated to possess therapeutic potential for AF. However, clinical investigations of AF in patients with DM have been scant and inconclusive. This article provides a comprehensive review of research findings on the association between DM and AF and critically analyzes the effect of different pharmacological classes of antidiabetic drugs on AF.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
13
|
Abstract
Background:
Atrial fibrillation (AF) and atrial flutter (AFL) are associated with both diabetes mellitus and its related comorbidities, including hypertension, obesity, and heart failure (HF). SGLT2 (sodium-glucose cotransporter 2) inhibitors have been shown to lower blood pressure, reduce weight, have salutary effects on left ventricular remodeling, and reduce hospitalization for HF and cardiovascular death in patients with type 2 diabetes mellitus. We therefore investigated whether SGLT2 inhibitors could also reduce the risk of AF/AFL.
Methods:
DECLARE-TIMI 58 (Dapagliflozin Effect on Cardiovascular Events–Thrombolysis in Myocardial Infarction 58) studied the efficacy and safety of the SGLT2 inhibitor dapagliflozin versus placebo in 17 160 patients with type 2 diabetes mellitus and either multiple risk factors for atherosclerotic cardiovascular disease (n=10 186) or known atherosclerotic cardiovascular disease (n=6974). We explored the effect of dapagliflozin on the first and total number of AF/AFL events in patients with (n=1116) and without prevalent AF/AFL using Cox and negative binomial models, respectively. AF/AFL events were identified by search of the safety database using MedDRA preferred terms (“atrial fibrillation,” “atrial flutter”).
Results:
Dapagliflozin reduced the risk of AF/AFL events by 19% (264 versus 325 events; 7.8 versus 9.6 events per 1000 patient-years; hazard ratio [HR], 0.81 [95% CI, 0.68–0.95];
P
=0.009). The reduction in AF/AFL events was consistent regardless of presence or absence of a history of AF/AFL at baseline (previous AF/AFL: HR, 0.79 [95% CI, 0.58–1.09]; no AF/AFL: HR, 0.81 [95% CI, 0.67–0.98];
P
for interaction 0.89). Similarly, presence of atherosclerotic cardiovascular disease (HR, 0.83 [95% CI, 0.66–1.04]) versus multiple risk factors (HR, 0.78 [95% CI, 0.62–0.99];
P
for interaction 0.72) or a history of HF (HF: HR, 0.78 [95% CI, 0.55–1.11]; No HF: HR, 0.81 [95% CI, 0.68–0.97];
P
for interaction 0.88) did not modify the reduction in AF/AFL events observed with dapagliflozin. Moreover, there was no effect modification by sex, history of ischemic stroke, glycated hemoglobin A
1c
, body mass index, blood pressure, or estimated glomerular filtration rate (all
P
for interaction >0.20). Dapagliflozin also reduced the total number (first and recurrent) of AF/AFL events (337 versus 432; incidence rate ratio, 0.77 [95% CI, 0.64–0.92];
P
=0.005).
Conclusions:
Dapagliflozin decreased the incidence of reported episodes of AF/AFL adverse events in high-risk patients with type 2 diabetes mellitus. This effect was consistent regardless of the patient’s previous history of AF, atherosclerotic cardiovascular disease, or HF.
Registration:
URL:
https://www.clinicaltrials.gov
; Unique identifier: NCT01730534.
Collapse
|
14
|
High hydrostatic pressure induces atrial electrical remodeling through angiotensin upregulation mediating FAK/Src pathway activation. J Mol Cell Cardiol 2020; 140:10-21. [PMID: 32006532 DOI: 10.1016/j.yjmcc.2020.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Hypertension is an independent risk factor for atrial fibrillation (AF), although its specific mechanisms remain unclear. Previous research has been focused on cyclic stretch, ignoring the role of high hydrostatic pressure. The present study aimed to explore the effect of high hydrostatic pressure stimulation on electrical remodeling in atrial myocytes and its potential signaling pathways. Experiments were performed on left atrial appendages from patients with chronic AF or sinus rhythm, spontaneously hypertensive rats (SHRs) treated with or without valsartan (10 mg/kg/day) and HL-1 cells were exposed to high hydrostatic pressure using a self-developed device. Whole-cell patch-clamp recordings and western blots demonstrated that the amplitudes of ICa,L, Ito, and IKur were reduced in AF patients with corresponding changes in protein expression. Angiotensin protein levels increased and Ang1-7 decreased, while focal adhesion kinase (FAK) and Src kinase were enhanced in atrial tissue from AF patients and SHRs. After rapid atrial pacing, AF inducibility in SHR was significantly higher, accompanied by a decrease in ICa,L, upregulation of Ito and IKur, and a shortened action potential duration. Angiotensin upregulation and FAK/Src activation in SHR were inhibited by angiotensin type 1 receptor inhibitor valsartan, thus, preventing electrical remodeling and reducing AF susceptibility. These results were verified in HL-1 cells treated with high hydrostatic pressure, and demonstrated that electrical remodeling regulated by the FAK-Src pathway could be modulated by valsartan. The present study indicated that high hydrostatic pressure stimulation increases AF susceptibility by activating the renin-angiotensin system and FAK-Src pathway in atrial myocytes.
Collapse
|
15
|
Packer M. Do most patients with obesity or type 2 diabetes, and atrial fibrillation, also have undiagnosed heart failure? A critical conceptual framework for understanding mechanisms and improving diagnosis and treatment. Eur J Heart Fail 2019; 22:214-227. [PMID: 31849132 DOI: 10.1002/ejhf.1646] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity and diabetes can lead to heart failure with preserved ejection fraction (HFpEF), potentially because they both cause expansion and inflammation of epicardial adipose tissue and thus lead to microvascular dysfunction and fibrosis of the underlying left ventricle. The same process also causes an atrial myopathy, which is clinically evident as atrial fibrillation (AF); thus, AF may be the first manifestation of HFpEF. Many patients with apparently isolated AF have latent HFpEF or subsequently develop HFpEF. Most patients with obesity or diabetes who have AF and exercise intolerance have increased left atrial pressures at rest or during exercise, even in the absence of diagnosed HFpEF. Among patients with AF, those who also have latent HFpEF have increased risk for systemic thromboembolism and death. The identification of HFpEF in patients with obesity or diabetes alters the risk-to-benefit relationship of commonly prescribed treatments. Bariatric surgery and statins can ameliorate AF and reduce the risk for HFpEF. Conversely, antihyperglycaemic drugs that promote adipogenesis or cause sodium retention (insulin and thiazolidinediones) may increase the risk for heart failure in patients with an underlying ventricular myopathy. Patients with obesity and diabetes who undergo catheter ablation for AF are at increased risk for AF recurrence and for post-ablation increases in pulmonary venous pressures and worsening heart failure, especially if HFpEF coexists. Therefore, AF may be the earliest indicator of HFpEF in patients with obesity or type 2 diabetes, and recognition of HFpEF alters the management of these patients.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA.,Imperial College London, London, UK
| |
Collapse
|
16
|
Drugs That Ameliorate Epicardial Adipose Tissue Inflammation May Have Discordant Effects in Heart Failure With a Preserved Ejection Fraction as Compared With a Reduced Ejection Fraction. J Card Fail 2019; 25:986-1003. [DOI: 10.1016/j.cardfail.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
|
17
|
Li X, Zhu F, Meng W, Zhang F, Hong J, Zhang G, Wang F. CYP2J2/EET reduces vulnerability to atrial fibrillation in chronic pressure overload mice. J Cell Mol Med 2019; 24:862-874. [PMID: 31749335 PMCID: PMC6933320 DOI: 10.1111/jcmm.14796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence has well established the protective effects of CYP2J2/EET on the cardiovascular system. The aim of the present study was to determine whether CYP2J2/EET has a preventive effect on atrial fibrillation (AF) and to investigate the underlying mechanisms. Wild‐type mice were injected with or without AAV9‐CYP2J2 before abdominal aortic constriction (AAC) operation. After 8 weeks, compared with wild‐type mice, AAC mice display higher AF inducibility and longer AF durations, which were remarkably attenuated with AAV9‐CYP2J2. Also, AAV9‐CYP2J2 reduced atrial fibrosis area and the deposit of collagen‐I/III in AAC mice, accompanied by the blockade of TGF‐β/Smad‐2/3 signalling pathways, as well as the recovery in Smad‐7 expression. In vitro, isolated atrial fibroblasts were administrated with TGF‐β1, EET, EEZE, GW9662, SiRNA Smad‐7 and pre‐MiR‐21, and EET was demonstrated to restrain the differentiation of atrial fibroblasts largely dependent on Smad‐7, due to the inhibition of EET on MiR‐21. In addition, increased inflammatory cytokines, as well as activated NF‐κB pathways induced by AAC surgery, were also significantly blunted by AAV9‐CYP2J2 treatment. These effects of CYP2J2/EET were partially blocked by GW9662, the antagonist of PPAR‐γ. In conclusion, this study revealed that CYP2J2/EET ameliorates atrial fibrosis through modulating atrial fibroblasts activation by disinhibition of MiR‐21 on Smad‐7, and attenuates atrial inflammatory response by repressing NF‐κB pathways, reducing the vulnerability to AF, and CYP2J2/EET exerts its role at least partially through PPAR‐γ activation. Our findings might provide a novel upstream therapeutic strategy for AF.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Meng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Hong
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guobing Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Ghrelin Ameliorates Angiotensin II-Induced Myocardial Fibrosis by Upregulating Peroxisome Proliferator-Activated Receptor Gamma in Young Male Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9897581. [PMID: 30175152 PMCID: PMC6098901 DOI: 10.1155/2018/9897581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
Angiotensin (Ang) II contributes to the formation and development of myocardial fibrosis. Ghrelin, a gut peptide, has demonstrated beneficial effects against cardiovascular disease. In the present study, we explored the effect and related mechanism of Ghrelin on myocardial fibrosis in Ang II-infused rats. Adult Sprague-Dawley (SD) rats were divided into 6 groups: Control, Ang II (200ng/kg/min, microinfusion), Ang II+Ghrelin (100 μg/kg, subcutaneously twice daily), Ang II+Ghrelin+GW9662 (a specific PPAR-γ inhibitor, 1 mg/kg/d, orally), Ang II+GW9662, and Ghrelin for 4 wks. In vitro, adult rat cardiac fibroblasts (CFs) were pretreated with or without Ghrelin, Ghrelin+GW9662, or anti-Transforming growth factor (TGF)-β1 antibody and then stimulated with or without Ang II (100 nmol/L) for 24 h. Ang II infusion significantly increased myocardial fibrosis, expression of collagen I, collagen III, and TGF-β1, as well as TGF-β1 downstream proteins p-Smad2, p-Smad3, TRAF6, and p-TAK1 (all p<0.05). Ghrelin attenuated these effects. Similar results were seen in Ang II-stimulated rat cardiac fibroblasts in vitro. In addition, Ghrelin upregulated PPAR-γ expression in vivo and in vitro, and treatment with GW9662 counteracted the effects of Ghrelin. In conclusion, Ghrelin ameliorated Ang II-induced myocardial fibrosis by upregulating PPAR-γ and in turn inhibiting TGF-β1signaling.
Collapse
|
19
|
Liu C, Liu R, Fu H, Li J, Wang X, Cheng L, Korantzopoulos P, Tse G, Li G, Liu T. Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits. Cardiovasc Ther 2017; 35. [PMID: 28665544 DOI: 10.1111/1755-5922.12284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/10/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIMS Recent evidence indicates that peroxisome proliferator-activated receptor (PPAR)-γ activators exert anti-inflammatory and antioxidant actions. However, the underlying mechanisms by which these agents prevent atrial remodeling in diabetes are not completely elucidated. We sought to investigate the potential effects of pioglitazone, a PPAR-γ activator, on atrial remodeling and atrial fibrillation (AF) inducibility in diabetic rabbits. METHODS Alloxan-induced diabetic rabbits were randomly divided into three groups: diabetes only, diabetes treated with low-dose pioglitazone (4 mg/day/kg), or diabetes treated with high-dose pioglitazone (8 mg/day/kg) (n=24 for each group). A total of 24 healthy rabbits served as controls. Eight weeks later, hemodynamic, echocardiographic, and electrophysiological parameters were recorded. Left atrial whole-cell patch-clamp studies, histological examination, and Western blot analysis were also performed. RESULTS In the DM group (6/8 vs 1/8, P<.05), higher AF inducibility, increased amount of fibrosis, lower INa , and higher ICaL were observed in the DM group compared to controls. Western blot analysis showed that DM increased the expression of extracellular signal-regulated kinase 2 (ERK2), phosphorylation ERK, transforming growth factor beta-1, Toll-like receptor 4, nuclear factor-κB p50, and heat-shock protein 70. All of these electrophysiological, histological, ion current density, and protein expression changes were all reduced by pioglitazone. CONCLUSION Pioglitazone attenuates diabetes-induced structural and electrophysiological remodeling in the atria, thereby reducing the vulnerability to AF.
Collapse
Affiliation(s)
- Changle Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ruimeng Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lijun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Kim N, Jung Y, Nam M, Sun Kang M, Lee MK, Cho Y, Choi EK, Hwang GS, Soo Kim H. Angiotensin II affects inflammation mechanisms via AMPK-related signalling pathways in HL-1 atrial myocytes. Sci Rep 2017; 7:10328. [PMID: 28871102 PMCID: PMC5583339 DOI: 10.1038/s41598-017-09675-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Inflammation is a common cause of cardiac arrhythmia. Angiotensin ІІ (Ang ІІ) is a major contributing factor in the pathogenesis of cardiac inflammation; however, its underlying molecular mechanism remains unclear. Here, we explored the effect of Ang ІІ on inflammatory mechanisms and oxidative stress using HL-1 atrial myocytes. We showed that Ang ІІ activated c-Jun N-terminal kinase (JNK) phosphorylation and other inflammatory markers, such as transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Ang ІІ decreased oxygen consumption rate, which resulted in reactive oxygen species (ROS) generation and inhibition of ROS blocked Ang II-mediated JNK phosphorylation and TGF-β1 induction. Ang ІІ induced the expression of its specific receptor, AT1R. Ang II-induced intracellular calcium production associated with Ang ІІ-mediated signalling pathways. In addition, the generated ROS and calcium stimulated AMPK phosphorylation. Inhibiting AMPK blocked Ang II-mediated JNK and TGF-β signalling pathways. Ang ІІ concentration, along with TGF-β1 and tumor necrosis factor-α levels, was slightly increased in plasma of patients with atrial fibrillation. Taken together, these results suggest that Ang ІІ induces inflammation mechanisms through an AMPK-related signalling pathway. Our results provide new molecular targets for the development of therapeutics for inflammation-related conditions, such as atrial fibrillation.
Collapse
Affiliation(s)
- Nami Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Mi Sun Kang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Min Kyung Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngjin Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eue-Keun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea. .,Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea.
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Zhang Z, Zhang X, Korantzopoulos P, Letsas KP, Tse G, Gong M, Meng L, Li G, Liu T. Thiazolidinedione use and atrial fibrillation in diabetic patients: a meta-analysis. BMC Cardiovasc Disord 2017; 17:96. [PMID: 28381265 PMCID: PMC5382449 DOI: 10.1186/s12872-017-0531-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/01/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that thiazolidinediones (TZDs) may exert protective effects in atrial fibrillation (AF). The present meta-analysis investigated the association between TZD use and the incidence of AF in diabetic patients. METHODS Electronic databases were searched until December 2016. Of the 346 initially identified records, 3 randomized clinical trials (RCTs) and 4 observational studies with 130,854 diabetic patients were included in the final analysis. RESULTS Pooled analysis of the included studies demonstrated that patients treated with TZDs had approximately 30% lower risk of developing AF compared to controls [odds ratio (OR): 0.73, 95% confidence interval (CI): 0.62 to 0.87, p = 0.0003]. This association was consistently observed for both new onset AF (OR =0.77, p = 0.002) and recurrent AF (OR =0.41, p = 0.002), pioglitazone use (OR =0.56, p = 0.04) but not rosiglitazone use (OR =0.78, p = 0.12). The association between TZD use and AF incidence was not significant in the pooled analysis of three RCTs (OR =0.77, 95% CI = 0.53-1.12, p = 0.17), but was significantly in the pooled analysis of the four observational studies (OR =0.71, p = 0.0003). CONCLUSIONS This meta-analysis suggests that TZDs may confer protection against AF in the setting of diabetes mellitus (DM). This class of drugs can be used as upstream therapy for DM patients to prevent the development of AF. Further large-scale RCTs are needed to determine whether TZDs use could prevent AF in the setting of DM.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | | | - Konstantinos P. Letsas
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Athens, Greece
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Li KaShing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Lei Meng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| |
Collapse
|
22
|
PPARγ agonist use and recurrence of atrial fibrillation after successful electrical cardioversion. Hellenic J Cardiol 2017; 58:387-390. [PMID: 28347792 DOI: 10.1016/j.hjc.2017.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 01/20/2017] [Indexed: 11/23/2022] Open
Abstract
Inflammation is associated with atrial fibrillation (AF), and peroxisome proliferator-activated receptor-gamma (PPARγ) agonists have anti-inflammatory properties. We tested whether pioglitazone reduced AF recurrence after electrical cardioversion (EC) by modifying systemic inflammation. In this randomized and prospective trial, patients with persistent AF and type 2 diabetes mellitus were randomized into a pioglitazone group (n=48) or a control group (n=49) before EC. Treatment was continued for 3 months or until AF recurred. Serum inflammatory markers [high sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)] were measured at baseline and follow-up. During the 3-month follow-up, AF recurred in 22 (45.8%) patients of the pioglitazone-treated and 24 (49.0%) patients of the control group (P=0.756). However, the 3 inflammatory markers were significantly lowered with pioglitazone treatment during follow-up. Cox proportional hazards regression models showed that the predictors of recurrence included AF history (relative risk RR 1.002, 95% CI 1.003-1.061, P =0.037) and the left atrial diameter (RR 1.131, 95% CI 1.029-1.242, P = 0.010). In conclusion, while reducing some inflammatory markers, the PPARγ agonist pioglitazone did not affect the recurrence of AF after EC.
Collapse
|
23
|
Xie Y, Gu ZJ, Wu MX, Huang TC, Ou JS, Ni HS, Lin MH, Yuan WL, Wang JF, Chen YX. Disruption of calcium homeostasis by cardiac-specific over-expression of PPAR-γ in mice: A role in ventricular arrhythmia. Life Sci 2016; 167:12-21. [DOI: 10.1016/j.lfs.2016.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
24
|
Torres RC, Magalhães NS, E Silva PMR, Martins MA, Carvalho VF. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression. Exp Mol Pathol 2016; 101:290-301. [PMID: 27725163 DOI: 10.1016/j.yexmp.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/16/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
Increased hypothalamus-pituitary-adrenal axis (HPA) activity in diabetes is strongly associated with several morbidities noted in patients with the disease. We previously demonstrated that hyperactivity of HPA axis under diabetic conditions is associated with up-regulation of adrenocorticotrophic hormone (ACTH) receptors (MC2R) in adrenal and down-regulation of glucocorticoid receptors (GR and MR) in pituitary. This study investigates the role of peroxisome proliferator-activated receptor (PPAR)-γ in HPA axis hyperactivity in diabetic rats. Diabetes was induced by intravenous injection of alloxan into fasted rats. The PPAR-γ agonist rosiglitazone and/or PI3K inhibitor wortmannin were administered daily for 18 consecutive days, starting 3days after diabetes induction. Plasma ACTH and corticosterone were evaluated by radioimmunoassay, while intensities of MC2R, proopiomelanocortin (POMC), GR, MR, PI3K p110α and PPAR-γ were assessed using immunohistochemistry. Rosiglitazone treatment inhibited adrenal hypertrophy and hypercorticoidism observed in diabetic rats. Rosiglitazone also significantly reversed the diabetes-induced increase in the MC2R expression in adrenal cortex. We noted that rosiglitazone reduced the number of corticotroph cells and inhibited both anterior pituitary POMC expression and plasma ACTH levels. Furthermore, rosiglitazone treatment was unable to restore the reduced expression of GR and MR in the anterior pituitary of diabetic rats. Rosiglitazone increased the number of PPAR-γ+ cells and expression of PI3K p110α in both anterior pituitary and adrenal cortex of diabetic rats. In addition, wortmannin blocked the ability of rosiglitazone to restore corticotroph cell numbers, adrenal hypertrophy and plasma corticosterone levels in diabetic rats. In conclusion, our findings revealed that rosiglitazone down-regulates HPA axis hyperactivity in diabetic rats via a mechanism dependent on PI3K activation in pituitary and adrenal glands.
Collapse
Affiliation(s)
- Rafael Carvalho Torres
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Nathalia Santos Magalhães
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Vinicius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev Rep 2016; 11:885-99. [PMID: 26275398 DOI: 10.1007/s12015-015-9615-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43. METHODS MI was induced in 50 male Sprague-Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 10(6) MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter. RESULTS Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue. CONCLUSIONS MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.
Collapse
|
26
|
Yang Q, Qi X, Dang Y, Li Y, Song X, Hao X. Effects of atorvastatin on atrial remodeling in a rabbit model of atrial fibrillation produced by rapid atrial pacing. BMC Cardiovasc Disord 2016; 16:142. [PMID: 27342818 PMCID: PMC4921022 DOI: 10.1186/s12872-016-0301-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/27/2016] [Indexed: 12/19/2022] Open
Abstract
Background Accumulating evidence suggests that myeloperoxidase (MPO) is involved in atrial remodeling of atrial fibrillation (AF). Statins could reduce the MPO levels in patients with cardiovascular diseases. This study evaluated the effects of atorvastatin on MPO level and atrial remodeling in a rabbit model of pacing-induced AF. Methods Eighteen rabbits were randomly divided into sham, control and atorvastatin groups. Rabbits in the control and atorvastatin groups were subjected to rapid atrial pacing (RAP) at 600 bpm for 3 weeks, and treated with placebo or atorvastatin (2.5 mg/kg/d), respectively. Rabbits in the sham group did not receive RAP. After 3 weeks of pacing, atrial structural and functional changes were assessed by echocardiography, atrial effective refractory period (AERP) and AF inducibility were measured by atrial electrophysiological examination, and histological changes were evaluated by Masson trichrome-staining. The L-type calcium channel α1c (Cav1.2), collagen I and III, MPO, matrix metalloproteinase (MMP)-2 and MMP-9 were analyzed by real time polymerase chain reaction and/or western blot. Results All rabbits were found to have maintained sinus rhythm after 3 weeks of RAP. Atrial burst stimulation induced sustained AF (>30 min) in 5, 4, and no rabbits in the control, atorvastatin, and sham groups, respectively. The AERP shortened and Cav1.2 mRNA level decreased in the control group, but these changes were suppressed in the atorvastatin group. Obvious left atrial enlargement and dysfunction was found in both control and atorvastatin groups. Compared with the control group, these echocardiograhic indices of left atrium did not differ in the atorvastatin group. Prominent atrial fibrosis and increased levels of collagen I and III were observed in the control group but not in the atorvastatin group. The mRNA and protein levels of MPO, MMP-2 and MMP-9 significantly increased in the control group, but these changes were prevented in the atorvastatin group. Conclusion Treatment with atorvastatin prevented atrial remodeling in a rabbit model of RAP-induced AF. The reduction of levels of atrial MPO, MMP-2 and MMP-9 may contribute to the prevention of atorvastatin on atrial remodeling.
Collapse
Affiliation(s)
- Qian Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Xiaoyong Qi
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China. .,Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China.
| | - Yi Dang
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yingxiao Li
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Xuelian Song
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Xiao Hao
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
27
|
Peroxisome Proliferator-Activated Receptor-γ Is Critical to Cardiac Fibrosis. PPAR Res 2016; 2016:2198645. [PMID: 27293418 PMCID: PMC4880703 DOI: 10.1155/2016/2198645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγ agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγ in various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγ agonists for the clinical management of CVD.
Collapse
|
28
|
TRIF promotes angiotensin II-induced cross-talk between fibroblasts and macrophages in atrial fibrosis. Biochem Biophys Res Commun 2015; 464:100-5. [DOI: 10.1016/j.bbrc.2015.05.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/03/2015] [Indexed: 01/12/2023]
|
29
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, contributing to increased morbidity and reduced survival through its associations with stroke and heart failure. AF contributes to a four- to fivefold increase in the risk of stroke in the general population and is responsible for 10-15 % of all ischemic strokes. Diagnosis and treatment of AF require considerable health care resources. Current therapies to restore sinus rhythm in AF are suboptimal and are limited either by their pro-arrhythmic effects or by their procedure-related complications. These limitations have necessitated identification of newer therapeutic targets to expand the treatment options. There has been a considerable amount of research interest in investigating the mechanisms of initiation and propagation of AF. Despite extensive research focused on the pathogenesis of AF, a thorough understanding of various pathways mediating initiation and propagation of AF still remains limited. Research efforts focused on the identification of these pathways and molecular mediators have generated a great degree of interest for developing more targeted therapies. This review discusses the potential therapeutic targets and the results from experimental and clinical research investigating these targets.
Collapse
|
30
|
Gu J, Hu W, Liu X. Pioglitazone improves potassium channel remodeling induced by angiotensin II in atrial myocytes. Med Sci Monit Basic Res 2014; 20:153-60. [PMID: 25296378 PMCID: PMC4206483 DOI: 10.12659/msmbr.892450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It has been demonstrated that atrial electrical remodeling contributes toward atrial fibrillation (AF) maintenance, and that angiotensin II (AngII) is involved in the pathogenesis of atrial electrical remodeling. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists have been shown to inhibit atrial electrical remodeling, but the underlying mechanisms are poorly understood. In the present study we investigated the regulating effects of PPAR-g agonist on AngII-induced potassium channel remodeling in atrial myocytes. MATERIAL/METHODS Whole-cell patch-clamp technique was used to record transient outward potassium current (Ito), ultra-rapid delayed rectifier potassium (Ikur), and inward rectifier potassium current (Ik1). Real-time PCR was used to assess potassium channel subunit mRNA expression. RESULTS Compared with the control group, AngII reduced Ito and Ikur current density as well as amplified Ik1 current density, which were partially prevented by pioglitazone. Furthermore, pioglitazone alleviated the downregulation of Ito subunit (Kv 4.2) and Ikur subunit (Kv 1.5), as well as the upregulation of Ik1 subunit (Kir 2.1 and Kir 2.2) mRNA expression stimulated by AngII. CONCLUSIONS These results suggest that pioglitazone exhibits a beneficial effect on AngII-induced potassium channel remodeling. PPAR-γ agonists may be potentially effective up-stream therapies for AF.
Collapse
Affiliation(s)
- Jun Gu
- Department of Cardiology, Shanghai Minhang District Central Hospital, Fudan University, Shanghai, China (mainland)
| | - Wei Hu
- Department of Cardiology, Shanghai Minhang District Central Hospital, Fudan University, Shanghai, China (mainland)
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China (mainland)
| |
Collapse
|
31
|
Pioglitazone inhibits angiotensin II-induced atrial fibroblasts proliferation via NF-κB/TGF-β1/TRIF/TRAF6 pathway. Exp Cell Res 2014; 330:43-55. [PMID: 25152439 DOI: 10.1016/j.yexcr.2014.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/02/2014] [Accepted: 08/06/2014] [Indexed: 12/27/2022]
Abstract
The exact mechanisms underlying inhibitory effects of pioglitazone (Pio) on Angiotensin II (AngII)-induced atrial fibrosis are complex and remain largely unknown. In the present study, we examined the effect of Pio on AngII-induced mice atrial fibrosis in vivo and atrial fibroblasts proliferation in vitro. In vivo study showed that AngII infusion induced atrial fibrosis and increased expressions of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and tumor necrosis factor receptor associated factor 6 (TRAF6) in mice models. However, those effects could be attenuated by Pio (P<0.01). As for in vitro experiment, Pio suppressed AngII-induced atrial fibroblasts proliferation via nuclear factor-κB/transforming growth factor-β1/TRIF/TRAF6 signaling pathway in primary cultured mice atrial fibroblasts (P<0.01). In conclusion, suppression of Pio on AngII-induced atrial fibrosis might be related to its inhibitory effects on above signaling pathway.
Collapse
|
32
|
Liu B, Wang J, Wang G. Beneficial Effects of Pioglitazone on Retardation of Persistent Atrial Fibrillation Progression in Diabetes Mellitus Patients. Int Heart J 2014; 55:499-505. [DOI: 10.1536/ihj.14-107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Bing Liu
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University
| | - Jiancheng Wang
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University
| | - Guoxing Wang
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University
| |
Collapse
|
33
|
Lendeckel U, Wolke C, Goette A. PPAR-γ activation limits angiotensin II-mediated atrial remodeling: One drug fits all AF patients? J Mol Cell Cardiol 2014; 66:165-6. [DOI: 10.1016/j.yjmcc.2013.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/16/2022]
|