1
|
Waddington JL, Wang X, Zhen X. 'Whole-Body' Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions. Biomolecules 2024; 14:1185. [PMID: 39334950 PMCID: PMC11430658 DOI: 10.3390/biom14091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
A wide array of biological abnormalities in psychotic illness appear to reflect non-cerebral involvement. This review first outlines the evidence for such a whole-body concept of schizophrenia pathobiology, focusing particularly on cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. It then considers the roles of miRNAs in general and of miRNA-143 in particular as they relate to the epidemiology, pathobiology, and treatment of schizophrenia. This is followed by notable evidence that miRNA-143 is also implicated in each of these domains of cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. Thus, miRNA-143 is an exemplar of what may be a class of molecules that play a role across the multiple domains of bodily dysfunction that appear to characterize a whole-body perspective of illness in schizophrenia. Importantly, the existence of such an exemplary molecule across these multiple domains implies a coordinated rather than stochastic basis. One candidate process would be a pleiotropic effect of genetic risk for schizophrenia across the whole body.
Collapse
Affiliation(s)
- John L. Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xiaoyu Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| |
Collapse
|
2
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Rasmi Y, Mohamed YA, Alipour S, Ahmed S, Abdelmajed SS. The role of miR-143/miR-145 in the development, diagnosis, and treatment of diabetes. J Diabetes Metab Disord 2024; 23:39-47. [PMID: 38932869 PMCID: PMC11196424 DOI: 10.1007/s40200-023-01317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus [DM], is a multifaceted metabolic disease, which has become a worldwide threat to human wellness. Over the past decades, an enormous amount of attention has been devoted to understanding how microRNAs [miRNAs], a class of small non-coding RNA regulators of gene expression at the post-transcriptional level, are tied to DM pathology. It has been demonstrated that miRNAs control insulin synthesis, secretion, and activity. This review aims to provide an evaluation of the use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes. Methods The use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes has been studied, and research that examined this link was sought after in the literature. In addition, we will discuss the cellular and molecular pathways of insulin secretion regulation by miR-143/145 expression and finally their role in diabetes. Results In the current review, we emphasize recent findings on the miR-143/145 expression profiles as novel DM biomarkers in clinical studies and animal models and highlight recent discoveries on the complex regulatory effect and functional role of miR-143/145 expression in DM. Conclusion A novel clinical treatment that alters the expression and activity of miR-143/miR-145 may be able to return cells to their natural state of glucose homeostasis, demonstrating the value of using comprehensive miRNA profiles to predict the beginning of diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01317-y.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Yara Ahmed Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Salma Ahmed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Samar Samir Abdelmajed
- Faculty of Dentistry- Medical Biochemistry and Genetics department, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| |
Collapse
|
4
|
Abstract
Zhao Y, Liu C, Zhang X, Yan X. Angelica polysaccharide alleviates TNF-α-induced MIN6 cell damage a through the up-regulation microRNA-143. BioFactors. 2022;49:200. https://doi.org/10.1002/biof.1588 This article, published online on 20 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 2, 4, and 5. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
5
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, Domínguez-Montero A. Histological Manifestations of Diabetic Kidney Disease and its Relationship with Insulin Resistance. Curr Diabetes Rev 2023; 19:50-70. [PMID: 35346008 DOI: 10.2174/1573399818666220328145046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Histological manifestations of diabetic kidney disease (DKD) include mesangiolysis, mesangial matrix expansion, mesangial cell proliferation, thickening of the glomerular basement membrane, podocyte loss, foot process effacement, and hyalinosis of the glomerular arterioles, interstitial fibrosis, and tubular atrophy. Glomerulomegaly is a typical finding. Histological features of DKD may occur in the absence of clinical manifestations, having been documented in patients with normal urinary albumin excretion and normal glomerular filtration rate. Furthermore, the histological picture progresses over time, while clinical data may remain normal. Conversely, histological lesions of DKD improve with metabolic normalization following effective pancreas transplantation. Insulin resistance has been associated with the clinical manifestations of DKD (nephromegaly, glomerular hyperfiltration, albuminuria, and kidney failure). Likewise, insulin resistance may underlie the histological manifestations of DKD. Morphological changes of DKD are absent in newly diagnosed type 1 diabetes patients (with no insulin resistance) but appear afterward when insulin resistance develops. In contrast, structural lesions of DKD are typically present before the clinical diagnosis of type 2 diabetes. Several heterogeneous conditions that share the occurrence of insulin resistance, such as aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor dysfunction, and Alström syndrome, also share both clinical and structural manifestations of kidney disease, including glomerulomegaly and other features of DKD, focal segmental glomerulosclerosis, and C3 glomerulopathy, which might be ascribed to the reduction in the synthesis of factor H binding sites (such as heparan sulfate) that leads to uncontrolled complement activation. Alström syndrome patients show systemic interstitial fibrosis markedly similar to that present in diabetes.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Lucía Adeva-Contreras
- University of Santiago de Compostela Medical School, Santiago de Compostela, Acoruna, Spain
| | - Carlos Fernández-Fernández
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
6
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
7
|
Aladel A, Khatoon F, Khan MI, Alsheweir A, Almutairi MG, Almutairi SO, Almutairi FK, Osmonaliev K, Beg MMA. Evaluation of miRNA-143 and miRNA-145 Expression and Their Association with Vitamin-D Status Among Obese and Non-Obese Type-2 Diabetic Patients. J Multidiscip Healthc 2022; 15:2979-2990. [PMID: 36597468 PMCID: PMC9805745 DOI: 10.2147/jmdh.s391996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Growing epidemics of type-2 diabetes mellitus (T2DM) and obesity have become a serious health concern. Since miRNAs and vitamin levels affect the development and progression of numerous pathogenic diseases, including diabetes, the present study aimed to evaluate miRNA-143 and miRNA-145 expression and vitamin-D status among obese and non-obese T2DM patients. METHODS The study included 100 clinically confirmed newly diagnosed obese and non-obese T2DM cases and 100 healthy subjects. Total RNA was extracted from collected blood samples and 100 ng of RNA was used for cDNA synthesis, then TaqMan assay was performed to evaluate the miRNA-143 and miRNA-145 relative expression. RESULTS T2DM cases with hypertension (4.08 fold, p=0.01; 5.36 fold, p=0.009), fatigue (5.07 fold, p=0.04; 5.32 fold, p=0.03) and blurred vision (5.15 fold, p=0.01) showed higher miRNA-143 and miRNA-145 relative expression compared with their counterparts, respectively. A positive correlation was observed between miRNA-143 and miRNA-145 expression and decreased vitamin-D status in T2DM had significant association with impaired blood glucose fasting (p=0.001) and HDL level (p<0.0001). Obese T2DM cases showed higher miRNA-143 and miRNA-145 expression compared with their counterparts. Vitamin-D deficient T2DM cases had higher miRNA-143 and miRNA-145 expression (5.69 fold, 5.91 fold) compared with insufficient (4.27 fold, p=0.03; 4.61 fold, p=0.03) and sufficient (4.08 fold, p=0.002; 4.29 fold, p=0.003). ROC curve for miRNA-143 and miRNA-145 between obese T2DM vs non-obese T2DM cases, at best possible cutoff value of 4.39 fold, 4.0 fold showed increased miRNA-143 and miRNA-145 expression, the sensitivity and specificity were 85%, 88% and 61%, 53% respectively (AUC=0.83, p<0.0001; AUC=0.81, p<0.0001). CONCLUSION Higher miRNA-143 and miRNA-145 expression could be a predictive indicator for obese T2DM cases, decreased status of vitamin-D was also significantly associated with impaired fasting blood sugar and HDL level, therefore it is important to evaluate the vitamin-D status among T2DM cases for better clinical outcome during the intervention.
Collapse
Affiliation(s)
- Alanoud Aladel
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fahmida Khatoon
- Biochemistry Department, College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass, 51921, Saudi Arabia
| | - Azzah Alsheweir
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Malak Ghazi Almutairi
- Department of Clinical Nutrition, Almethnab General Hospital, Qassim Health Cluster, Ministry of Health, Al Mithnab, Saudi Arabia
| | - Sami Owaidh Almutairi
- Department of Clinical Nutrition, Almethnab General Hospital, Qassim Health Cluster, Ministry of Health, Al Mithnab, Saudi Arabia
| | - Faisal Khalid Almutairi
- Laboratory Department, Armed Forces Hospital in Qassim, Medical Services, Ministry of Defense Qassim Buraydah Al-Rass, Buraydah, Saudi Arabia
| | | | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan
- Centre for Promotion of Medical Research, Bishkek, Kyrgyzstan
| |
Collapse
|
8
|
Shahrokhi SZ, Saeidi L, Sadatamini M, Jafarzadeh M, Rahimipour A, Kazerouni F. Can miR-145-5p be used as a marker in diabetic patients? Arch Physiol Biochem 2022; 128:1175-1180. [PMID: 32412315 DOI: 10.1080/13813455.2020.1762657] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the light of emerging global epidemics of type 2 diabetes mellitus significant efforts are continuing to discover novel biomarkers for early detection of the disease. Since miRNAs play an important role in both the initiation and progress of many pathologic processes such as diabetes, in this study we aimed to evaluate expression level of plasma miR-145-5p in diabetics and pre-diabetics in comparison to the control group and assess its use as a biomarker in diagnosis of T2D. The plasma level of miR-145-5p was assessed in three groups including 20 prediabetic patients, 20 T2D patients and 20 healthy controls using RT-qPCR. Biochemical parameters were also measured by the auto-analyzer. Expression level of miR-145-5p was down-regulated in the prediabetics and the T2D patients compared to the controls. In the control group miR-145-5p showed a borderline correlation with FBS (p = .06), while in the prediabetic group miR-145 showed a significant negative correlation with FBS and finally in the T2D patients miR-145 was negatively correlated with HbA1c and TC and showed a negative borderline correlation with FBS. The ROC analysis indicated a significant ability for miR-145-5p in discriminating between the diabetics and pre-diabetics from the healthy subjects. Our results demonstrated that the miR-145-5p expression level is deregulated in the diabetics and the prediabetics. Furthermore miR-145-5p displayed a significant ability to discriminate the diabetics from the healthy subjects. These results suggest that miR-145-5p may be a useful biomarker for the diagnosis of T2DM.
Collapse
Affiliation(s)
- Seyedeh Zahra Shahrokhi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leyla Saeidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mirsaber Sadatamini
- Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Rahimipour
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Riches-Suman K, Hussain A. Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166403. [DOI: 10.1016/j.bbadis.2022.166403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
10
|
TGF-β Induction of miR-143/145 Is Associated to Exercise Response by Influencing Differentiation and Insulin Signaling Molecules in Human Skeletal Muscle. Cells 2021; 10:cells10123443. [PMID: 34943951 PMCID: PMC8700369 DOI: 10.3390/cells10123443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Physical training improves insulin sensitivity and can prevent type 2 diabetes (T2D). However, approximately 20% of individuals lack a beneficial outcome in glycemic control. TGF-β, identified as a possible upstream regulator involved in this low response, is also a potent regulator of microRNAs (miRNAs). The aim of this study was to elucidate the potential impact of TGF-β-driven miRNAs on individual exercise response. Non-targeted long and sncRNA sequencing analyses of TGF-β1-treated human skeletal muscle cells corroborated the effects of TGF-β1 on muscle cell differentiation, the induction of extracellular matrix components, and identified several TGF-β1-regulated miRNAs. qPCR validated a potent upregulation of miR-143-3p/145-5p and miR-181a2-5p by TGF-β1 in both human myoblasts and differentiated myotubes. Healthy subjects who were overweight or obese participated in a supervised 8-week endurance training intervention (n = 40) and were categorized as responder or low responder in glycemic control based on fold change ISIMats (≥+1.1 or <+1.1, respectively). In skeletal muscle biopsies of low responders, TGF-β signaling and miR-143/145 cluster levels were induced by training at much higher rates than among responders. Target-mining revealed HDACs, MYHs, and insulin signaling components INSR and IRS1 as potential miR-143/145 cluster targets. All these targets were down-regulated in TGF-β1-treated myotubes. Transfection of miR-143-3p/145-5p mimics in differentiated myotubes validated MYH1, MYH4, and IRS1 as miR-143/145 cluster targets. Elevated TGF-β signaling and miR-143/145 cluster induction in skeletal muscle of low responders might obstruct improvements in insulin sensitivity by training in two ways: by a negative impact of miR-143-3p on muscle cell fusion and myofiber functionality and by directly impairing insulin signaling via a reduction in INSR by TGF-β and finetuned IRS1 suppression by miR-143-3p.
Collapse
|
11
|
He C, Zhao X, Lei Y, Nie J, Lu X, Song J, Wang L, Li H, Liu F, Zhang Y, Niu Q. Whole-transcriptome analysis of aluminum-exposed rat hippocampus and identification of ceRNA networks to investigate neurotoxicity of Al. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1401-1417. [PMID: 34900398 PMCID: PMC8636738 DOI: 10.1016/j.omtn.2021.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
Aluminum is a known neurotoxin that can induce Aβ deposition and abnormal phosphorylation of tau protein, leading to Alzheimer disease (AD)-like damages such as neuronal damage and decreased learning and memory functions. In this study, we constructed a rat model of subchronic aluminum maltol exposure, and the whole-transcriptome sequencing was performed on the hippocampus of the control group and the middle-dose group. A total of 167 miRNAs, 37 lncRNAs, 256 mRNAs, and 64 circRNAs expression changed. The Kyoto Encyclopedia of Genes and Genomes showed that PI3K/AKT pathway was the most enriched pathway of DEGs, and IRS1 was the core molecule in the PPI network. circRNA/lncRNA-miRNA-mRNA networks of all DEGs, DEGs in the PI3K/AKT pathway, and IRS1 were constructed by Cytoscape. Molecular experiment results showed that aluminum inhibited the IRS1/PI3K/AKT pathway and increased the content of Aβ and tau. In addition, we also constructed an AAV intervention rat model, proving that inhibition of miR-96-5p expression might resist aluminum-induced injury by upregulating expression of IRS1. In general, these results suggest that the ceRNA networks are involved in the neurotoxic process of aluminum, providing a new strategy for studying the toxicity mechanism of aluminum and finding biological targets for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yang Lei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fangqu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yidan Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
12
|
Abstract
Natural astaxanthin exists widely in algae, fungi, shrimp and crab, and, as a strong antioxidant, has potential effects on cardiovascular diseases, cancer, liver diseases and other physical health diseases. The treatment of many diseases involves the body’s signal transduction to regulate the body’s antioxidant defense system and inflammation. Astaxanthin is usually used as a dietary supplement, which plays an antioxidant and anti-inflammatory role in the organism. This article reviews the structure, source of astaxanthin and how it plays an anti-inflammatory and anti-oxidant role in organisms, especially in treating diabetes.
Collapse
|
13
|
Hemmings KE, Riches-Suman K, Bailey MA, O’Regan DJ, Turner NA, Porter KE. Role of MicroRNA-145 in DNA Damage Signalling and Senescence in Vascular Smooth Muscle Cells of Type 2 Diabetic Patients. Cells 2021; 10:cells10040919. [PMID: 33923614 PMCID: PMC8073820 DOI: 10.3390/cells10040919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.
Collapse
Affiliation(s)
- Karen E. Hemmings
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - Kirsten Riches-Suman
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Marc A. Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - David J. O’Regan
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
- Department of Cardiac Surgery, Yorkshire Heart Centre, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Neil A. Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - Karen E. Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
- Correspondence:
| |
Collapse
|
14
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
15
|
Diverse roles of microRNA-145 in regulating smooth muscle (dys)function in health and disease. Biochem Soc Trans 2021; 49:353-363. [PMID: 33616623 DOI: 10.1042/bst20200679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
MicroRNAs are short, non-coding RNAs that target messenger RNAs for degradation. miR-145 is a vascular-enriched microRNA that is important for smooth muscle cell (SMC) differentiation. Under healthy circumstances, SMC exist in a contractile, differentiated phenotype promoted by miR-145. In cases of disease or injury, SMC can undergo reversible dedifferentiation into a synthetic phenotype, accompanied by inhibition of miR-145 expression. Vascular disorders such as atherosclerosis and neointimal hyperplasia are characterised by aberrant phenotypic switching in SMC. This review will summarise the physiological roles of miR-145 in vascular SMC, including the molecular regulation of differentiation, proliferation and migration. Furthermore, it will discuss the different ways in which miR-145 can be dysregulated and the downstream impact this has on the progression of vascular pathologies. Finally, it will discuss whether miR-145 may be suitable for use as a biomarker of vascular disease.
Collapse
|
16
|
Wang H. MicroRNA, Diabetes Mellitus and Colorectal Cancer. Biomedicines 2020; 8:biomedicines8120530. [PMID: 33255227 PMCID: PMC7760221 DOI: 10.3390/biomedicines8120530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrinological disorder that is due to either the pancreas not producing enough insulin, or the body does not respond appropriately to insulin. There are many complications of DM such as retinopathy, nephropathy, and peripheral neuropathy. In addition to these complications, DM was reported to be associated with different cancers. In this review, we discuss the association between DM and colorectal cancer (CRC). CRC is the third most commonly diagnosed cancer worldwide that mostly affects older people, however, its incidence and mortality are rising among young people. We discuss the relationship between DM and CRC based on their common microRNA (miRNA) biomarkers. miRNAs are non-coding RNAs playing important functions in cell differentiation, development, regulation of cell cycle, and apoptosis. miRNAs can inhibit cell proliferation and induce apoptosis in CRC cells. miRNAs also can improve glucose tolerance and insulin sensitivity. Therefore, investigating the common miRNA biomarkers of both DM and CRC can shed a light on how these two diseases are correlated and more understanding of the link between these two diseases can help the prevention of both DM and CRC.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
17
|
Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis. Cell Death Dis 2020; 11:1008. [PMID: 33230102 PMCID: PMC7683700 DOI: 10.1038/s41419-020-03169-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is closely associated with the high risk of cardiovascular disease and mortality. Exosomal circRNAs can exert significant roles in the pathology of various diseases. Nevertheless, the role of exosomal circRNAs in DKD progression remains barely known. Circular RNA DLGAP4 has been reported to be in involved in acute ischemic stroke. In our study, we found exosomal circ_DLGAP4 was increased in the exosomes isolated from HG-treated mesangial cells (MCs), DKD patients, and DKD rat models compared with the corresponding normal subjects. Then, we observed that exo-circ_DLGAP4 significantly promoted proliferation and fibrosis of MCs cells. Moreover, to study the underlying mechanism of circ_DLGAP4 in regulating DKD, bioinformatics method was consulted and miR-143 was predicted as its target. The direct correlation between miR-143 and circ_DLGAP4 was validated in MCs. MCs proliferation and fibrosis were increased by circ_DLGAP4, which could be decreased by mimic-miR-143. Next, elevated expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) is involved in various diseases. However, the function of ERBB3 in DKD development remains poorly known. Next, ERBB3 was predicted as the downstream target for miR-143. It was displayed that circ_DLGAP4 promoted proliferation and fibrosis of MCs by sponging miR-143 and regulating ERBB3/NF-κB/MMP-2 axis. Meanwhile, the loss of exo-circ_DLGAP4 induced miR-143 and repressed ERBB3/NF-κB/MMP-2 expression in MCs. Subsequently, in vivo assays were performed and it was proved that overexpression of circ_DLGAP4 markedly promoted DKD progression in vivo via modulating miR-143/ERBB3/NF-κB/MMP-2. In conclusion, we indicated that exosomal circ_DLGAP4 could prove a novel insight for DKD development.
Collapse
|
18
|
Wang Y, Niu L, Zhao J, Wang M, Li K, Zheng Y. An update: mechanisms of microRNA in primary open-angle glaucoma. Brief Funct Genomics 2020; 20:19-27. [PMID: 33165516 DOI: 10.1093/bfgp/elaa020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a disease with characteristic optic neuropathy and loss of vision, leading to blindness, and primary open-angle glaucoma (POAG) is the most common glaucoma type throughout the world. Genetic susceptibility is the main factor in POAG, and most susceptibility genes cause changes in microRNA expression and function, thereby leading to POAG occurrence and development. Increasing evidence indicates that many microRNAs are involved in the regulation of intraocular pressure (IOP) and play an important role in the increase in IOP in POAG. Additionally, microRNA is closely related to optic nerve damage factors (mechanical stress, hypoxia and inflammation). This review discusses the effect of single-nucleotide polymorphisms in POAG-related genes on microRNA and the value of microRNA in the diagnosis and treatment of POAG.
Collapse
Affiliation(s)
- Yuanping Wang
- The author was born in 1996 in Inner Mongolia, China
| | - Lingzhi Niu
- The author was born in 1992 in Shandong, China
| | - Jing Zhao
- The author was born in 1985 in Shenyang, China
| | - Mingxuan Wang
- The author was born in 1992 in Jilin, China. She received her PhD degree from Jilin University in 2020
| | - Ke Li
- The author was born in 1993 in Henan, China. She started her PhD degree in 2019 at Jilin University
| | - Yajuan Zheng
- The author was born in 1969 in Shenyang, China. She received her PhD degree in 2003. She served as a doctoral supervisor at Jilin University in 2005
| |
Collapse
|
19
|
Lan S, Albinsson S. Regulation of IRS-1, insulin signaling and glucose uptake by miR-143/145 in vascular smooth muscle cells. Biochem Biophys Res Commun 2020; 529:119-125. [PMID: 32560812 DOI: 10.1016/j.bbrc.2020.05.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Regulation of insulin signaling by microRNAs in smooth muscle cells may contribute to diabetic vascular disease. The two smooth muscle enriched miRNAs miR-143 and miR-145 have been reported to target mediators of insulin signaling in non-smooth muscle cells. In this study, we aimed to determine the importance of this regulation in vascular smooth muscle cells, where expression of miR-143/145 is much higher than in other cell types. Smooth muscle cells deficient of the miR-143/145 cluster were used, as well as smooth muscle cells transfected with mimics/inhibitors for either miR-143 or miR-145. We found that deletion of miR-143/145 in smooth muscle results in a dramatic upregulation IRS-1 expression and insulin signaling, and an increased insulin-induced glucose uptake. Furthermore, specific modulation of either miR-145 or miR-143 expression regulated specific targets (IRS-1, ORP8 and the IGF-1 receptor) in the insulin signaling pathway. Consequently, transient inhibition or overexpression of either miR-143 or miR-145 was sufficient to regulate insulin signaling in smooth muscle cells. In conclusion, the results of this study support an important role for both miR-143 and miR-145 in the regulation of insulin signaling and glucose uptake in vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Biological Transport, Active
- Cells, Cultured
- Glucose/metabolism
- Insulin/metabolism
- Insulin Receptor Substrate Proteins/metabolism
- Mice
- Mice, Knockout
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Receptor, IGF Type 1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Susan Lan
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
20
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
21
|
Tribological Characteristics of Human Vascular Smooth Muscle Cells: The Implication of Disease State on Friction. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biotri.2020.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Qin Y, Zheng B, Yang GS, Zhou J, Yang HJ, Nie ZY, Wang TR, Zhang XH, Zhao HY, Shi JH, Wen JK. Tanshinone ⅡA inhibits VSMC inflammation and proliferation in vivo and in vitro by downregulating miR-712-5p expression. Eur J Pharmacol 2020; 880:173140. [PMID: 32387370 DOI: 10.1016/j.ejphar.2020.173140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The inflammation and proliferation of vascular smooth muscle cells (VSMCs) are the basic pathological feature of proliferative vascular diseases. Tanshinone ⅡA (Tan ⅡA), which is the most abundant fat-soluble element extracted from Salvia miltiorrhiza, has potent protective effects on the cardiovascular system. However, the underlying mechanism is still not fully understood. Here, we show that Tan ⅡA significantly inhibits neointimal formation and decreases VSMC inflammation by upregulating the expression of KLF4 and inhibiting the activation of NFκB signaling. Using a microRNA array analysis, we found that miR-712-5p expression is significantly upregulated in tumor necrosis factor alpha (TNF-α)-treated VSMCs. Loss- and gain-of-function experiments revealed that transfection of miR-712-5p mimic promotes, whereas depletion of miR-712-5p suppresses TNF-α-induced VSMC inflammation, leading to amelioration of intimal hyperplasia induced by carotid artery ligation. Moreover, depletion of miR-712-5p by its antagomir largely abrogates TNF-α-induced VSMC proliferation. Our findings suggest that miR-712-5p mediates the stimulatory effect of TNF-α on VSMC inflammation, and that Tan ⅡA inhibits VSMC inflammation and proliferation in vivo and in vitro by suppression of miR-712-5p expression. Targeting miR-712-5p may be a novel therapeutic strategy to prevent proliferative vascular diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; Department of Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Gao-Shan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jing Zhou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; Department of Endocrine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hao-Jie Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tian-Rui Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Hong-Ye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Jian-Hong Shi
- Department of Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
23
|
Yeh YT, Wei J, Thorossian S, Nguyen K, Hoffman C, Del Álamo JC, Serrano R, Li YSJ, Wang KC, Chien S. MiR-145 mediates cell morphology-regulated mesenchymal stem cell differentiation to smooth muscle cells. Biomaterials 2019; 204:59-69. [PMID: 30884320 PMCID: PMC6825513 DOI: 10.1016/j.biomaterials.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The use of biochemical signaling to derive smooth muscle cells (SMCs) from mesenchymal stem cells (MSCs) has been explored, but the induction of a fully functional SMC phenotype remains to be a major challenge. Cell morphology has been shown to regulate MSC differentiation into various lineages, including SMCs. We engineered substrates with microgrooves to induce cell elongation to study the mechanism underlying the MSC shape modulation in SMC differentiation. In comparison to those on flat substrates, MSCs cultured on engineered substrates were elongated with increased aspect ratios for both cell body and nucleus, as well as augmented cytoskeletal tensions. Biochemical studies indicated that the microgroove-elongated cells expressed significantly higher levels of SMC markers. MicroRNA analyses showed that up-regulation of miR-145 and the consequent repression of KLF4 in these elongated cells promoted MSC-to-SMC differentiation. Rho/ROCK inhibitions, which impair cytoskeletal tension, attenuated cell and nuclear elongations and disrupted the miR-145/KLF4 regulation for SMC differentiation. Furthermore, cell traction force measurements showed that miR-145 is essential for the functional contractility in the microgroove-induced SMC differentiation. Collectively, our findings demonstrate that, through a Rho-ROCK/miR-145/KLF4 pathway, the elongated cell shape serves as a decisive geometric cue to direct MSC differentiation into functional SMCs.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Josh Wei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Satenick Thorossian
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Katherine Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Clarissa Hoffman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Juan C Del Álamo
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Yi-Shuan Julie Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Kuei-Chun Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
24
|
Adeva-Andany MM, Castro-Quintela E, Fernández-Fernández C, Carneiro-Freire N, Vila-Altesor M. The role of collagen homeostasis in the pathogenesis of vascular disease associated to insulin resistance. Diabetes Metab Syndr 2019; 13:1877-1883. [PMID: 31235109 DOI: 10.1016/j.dsx.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain.
| | - Elvira Castro-Quintela
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | | | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Matilde Vila-Altesor
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
25
|
DiStefano JK. Angiopoietin-like 8 (ANGPTL8) expression is regulated by miR-143-3p in human hepatocytes. Gene 2019; 681:1-6. [PMID: 30261196 PMCID: PMC6330893 DOI: 10.1016/j.gene.2018.09.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022]
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is associated with reduced HDL-cholesterol levels and may contribute to the development of dyslipidemia. Factors regulating ANGPTL8 expression remain poorly understood. Here we analyzed the relationship between miRNA-143-3p and ANGPTL8 in liver cells. Using target prediction algorithms, we identified a putative binding site for miR-143-3p in the ANGPTL8 3' untranslated region (3'UTR). Exogenous miR-143-3p interacted with the ANGPTL8 3'UTR to downregulate its expression compared to scrambled sequence control. Transfection of HepG2 cells with miR-143-3p mimic or siRNA resulted in decreased or increased ANGPTL8 transcript and protein levels, respectively. Treatment of HepG2 cells with 30 mM glucose, 100 nM insulin, or 75 ng/ml lipopolysaccharide to mimic hyperglycemic, hyperinsulinemic, and proinflammatory conditions corresponded with increased miR-143-3p and ANGPTL8 levels. Inhibition of miR-143-3p amplified ANGPTL8 response to these treatments, suggesting that the miRNA acts to suppress ANGPTL8 expression under metabolically distorted conditions. These results, combined with growing evidence supporting a role for ANGPTL8 in the regulation of HDL-C metabolism, provide a better understanding of the molecular mechanisms underlying ANGPTL8 expression.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ 85004, United States of America.
| |
Collapse
|
26
|
Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Responsible for Vascular Restenosis in Type 2 Diabetes Mellitus. Cardiol Res Pract 2019; 2019:9846312. [PMID: 30719343 PMCID: PMC6334365 DOI: 10.1155/2019/9846312] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is increasing worldwide, and it is associated with increased risk of coronary artery disease (CAD). For T2DM patients, the main surgical intervention for CAD is autologous saphenous vein grafting. However, T2DM patients have increased risk of saphenous vein graft failure (SVGF). While the mechanisms underlying increased risk of vascular disease in T2DM are not fully understood, hyperglycaemia, insulin resistance, and hyperinsulinaemia have been shown to contribute to microvascular damage, whereas clinical trials have reported limited effects of intensive glycaemic control in the management of macrovascular complications. This suggests that factors other than glucose exposure may be responsible for the macrovascular complications observed in T2DM. SVGF is characterised by neointimal hyperplasia (NIH) arising from endothelial cell (EC) dysfunction and uncontrolled migration and proliferation of vascular smooth muscle cells (SMCs). This is driven in part by proinflammatory cytokines released from the activated ECs and SMCs, particularly interleukin 6 (IL-6). IL-6 stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT) pathway is a key mechanism through which EC inflammation, SMC migration, and proliferation are controlled and whose activation might therefore be enhanced in patients with T2DM. In this review, we investigate how proinflammatory cytokines, particularly IL-6, contribute to vascular damage resulting in SVGF and how suppression of proinflammatory cytokine responses via targeting the JAK/STAT pathway could be exploited as a potential therapeutic strategy. These include the targeting of suppressor of cytokine signalling (SOCS3), which appears to play a key role in suppressing unwanted vascular inflammation, SMC migration, and proliferation.
Collapse
|
27
|
Henriksen TI, Heywood SE, Hansen NS, Pedersen BK, Scheele CC, Nielsen S. Single Cell Analysis Identifies the miRNA Expression Profile of a Subpopulation of Muscle Precursor Cells Unique to Humans With Type 2 Diabetes. Front Physiol 2018; 9:883. [PMID: 30050458 PMCID: PMC6050405 DOI: 10.3389/fphys.2018.00883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) take part in regulating central cellular processes such as differentiation and metabolism. We have previously shown that muscle progenitor cells derived from individuals with type 2 diabetes (T2DM) have a dysregulated miRNA profile. We hypothesized that the T2DM muscle progenitor population is heterogeneous in its miRNA expression and differs from the progenitor population of healthy controls. MiRNA expression profiles of CD56+ muscle progenitor cells from people with T2DM and from healthy controls were therefore investigated at a single cell level. Single-cell analysis revealed three subpopulations expressing distinct miRNA profiles: two subpopulations including both T2DM and healthy control muscle precursors presented miRNA expression profiles mostly overlapping between groups. A distinct third subpopulation consisted solely of cells from donors with T2DM and showed enriched expression of miRNAs previously shown to be associated with type 2 diabetes. Among the enriched miRNAs was miR-29, a regulator of GLUT4 mRNA expression. Interestingly, this subpopulation also revealed several miRNAs with predicted targets in the PI3K/Akt pathway, not previously described in relation to T2DM muscle dysfunction. We concluded that a subpopulation of T2DM muscle precursor cells is severely dysregulated in terms of their miRNA expression, and accumulation of this population might thus contribute to the dysfunctional muscular phenotype in type 2 diabetes.
Collapse
Affiliation(s)
- Tora I Henriksen
- Centre for Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah E Heywood
- Centre for Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ninna S Hansen
- Centre for Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre for Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla C Scheele
- Centre for Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Nielsen
- Centre for Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther 2018; 36:e12436. [PMID: 29797660 DOI: 10.1111/1755-5922.12436] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the major macrovascular complications of diabetes mellitus (DM), and it is the main cause of death from clinical observation. Among various cell types involved in this disorder, endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages play a crucial role in the occurrence and development of this disease. The regulation and stabilization of these cells are a key therapeutic strategy for DM-associated atherosclerosis. An increasing number of evidences implicate that various types of noncoding RNAs (ncRNAs) play a vital role in many cellular responses as well as in physiological and pathological processes of atherosclerosis and DM that drive atherogenic/antiatherogenic processes in those cells. Encouragingly, many ncRNAs have already been tested in animal experiments or clinical trials showing good performance. In this review, we summarize recent progresses in research on functional regulatory role of ncRNAs in atherosclerosis with DM. More importantly, we illustrate new thoughts and findings relevant to ncRNAs as potential therapeutic targets or biomarkers for atherosclerosis with DM.
Collapse
Affiliation(s)
- Ningning Tang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Alshanwani AR, Riches-Suman K, O'Regan DJ, Wood IC, Turner NA, Porter KE. MicroRNA-21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells. IUBMB Life 2018; 70:649-657. [DOI: 10.1002/iub.1751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Aliah R. Alshanwani
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
| | - Kirsten Riches-Suman
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- School of Chemistry and Biosciences; University of Bradford; Bradford UK
| | - David J. O'Regan
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
- Department of Cardiac Surgery; The Yorkshire Heart Centre, Leeds General Infirmary; Leeds UK
| | - Ian C. Wood
- Faculty of Biological Sciences, School of Biomedical Sciences; University of Leeds; Leeds UK
| | - Neil A. Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
| | - Karen E. Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
| |
Collapse
|
30
|
Liao J, Zhang Y, Wu Y, Zeng F, Shi L. Akt modulation by miR-145 during exercise-induced VSMC phenotypic switching in hypertension. Life Sci 2018. [PMID: 29522767 DOI: 10.1016/j.lfs.2018.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIMS This study investigated whether long-term exercise can influence vascular smooth muscle cells (VSMCs) phenotypic switching in mesenteric arteries of hypertensive rats, with a focus on the modulation of protein kinase B (PKB/Akt) signaling by microRNA-145 (miR-145). MAIN METHODS In the exercise intervention experiment, mesenteric arteries from 3-month-old spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were isolated for histological observation, phenotypic marker analysis, Akt phosphorylation quantification, and miR-145 evaluation after being subjected to moderate-intensity treadmill training (E) or being sedentary (C) for 8 weeks. In the transfection experiment, VSMCs were harvested to determine Akt phosphorylation and mRNA expressions of the upstream and downstream signaling molecules. KEY FINDINGS Calponin, a VSMC contractile marker, was significantly up-regulated in SHR-E relative to SHR-C (P < 0.05); while osteopontin (OPN), a dedifferentiation marker, was down-regulated in SHR-E relative to SHR-C (P < 0.05). Exercise significantly normalized the expression of miR-145 and significantly enhanced Akt phosphorylation (P < 0.05). In VSMCs over-expressing miR-145, Akt phosphorylation was significantly decreased (P < 0.05) with inhibited mRNA of both insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor substrate 1 (IRS-1). In VSMCs transfected with miR-145 inhibitor, Akt phosphorylation and mRNA of IGF-1R and IRS-1 were all down-regulated. miR-145 did not exhibit a clear effect on p70 ribosomal kinase (p70S6K), the downstream of Akt, following the transfections. SIGNIFICANCE Overall, exercise remodels arterioles in hypertension and induces VSMCs maintaining contractile phenotype, in which miR-145 appears to be involved by inversely regulating Akt signaling via its upstream signals.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/prevention & control
- MicroRNAs/physiology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Physical Conditioning, Animal/physiology
- Proto-Oncogene Proteins c-akt/physiology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
Collapse
Affiliation(s)
- Jingwen Liao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China; Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China.
| |
Collapse
|
31
|
Holmberg J, Bhattachariya A, Alajbegovic A, Rippe C, Ekman M, Dahan D, Hien TT, Boettger T, Braun T, Swärd K, Hellstrand P, Albinsson S. Loss of Vascular Myogenic Tone in miR-143/145 Knockout Mice Is Associated With Hypertension-Induced Vascular Lesions in Small Mesenteric Arteries. Arterioscler Thromb Vasc Biol 2018; 38:414-424. [PMID: 29217510 DOI: 10.1161/atvbaha.117.310499] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Pressure-induced myogenic tone is involved in autoregulation of local blood flow and confers protection against excessive pressure levels in small arteries and capillaries. Myogenic tone is dependent on smooth muscle microRNAs (miRNAs), but the identity of these miRNAs is unclear. Furthermore, the consequences of altered myogenic tone for hypertension-induced damage to small arteries are not well understood. APPROACH AND RESULTS The importance of smooth muscle-enriched microRNAs, miR-143/145, for myogenic tone was evaluated in miR-143/145 knockout mice. Furthermore, hypertension-induced vascular injury was evaluated in mesenteric arteries in vivo after angiotensin II infusion. Myogenic tone was abolished in miR-143/145 knockout mesenteric arteries, whereas contraction in response to calyculin A and potassium chloride was reduced by ≈30%. Furthermore, myogenic responsiveness was potentiated by angiotensin II in wild-type but not in knockout mice. Angiotensin II administration in vivo elevated systemic blood pressure in both genotypes. Hypertensive knockout mice developed severe vascular lesions characterized by vascular inflammation, adventitial fibrosis, and neointimal hyperplasia in small mesenteric arteries. This was associated with depolymerization of actin filaments and fragmentation of the elastic laminae at the sites of vascular lesions. CONCLUSIONS This study demonstrates that miR-143/145 expression is essential for myogenic responsiveness. During hypertension, loss of myogenic tone results in potentially damaging levels of mechanical stress and detrimental effects on small arteries. The results presented herein provide novel insights into the pathogenesis of vascular disease and emphasize the importance of controlling mechanical factors to maintain structural integrity of the vascular wall.
Collapse
Affiliation(s)
- Johan Holmberg
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Anirban Bhattachariya
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Azra Alajbegovic
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Catarina Rippe
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Mari Ekman
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Diana Dahan
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Tran Thi Hien
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Thomas Boettger
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Thomas Braun
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Karl Swärd
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Per Hellstrand
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Sebastian Albinsson
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun).
| |
Collapse
|
32
|
Riches K, Clark E, Helliwell RJ, Angelini TG, Hemmings KE, Bailey MA, Bridge KI, Scott DJA, Porter KE. Progressive Development of Aberrant Smooth Muscle Cell Phenotype in Abdominal Aortic Aneurysm Disease. J Vasc Res 2017; 55:35-46. [PMID: 29232676 DOI: 10.1159/000484088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/07/2017] [Indexed: 11/08/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a silent, progressive disease with a high mortality and an increasing prevalence with aging. Smooth muscle cell (SMC) dysfunction contributes to gradual dilatation and eventual rupture of the aorta. Here we studied phenotypic characteristics in SMC cultured from end-stage human AAA (≥5 cm) and cells cultured from a porcine carotid artery (PCA) model of early and end-stage aneurysm. Human AAA-SMC presented a secretory phenotype and expressed elevated levels of the differentiation marker miR-145 (2.2-fold, p < 0.001) and the senescence marker SIRT-1 (1.3-fold, p < 0.05), features not recapitulated in aneurysmal PCA-SMC. Human and end-stage porcine aneurysmal cells were frequently multi-nucleated (3.9-fold, p < 0.001, and 1.8-fold, p < 0.01, respectively, vs. control cells) and displayed an aberrant nuclear morphology. Human AAA-SMC exhibited higher levels of the DNA damage marker γH2AX (3.9-fold, p < 0.01, vs. control SMC). These features did not correlate with patients' chronological age and are therefore potential markers for pathological premature vascular aging. Early-stage PCA-SMC (control and aneurysmal) were indistinguishable from one another across all parameters. The principal limitation of human studies is tissue availability only at the end stage of the disease. Refinement of a porcine bioreactor model would facilitate the study of temporal modulation of SMC behaviour during aneurysm development and potentially identify therapeutic targets to limit AAA progression.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/complications
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Rupture/etiology
- Aortic Rupture/metabolism
- Aortic Rupture/pathology
- Cell Differentiation
- Cell Shape
- Cells, Cultured
- Cellular Senescence
- DNA Damage
- Dilatation, Pathologic
- Disease Progression
- Histones/metabolism
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Sirtuin 1/metabolism
- Sus scrofa
Collapse
Affiliation(s)
- Kirsten Riches
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wander PL, Boyko EJ, Hevner K, Parikh VJ, Tadesse MG, Sorensen TK, Williams MA, Enquobahrie DA. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res Clin Pract 2017; 132:1-9. [PMID: 28783527 PMCID: PMC5623075 DOI: 10.1016/j.diabres.2017.07.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
AIMS Epigenetic regulators, including microRNAs (miRNAs), are implicated in type 2 diabetes, but evidence linking circulating miRNAs in pregnancy and risk of gestational diabetes (GDM) is sparse. Potential modifiers, including pre-pregnancy overweight/obesity and offspring sex, are unexamined. We hypothesized that circulating levels of early-mid-pregnancy (range 7-23weeks of gestation) candidate miRNAs are related to subsequent development of GDM. We also hypothesized that miRNA-GDM associations might vary by pre-pregnancy body-mass index (ppBMI) or offspring sex. METHODS In a case-control analysis (36GDM cases/80 controls) from the Omega study, a prospective cohort study of pregnancy complications, we measured early-mid-pregnancy plasma levels of 10miRNAs chosen for potential roles in pregnancy course and complications (miR-126-3p, -155-5p, -21-3p, -146b-5p, -210-3p, -222-3p, -223-3p, -517-5p, -518a-3p, and 29a-3p) using qRT-PCR. Logistic regression models adjusted for gestational age at blood draw (GA) were fit to compare circulating miRNAs between cases and controls. We repeated analyses among overweight/obese (ppBMI≥25kg/m2) or lean (ppBMI<25kg/m2) women, and women with male or female offspring separately. RESULTS Mean age was 34.3years (cases) and 32.9years (controls). GA-adjusted miR-155-5p (β=0.260/p=0.028) and -21-3p (β=0.316/p=0.005) levels were positively associated with GDM. MiR-146b-5p (β=0.266/p=0.068) and miR-517-5p (β=0.196/p=0.074) were borderline. Associations of miR-21-3p and miR-210-3p with GDM were observed among overweight/obese but not lean women. Associations of six miRNAs (miR-155-5p, -21-3p, -146b-5p, -223-3p, -517-5p, and -29a-3p) with GDM were present only among women carrying male fetuses (all p<0.05). CONCLUSIONS Circulating early-mid-pregnancy miRNAs are associated with GDM, particularly among women who are overweight/obese pre-pregnancy or pregnant with male offspring. This area has potential to clarify mechanisms underlying GDM pathogenesis and identify at-risk mothers earlier in pregnancy.
Collapse
Affiliation(s)
- Pandora L Wander
- Department of Medicine, University of Washington, Seattle, WA, USA; VA Puget Sound Health Care System, Seattle, WA, USA.
| | - Edward J Boyko
- Department of Medicine, University of Washington, Seattle, WA, USA; VA Puget Sound Health Care System, Seattle, WA, USA
| | - Karin Hevner
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA
| | - Viraj J Parikh
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA
| | - Tanya K Sorensen
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Enquobahrie
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Miao C, Zhang G, Xie Z, Chang J. MicroRNAs in the pathogenesis of type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol 2017; 96:103-112. [PMID: 28898588 DOI: 10.1139/cjpp-2017-0452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
miRNA is a short non-coding RNA that can influence mRNA processing at the post-transcriptional level. A large number of miRNAs have been found in virtually all species so far, and these small molecules play an important role in many different physiological processes and various pathologic conditions, such as cell metabolism, cancer, autoimmune disease, and diabetes mellitus. T2D arises from a dysregulated response to the elevated glucose level in the circulation. The prevalence of T2D has increased dramatically in all age groups, and T2D in older adults is associated with more T2D complications and higher mortality. Despite the existing findings describing the pathological mechanism, T2D pathology is more complex and the pathophysiology of the disease is still not fully elucidated. In this review, we summarize the current understanding of miRNA-mediated modulation of gene expression in T2D pathogenesis, as well as related signaling pathways, and insight into the important role of miRNA in various T2D complications. Furthermore, the potential therapeutic value of miRNA for T2D patients is also discussed in detail.
Collapse
Affiliation(s)
- Chenggui Miao
- a Department of Pharmacy, School of Food and Drug, Anhui Science and Technology University, Fengyang 233100, China
| | - Guoxue Zhang
- b School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- b School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei 230036, China
| | - Jun Chang
- c Fourth Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
35
|
Skin-derived precursors from human subjects with Type 2 diabetes yield dysfunctional vascular smooth muscle cells. Clin Sci (Lond) 2017; 131:1801-1814. [PMID: 28424290 DOI: 10.1042/cs20170239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 01/04/2023]
Abstract
Objective: Few methods enable molecular and cellular studies of vascular aging or Type 2 diabetes (T2D). Here, we report a new approach to studying human vascular smooth muscle cell (VSMC) pathophysiology by examining VSMCs differentiated from progenitors found in skin. Approach and results: Skin-derived precursors (SKPs) were cultured from biopsies (N=164, ∼1 cm2) taken from the edges of surgical incisions of older adults (N=158; males 72%; mean age 62.7 ± 13 years) undergoing cardiothoracic surgery, and differentiated into VSMCs at high efficiency (>80% yield). The number of SKPs isolated from subjects with T2D was ∼50% lower than those without T2D (cells/g: 0.18 ± 0.03, N=58 versus 0.40 ± 0.05, N=100, P<0.05). Importantly, SKP-derived VSMCs from subjects with T2D had higher Fluo-5F-determined baseline cytosolic Ca2+ concentrations (AU: 1,968 ± 160, N=7 versus 1,386 ± 170, N=13, P<0.05), and a trend toward greater Ca2+ cycling responses to norepinephrine (NE) (AUC: 177,207 ± 24,669, N=7 versus 101,537 ± 15,881, N=20, P<0.08) despite a reduced frequency of Ca2+ cycling (events s-1 cell-1: 0.011 ± 0.004, N=8 versus 0.021 ± 0.003, N=19, P<0.05) than those without T2D. SKP-derived VSMCs from subjects with T2D also manifest enhanced sensitivity to phenylephrine (PE) in an impedance-based assay (EC50 nM: 72.3 ± 63.6, N=5 versus 3,684 ± 3,122, N=9, P<0.05), and impaired wound closure in vitro (% closure: 21.9 ± 3.6, N=4 versus 67.0 ± 10.3, N=4, P<0.05). Compared with aortic- and saphenous vein-derived primary VSMCs, SKP-derived VSMCs are functionally distinct, but mirror defects of T2D also exhibited by primary VSMCs. CONCLUSION Skin biopsies from older adults yield sufficient SKPs to differentiate VSMCs, which reveal abnormal phenotypes of T2D that survive differentiation and persist even after long-term normoglycemic culture.
Collapse
|
36
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017; 38:145-168. [PMID: 28323921 PMCID: PMC5460677 DOI: 10.1210/er.2016-1122] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Chronic, low-grade systemic inflammation and impaired microvascular function are critical hallmarks in the development of insulin resistance. Accordingly, insulin resistance is a major risk factor for type 2 diabetes and cardiovascular disease. Accumulating studies demonstrate that restoration of impaired function of the diabetic macro- and microvasculature may ameliorate a range of cardiovascular disease states and diabetes-associated complications. In this review, we focus on the emerging role of microRNAs (miRNAs), noncoding RNAs that fine-tune target gene expression and signaling pathways, in insulin-responsive tissues and cell types important for maintaining optimal vascular homeostasis and preventing the sequelae of diabetes-induced end organ injury. We highlight current pathophysiological paradigms of miRNAs and their targets involved in regulating the diabetic microvasculature in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury. We provide an update of the potential use of circulating miRNAs diagnostically in type I or type II diabetes. Finally, we discuss emerging delivery platforms for manipulating miRNA expression or function as the next frontier in therapeutic intervention to improve diabetes-associated microvascular dysfunction and its attendant clinical consequences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China, and
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Basak Icli
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
37
|
Riches K, Huntriss J, Keeble C, Wood IC, O’Regan DJ, Turner NA, Porter KE. Mapping the methylation status of the miR-145 promoter in saphenous vein smooth muscle cells from individuals with type 2 diabetes. Diab Vasc Dis Res 2017; 14:122-129. [PMID: 28185533 PMCID: PMC5305035 DOI: 10.1177/1479164116677968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus prevalence is growing globally, and the leading cause of mortality in these patients is cardiovascular disease. Epigenetic mechanisms such as microRNAs (miRs) and DNA methylation may contribute to complications of type 2 diabetes mellitus. We discovered an aberrant type 2 diabetes mellitus-smooth muscle cell phenotype driven by persistent up-regulation of miR-145. This study aimed to determine whether elevated expression was due to changes in methylation at the miR-145 promoter. Smooth muscle cells were cultured from saphenous veins of 22 non-diabetic and 22 type 2 diabetes mellitus donors. DNA was extracted, bisulphite treated and pyrosequencing used to interrogate methylation at 11 CpG sites within the miR-145 promoter. Inter-patient variation was high irrespective of type 2 diabetes mellitus. Differential methylation trends were apparent between non-diabetic and type 2 diabetes mellitus-smooth muscle cells at most sites but were not statistically significant. Methylation at CpGs -112 and -106 was consistently lower than all other sites explored in non-diabetic and type 2 diabetes mellitus-smooth muscle cells. Finally, miR-145 expression per se was not correlated with methylation levels observed at any site. The persistent up-regulation of miR-145 observed in type 2 diabetes mellitus-smooth muscle cells is not related to methylation at the miR-145 promoter. Crucially, miR-145 methylation is highly variable between patients, serving as a cautionary note for future studies of this region in primary human cell types.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Case-Control Studies
- Cells, Cultured
- CpG Islands
- DNA Methylation
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Epigenesis, Genetic
- Female
- Genetic Predisposition to Disease
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Phenotype
- Promoter Regions, Genetic
- Saphenous Vein/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Kirsten Riches
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - John Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Claire Keeble
- Division of Epidemiology & Biostatistics, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Ian C Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David J O’Regan
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK
- Department of Cardiac Surgery, The Yorkshire Heart Centre, Leeds General Infirmary, Leeds, UK
| | - Neil A Turner
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK
| | - Karen E Porter
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK
| |
Collapse
|
38
|
Xia HF, Ren JG, Zhu JY, Yu ZL, Zhang W, Sun YF, Zhao YF, Chen G. Downregulation of miR-145 in venous malformations: Its association with disorganized vessels and sclerotherapy. Eur J Pharm Sci 2017; 100:126-131. [DOI: 10.1016/j.ejps.2017.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/02/2017] [Accepted: 01/16/2017] [Indexed: 01/04/2023]
|
39
|
McManus DD, Rong J, Huan T, Lacey S, Tanriverdi K, Munson PJ, Larson MG, Joehanes R, Murthy V, Shah R, Freedman JE, Levy D. Messenger RNA and MicroRNA transcriptomic signatures of cardiometabolic risk factors. BMC Genomics 2017; 18:139. [PMID: 28178938 PMCID: PMC5299677 DOI: 10.1186/s12864-017-3533-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/01/2017] [Indexed: 02/04/2023] Open
Abstract
Background Cardiometabolic (CM) risk factors are heritable and cluster in individuals. We hypothesized that CM risk factors are associated with multiple shared and unique mRNA and microRNA (miRNA) signatures. We examined associations of mRNA and miRNA levels with 6 CM traits: body mass index, HDL-cholesterol and triglycerides, fasting glucose, and systolic and diastolic blood pressures through cross-sectional analysis of 2812 Framingham Heart Study who had whole blood collection for RNA isolation for mRNA and miRNA expression studies and who consented to genetic research. We excluded participants taking medication for hypertension, dyslipidemia, or diabetes. We measured mRNA (n = 17,318; using the Affymetrix GeneChip Human Exon 1.0 ST Array) and miRNA (n = 315; using qRT-PCR) expression in whole blood. We used linear regression for mRNA analyses and a combination of linear and logistic regression for miRNA analyses. We conducted miRNA-mRNA coexpression and gene ontology enrichment analyses to explore relations between pleiotropic miRNAs, mRNA expression, and CM trait clustering. Results We identified hundreds of significant associations between mRNAs, miRNAs, and individual CM traits. Four mRNAs (FAM13A, CSF2RB, HIST1H2AC, WNK1) were associated with all 6 CM traits (FDR < 0.001) and four miRNAs (miR-197-3p, miR-328, miR-505-5p, miR-145-5p) were associated with four CM traits (FDR < 0.05). Twelve mRNAs, including WNK1, that were coexpressed with the four most pleiotropic miRNAs, were also miRNA targets. mRNAs coexpressed with pleiotropic miRNAs were enriched for RNA metabolism (miR-505-5p), ubiquitin-dependent protein catabolism (miR-197-3p, miR-328) and chromatin assembly (miR-328). Conclusions We identified mRNA and miRNA signatures of individual CM traits and their clustering. Implicated transcripts may play causal roles in CM risk or be downstream consequences of CM risk factors on the transcriptome. Studies are needed to establish whether or not pleiotropic circulating transcripts illuminate causal pathways for CM risk. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3533-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David D McManus
- Cardiology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA. .,Epidemiology Division, Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA. .,, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| | - Jian Rong
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,Neurology Division, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Tianxiao Huan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch and Division of Intramural Research, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MA, USA
| | - Sean Lacey
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kahraman Tanriverdi
- Cardiology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Larson
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Roby Joehanes
- Population Sciences Branch and Division of Intramural Research, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MA, USA.,Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA.,Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Venkatesh Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ravi Shah
- Cardiology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jane E Freedman
- Cardiology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel Levy
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Population Sciences Branch and Division of Intramural Research, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MA, USA
| |
Collapse
|
40
|
Zhang Y, Li YH, Liu C, Nie CJ, Zhang XH, Zheng CY, Jiang W, Yin WN, Ren MH, Jin YX, Liu SF, Zheng B, Wen JK. miR-29a regulates vascular neointimal hyperplasia by targeting YY1. Cell Prolif 2016; 50. [PMID: 27910161 DOI: 10.1111/cpr.12322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The formation of vascular neointima is mainly related to impairment of the vascular endothelial barrier and abnormal proliferation and migration of smooth muscle cells. The objective of this study was to investigate whether miR-29a exerts any promoting effect on the vascular neointimal hyperplasia and if so, its mechanism. MATERIALS AND METHODS RT-qPCR was performed to determine expression of miR-29a in vascular smooth muscle cells (VSMC) and vascular neointimal hyperplasia. To further understand its role, we restored its expression in VSMCs by transfection with miR-29a mimics or inhibitors. Effects of miR-29a on cell proliferation were also determined. RESULTS In this study, we used two kinds of model to observe the role of miR-29a in neointimal hyperplasia induced by carotid ligation or balloon injury. The major findings were that: (i) miR-29a overexpression promoted neointimal hyperplasia induced by carotid ligation; (ii) miR-29a increased proliferation of VSMCs, one aspect of which was by targeting expression of Ying and yang 1 protein (YY1), a negative regulator of Cyclin D1. A further aspect, was by increasing expression of Krüppel-like factor 5, a positive regulator of Cyclin D1, thereby allowing formation a synergistic effect. (iii) Tongxinluo (TXL), a traditional Chinese medicine reduced neointimal formation in ligated vessels by inhibiting VSMC proliferation and migration. CONCLUSIONS These findings provide a new molecular mechanism of TXL in decreasing neointima hyperplasia.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Hebei Center for Disease Control and Prevention, Shijiazhuang, China
| | - Chao Liu
- Laboratory Animal Center of Hebei Medical University, Shijiazhuang, China
| | - Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Handan First Hospital, Handan, China
| | - Ming-Hui Ren
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Xin Jin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Shu-Feng Liu
- Laboratory Animal Center of Hebei Medical University, Shijiazhuang, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
41
|
Metzinger-Le Meuth V, Burtey S, Maitrias P, Massy ZA, Metzinger L. microRNAs in the pathophysiology of CKD-MBD: Biomarkers and innovative drugs. Biochim Biophys Acta Mol Basis Dis 2016; 1863:337-345. [PMID: 27806914 DOI: 10.1016/j.bbadis.2016.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/04/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
Abstract
microRNAs comprise a novel class of endogenous small non-coding RNAs that have been shown to be implicated in both vascular damage and bone pathophysiology. Chronic kidney disease-mineral bone disorder (CKD-MBD) is characterized by vessel and bone damage secondary to progressive loss of kidney function. In this review, we will describe how several microRNAs have been implicated, in recent years, in cellular and animal models of CKD-MBD, and have been very recently shown to be deregulated in patients with CKD. Particular emphasis has been placed on the endothelial-specific miR-126, a potential biomarker of endothelial dysfunction, and miR-155 and miR-223, which play a role in both vascular smooth muscle cells and osteoclasts, with an impact on the vascular calcification and osteoporosis process. Finally, as these microRNAs may constitute useful targets to prevent or treat complications of CKD-MBD, we will discuss their potential as innovative drugs, describe how they could be delivered in a timely and specific way to vessels and bone by using the most recent techniques such as nanotechnology, viral vectors or CRISPR gene targeting.
Collapse
Affiliation(s)
- Valérie Metzinger-Le Meuth
- C.U.R.S, Laboratoire INSERM U1088, Chemin du Thil, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France; Université Paris 13, Sorbonne Paris Cité, UFR SMBH, 74 rue Marcel Cachin, 93017, Bobigny cedex, France
| | | | - Pierre Maitrias
- C.U.R.S, Laboratoire INSERM U1088, Chemin du Thil, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France; Department of Cardiovascular Surgery, Amiens University Hospital, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, APHP, UVSQ University, INSERM U1018 team5, Paris, France
| | - Laurent Metzinger
- C.U.R.S, Laboratoire INSERM U1088, Chemin du Thil, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France.
| |
Collapse
|
42
|
Wei YS, Xiang Y, Liao PH, Wang JL, Peng YF. An rs4705342 T>C polymorphism in the promoter of miR-143/145 is associated with a decreased risk of ischemic stroke. Sci Rep 2016; 6:34620. [PMID: 27708363 PMCID: PMC5052611 DOI: 10.1038/srep34620] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
The expression of miR-143/miR-145 was up-regulated in ischemic stroke (IS), which may be used as biomarkers and/or therapeutic targets for IS. We aimed to investigate the association of rs4705342 and rs4705343 polymorphisms in the promoter of miR-143/145 with risk of IS. The study population comprised 445 patients with IS and 518 controls. The rs4705342 genotype was analyzed by using a TaqMan Assay and the rs4705343 genotype was determined by using a polymerase chain reaction-restriction fragment length polymorphism assay. Relative expression of miR-143/miR-145 was measured by quantitative real-time PCR. We found that the rs4705342 was associated with a decreased risk of IS (TC vs. TT: adjusted OR = 0.74, 95% CI, 0.57-0.97; CC vs. TT: adjusted OR = 0.53, 95% CI, 0.34-0.83). Haplotype analysis showed that the TC haplotype was associated with an increased risk of IS risk (OR = 1.33, 95% CI, 1.01-1.75), whereas the CT haplotype was associated with a decreased risk of IS risk (OR = 0.68, 95% CI, 0.50-0.92). Importantly, patients carrying the rs4705342TC/CC genotypes had a lower level of miR-145 (P = 0.03). We found for the first time that the rs4705342 CC was a protective factor for IS, probably by reducing the level of miR-145.
Collapse
Affiliation(s)
- Ye-Sheng Wei
- Department of Clinical Laboratory, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yang Xiang
- Department of Clinical Laboratory, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Pin-Hu Liao
- Department of Medicine, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Jun-Li Wang
- Department of Clinical Laboratory, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - You-Fan Peng
- Department of Clinical Laboratory, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
43
|
Circulating miR-92a expression level in patients with essential hypertension: a potential marker of atherosclerosis. J Hum Hypertens 2016; 31:200-205. [PMID: 27629245 DOI: 10.1038/jhh.2016.66] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/18/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRs) are key posttranscriptional regulators of gene expression in all eukaryotic cells and have a vital role in the evolution of hypertension and cardiovascular remodelling and, therefore, have emerged as potential biomarkers for cardiovascular disease. We assessed 240 participants, including 60 healthy volunteers with normal carotid intima-media thickness (nCIMT), 60 healthy volunteers with increased CIMT (iCIMT), 60 hypertensive patients with nCIMT and 60 hypertensive patients with iCIMT. All patients underwent measurements of CIMT, carotid-femoral pulse wave velocity (cfPWV) and ambulatory blood pressure (BP) monitoring. Plasma miR-92a expression was quantified by real-time reverse transcription PCR. Correlations between miR-92a expression and BP parameters, CIMT and cfPWV were assessed using the Spearman correlation coefficient. We observed the lowest miR-92a expression (24.59±1.30 vs 27.76±2.13 vs 29.29±1.89 vs 33.76±2.08; P<0.001) in healthy controls with nCIMT, followed by healthy controls with iCIMT, then hypertensive patients with nCIMT and the highest expression in hypertensive patients with iCIMT. Additionally, MiR-92a levels showed a significant positive correlation with 24-h mean systolic BP (r=0.807, P<0.001), 24-h mean diastolic BP (r=0.649, P<0.001), 24-h mean pulse pressure (PP) (r=0.697, P<0.001), 24-h daytime PP (r=0.654, P<0.001), 24-h nighttime PP (r=0.573, P<0.001), CIMT (r=0.571, P<0.001) and cfPWV (r=0.601, P<0.001). Our data present significant evidence that circulating miR-92a represents a potential noninvasive atherosclerosis marker in essential hypertensive patients.
Collapse
|
44
|
Sun Y, Kang L, Li J, Liu H, Wang Y, Wang C, Zou Y. Advanced glycation end products impair the functions of saphenous vein but not thoracic artery smooth muscle cells through RAGE/MAPK signalling pathway in diabetes. J Cell Mol Med 2016; 20:1945-55. [PMID: 27297874 PMCID: PMC5020631 DOI: 10.1111/jcmm.12886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2016] [Indexed: 11/30/2022] Open
Abstract
Saphenous vein (SV) and internal thoracic artery (ITA) are commonly used bypass conduits. However, graft failure occurs in SV rather than in ITA, especially in diabetes (DM). The mechanism for this difference has not been fully understood. Accumulation of advanced glycation end products (AGEs) and activation of AGEs receptor (RAGE) could accelerate smooth muscle cells (SMC) proliferation in DM, we thus asked whether AGEs-RAGE could mediate the differences between SMC from SV (SMCV ) and from ITA (SMCA ). Twenty-five patients with DM and other 25 patients without DM were enclosed in DM and control group, respectively. AGEs (100 μg/ml) were added to cultured SMCA and SMCV obtained at coronary artery bypass graft (CABG) and proliferative rates were determined. Transcript expression, phosphorylation or protein expression levels of MAP kinase family (ERK, p38 and JNK), matrix metalloproteinases (MMP)-2 and MMP-9 were analysed by real-time PCR, Western-blot or immunofluorescence staining, respectively. Compared with paired SMCA , SMCV showed significantly increased proliferation rate, MAP kinase family phosphorylation, and MMP-2/9 expression in both groups, especially in DM group. The responses of SMCV induced by AGEs were significantly larger in DM than in control group, which could be suppressed by inhibition of RAGE and ERK. However, all the cellular events of SMCV were not found in paired SMCA . This study suggests that AGEs-RAGE could induce the proliferation of SMCV but not SMCA via MAP kinase pathway in DM. It is the intrinsic 'inactive' tendency of SMCA that contributes to the different rates of graft disease between SV and ITA after CABG.
Collapse
Affiliation(s)
- Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yulin Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Swärd K, Stenkula KG, Rippe C, Alajbegovic A, Gomez MF, Albinsson S. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism. J Physiol 2016; 594:4741-52. [PMID: 27060572 DOI: 10.1113/jp271913] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Members of the myocardin family bind to the transcription factor serum response factor (SRF) and act as coactivators controlling genes of relevance for myogenic differentiation and motile function. Binding of SRF to DNA is mediated by genetic elements called CArG boxes, found often but not exclusively in muscle and growth controlling genes. Studies aimed at defining the full spectrum of these CArG elements in the genome (i.e. the CArGome) have in recent years, unveiled unexpected roles of the myocardin family proteins in lipid and glucose homeostasis. This coactivator family includes the protein myocardin (MYOCD), the myocardin-related transcription factors A and B (MRTF-A/MKL1 and MRTF-B/MKL2) and MASTR (MAMSTR). Here we discuss growing evidence that SRF-driven transcription is controlled by extracellular glucose through activation of the Rho-kinase pathway and actin polymerization. We also describe data showing that adipogenesis is influenced by MLK activity through actions upstream of peroxisome proliferator-activated receptor γ with consequences for whole body fat mass and insulin sensitivity. The recently demonstrated involvement of myocardin coactivators in the biogenesis of caveolae, Ω-shaped membrane invaginations of importance for lipid and glucose metabolism, is finally discussed. These novel roles of myocardin proteins may open the way for new unexplored strategies to combat metabolic diseases such as diabetes, which, at the current incidence, is expected to reach 333 million people worldwide by 2025. This review highlights newly discovered roles of myocardin-related transcription factors in lipid and glucose metabolism as well as novel insights into their well-established role as mediators of stretch-dependent effects in smooth muscle. As co-factors for serum response factor (SRF), MKLs regulates transcription of genes involved in the contractile function of smooth muscle cells. In addition to mechanical stimuli, this regulation has now been found to be promoted by extracellular glucose levels in smooth muscle. Recent reports also suggest that MKLs can regulate a subset of genes involved in the formation of lipid-rich invaginations in the cell membrane called caveolae. Finally, a potential role of MKLs in non-muscle cells has been discovered as they negatively influence adipocyte differentiation.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Azra Alajbegovic
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Maria F Gomez
- Department of Clinical Sciences, CRC, Lund University, Malmö, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Li Y, Huang J, Jiang Z, Zhong Y, Xia M, Wang H, Jiao Y. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40. Am J Transl Res 2016; 8:1813-1825. [PMID: 27186305 PMCID: PMC4859910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The objective of this study is to investigate the expression of microRNA (miR)-145 in human aortic vascular smooth muscle cells (VSMCs) and the effect of miR-145 in the biological behavior and expression of CD40 in VSMCs. Cells were treated with either miR-145 or miR-145 inhibitor. Cell proliferation was analyzed by a colony formation assay and a methyl thiazolyl tetrazolium assay. Cell migration and invasion were assessed using a transwell assay, an invasion assay, and a wound healing assay. A luciferase reporter assay was used to detect the interaction between miR-145 and CD40. Expression of α-SMA, calponin, osteopontin (OPN), epiregulin, activator protein-1 (AP-1) and CD40 was measured using real-time RT-PCR for mRNA levels and Western blotting for protein levels. Overexpression of miR-145 significantly inhibited VSMC proliferation, invasion and migration. Furthermore, OPN, epiregulin, AP-1 and CD40 expression at the mRNA and protein levels was down-regulated by overexpression of miR-145. However, α-SMA and calponin expression at the mRNA and protein levels was up-regulated by overexpression of miR-145. In addition, the luciferase reporter assay showed that CD40 may be a direct target gene of miR-145 in VSMC initiation and development. Moreover, these data demonstrate that the up-regulation of CD40 is critical for miR-145-mediated inhibitory effects on platelet-derived growth factor-induced cell proliferation and migration in human VSMCs. In summary, CD40, a direct target of miR-145, reverses the inhibitory effects of miR-145. These results suggest that the specific modulation of miR-145 in human VSMCs may be an attractive approach for the treatment of proliferative vascular diseases.
Collapse
Affiliation(s)
- Yumei Li
- Centre for Cellular & Structural Biology, Sun Yat-Sen UniversityGuangzhou City, Guangdong Province, P. R. China
| | - Jiangnan Huang
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical UniversityNanning City, Guangxi Province, P. R. China
| | - Zhiyuan Jiang
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical UniversityNanning City, Guangxi Province, P. R. China
| | - Yuanli Zhong
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical UniversityNanning City, Guangxi Province, P. R. China
| | - Mingjie Xia
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical UniversityNanning City, Guangxi Province, P. R. China
| | - Hui Wang
- College of Pharmacy, Guangxi Medical UniversityNanning City, Guangxi Province, P. R. China
| | - Yang Jiao
- College of Pharmacy, Guangxi Medical UniversityNanning City, Guangxi Province, P. R. China
| |
Collapse
|
47
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
48
|
Zhang YN, Xie BD, Sun L, Chen W, Jiang SL, Liu W, Bian F, Tian H, Li RK. Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145. J Cell Mol Med 2016; 20:1049-61. [PMID: 26992033 PMCID: PMC4882986 DOI: 10.1111/jcmm.12825] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to an adverse proliferative phenotype is a hallmark of atherosclerosis or vascular restenosis. However, the genetic modulators responsible for this switch have not been fully elucidated in humans nor have they been correlated with clinical abnormalities. This study investigated genetic mechanisms involved in phenotypic switching of VSMCs at non-defect areas of the aorta in patients with atherosclerosis. Aortic wall samples were obtained from patients with (N = 53) and without (N = 27) atherosclerosis undergoing cardiovascular surgery. Vascular smooth muscle cell cultures were generated, and expression of microRNA-145 (miR-145), its target gene Kruppel-Like Factor 5 (KLF5) and Myocardin (MYOCD, a smooth muscle-specific transcriptional coactivator) were analysed using RT-qPCR, along with expression of relevant proteins. Vascular smooth muscle cells were transduced with miR-145 inhibitor and mimic to determine the effect of miR-145 expression on VSMC proliferation. miR-145 expression decreased while KLF5 expression increased in atherosclerotic aortas. Atherosclerotic samples and VSMCs had decreased expression of contractile markers calponin and alpha smooth muscle actin (α-SMA) and MYOCD. miR-145 inhibitor-transduced VSMCs from non-atherosclerotic patients showed decreased expression of calponin and α-SMA and increased proliferation compared with non-transduced controls, and these levels were close to those of atherosclerotic patients. miR-145 mimic-transduced VSMCs from atherosclerotic patients showed increased expression of calponin and α-SMA and decreased proliferation compared with non-transduced controls, and these levels were close to those found in non-atherosclerotic patients. These data demonstrate that miR-145 modulates the phenotypic switch of VSMCs from a contractile to a proliferative state via KLF5 and MYOCD in atherosclerosis.
Collapse
Affiliation(s)
- Yu-Nan Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Bao-Dong Xie
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Wei Chen
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shu-Lin Jiang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Wei Liu
- Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Fei Bian
- Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hai Tian
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ren-Ke Li
- Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Abstract
Cardiovascular disease is the principal cause of death in patients with type 2 diabetes (T2DM). Exposure of the vasculature to metabolic disturbances leaves a persistent imprint on vascular walls, and specifically on smooth muscle cells (SMC) that favours their dysfunction and potentially underlies macrovascular complications of T2DM. Current diabetes therapies and continued development of newer treatments has led to the ability to achieve more efficient glycaemic control. There is also some evidence to suggest that some of these treatments may exert favourable pleiotropic effects, some of which may be at the level of SMC. However, emerging interest in epigenetic markers as determinants of vascular disease, and a putative link with diabetes, opens the possibility for new avenues to develop robust and specific new therapies. These will likely need to target cell-specific epigenetic changes such as effectors of DNA histone modifications that promote or inhibit gene transcription, and/or microRNAs capable of regulating entire cellular pathways through target gene repression. The growing epidemic of T2DM worldwide, and its attendant cardiovascular mortality, dictates a need for novel therapies and personalised approaches to ameliorate vascular complications in this vulnerable population.
Collapse
Affiliation(s)
- Karen E Porter
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM) and Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, LS2 9JT, UK,
| | | |
Collapse
|
50
|
Mao N, Gu T, Shi E, Zhang G, Yu L, Wang C. Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm. Interact Cardiovasc Thorac Surg 2015; 21:62-70. [PMID: 25829166 DOI: 10.1093/icvts/ivv074] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To explore if there is phenotypic switching in the vascular smooth muscle cells (vSMCs) of rat thoracic aortic aneurysms and the role it plays in the process of aneurysm formation. METHODS Male SD white rats were assigned randomly to the aneurysm group (AG) and control group (CG). The animal aneurysm model was obtained by soaking the peri-adventitia with porcine pancreatic elastase (PPE). The rats in the CG were given saline to provide contrast. A vascular ultrasound was used to monitor the diameter of the aneurysm. Specimens were stained with haematoxylin and eosin (HE), and α-SMA, SM-MHC, matrix metalloproteinase (MMP)-2 and MMP-9 were detected with immunohistochemistry staining. α-SMA, SM-MHC, MMP-2 and MMP-9 were conducted with western blot. vSMCs taken from the descending aorta of both of the CG and AG were separated and cultured until Passage 3. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method were used to analyse cell proliferation. Western blot was used to evaluate MMP-2, MMP-9 expression and flow cytometry was employed to assess cell apoptosis. RESULTS Vascular ultrasound showed obvious dilatation of soaked descending aorta. HE staining showed thickening of thoracic aorta and disarrangement of cells after soaking with PPE. Immunohistochemistry staining showed high expression of MMP-2 and MMP-9 but low expression of SM-MHC and α-SMA in the AG. Tissue western blot analysis of the AG showed that the protein gray value was high in MMP-2 and MMP-9, but low in α-SMA and SM-MHC, which had statistical differences compared with CG with a P-value of <0.05. MTT analysis showed vSMC proliferation activity was higher in the AG than in the CG. Flow cytometry analysis revealed that cell apoptosis between the control and aneurysm groups had significant statistical differences. CONCLUSIONS There is vSMC phenotypic switching in animal models as seen through the rat thoracic aortic aneurysms. This may play an important role in the formation of aneurysms. Our findings are relevant to human aneurysms and may be conducive in the research of aortic aneurysm pathology and treatment.
Collapse
Affiliation(s)
- Naihui Mao
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianxiang Gu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Enyi Shi
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guangwei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Yu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|