1
|
Bai Y, Li R, Hao JF, Chen LW, Liu ST, Zhang XL, Lip GYH, Yang JK, Zou YX, Wang H. Accumulated β-catenin is associated with human atrial fibrosis and atrial fibrillation. J Transl Med 2024; 22:734. [PMID: 39103891 PMCID: PMC11302159 DOI: 10.1186/s12967-024-05558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by β-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of β-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS We compared the difference of β-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of β-catenin in the development of AF was also explored in mice and primary cells. RESULTS Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of β-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, β-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3β (GSK-3β) and Adenomatous Polyposis Coli (APC), which participated in the degradation of β-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting β-catenin expression in the AF model mice. CONCLUSIONS Based on human atrial pathological and molecular analyses, our findings provided evidence that β-catenin was associated with atrial fibrosis and AF progression.
Collapse
Affiliation(s)
- Ying Bai
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Rui Li
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jun-Feng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lian-Wan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si-Tong Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xi-Lin Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yi-Xi Zou
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
2
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Zhang H, Shen Y, Kim IM, Liu Y, Cai J, Berman AE, Nilsson KR, Weintraub NL, Tang Y. Electrical Stimulation Increases the Secretion of Cardioprotective Extracellular Vesicles from Cardiac Mesenchymal Stem Cells. Cells 2023; 12:cells12060875. [PMID: 36980214 PMCID: PMC10047597 DOI: 10.3390/cells12060875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Clinical trials have shown that electric stimulation (ELSM) using either cardiac resynchronization therapy (CRT) or cardiac contractility modulation (CCM) approaches is an effective treatment for patients with moderate to severe heart failure, but the mechanisms are incompletely understood. Extracellular vesicles (EV) produced by cardiac mesenchymal stem cells (C-MSC) have been reported to be cardioprotective through cell-to-cell communication. In this study, we investigated the effects of ELSM stimulation on EV secretion from C-MSCs (C-MSCELSM). We observed enhanced EV-dependent cardioprotection conferred by conditioned medium (CM) from C-MSCELSM compared to that from non-stimulated control C-MSC (C-MSCCtrl). To investigate the mechanisms of ELSM-stimulated EV secretion, we examined the protein levels of neutral sphingomyelinase 2 (nSMase2), a key enzyme of the endosomal sorting complex required for EV biosynthesis. We detected a time-dependent increase in nSMase2 protein levels in C-MSCELSM compared to C-MSCCtrl. Knockdown of nSMase2 in C-MSC by siRNA significantly reduced EV secretion in C-MSCELSM and attenuated the cardioprotective effect of CM from C-MSCELSM in HL-1 cells. Taken together, our results suggest that ELSM-mediated increases in EV secretion from C-MSC enhance the cardioprotective effects of C-MSC through an EV-dependent mechanism involving nSMase2.
Collapse
Affiliation(s)
- Haitao Zhang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-man Kim
- Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 47405, USA
| | - Yutao Liu
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Adam E. Berman
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kent R. Nilsson
- Medical College of Georgia, Augusta University/University of Georgia Partnership, Athens, GA 30602, USA
| | - Neal L. Weintraub
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
4
|
Distress-Mediated Remodeling of Cardiac Connexin-43 in a Novel Cell Model for Arrhythmogenic Heart Diseases. Int J Mol Sci 2022; 23:ijms231710174. [PMID: 36077591 PMCID: PMC9456330 DOI: 10.3390/ijms231710174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.
Collapse
|
5
|
Yao Y, Yang A, Li G, Wu H, Deng S, Yang H, Ma W, Lv D, Fu Y, Ji P, Tan X, Zhao W, Lian Z, Zhang L, Liu G. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells. Cell Cycle 2022; 21:1360-1375. [PMID: 35311450 PMCID: PMC9345622 DOI: 10.1080/15384101.2022.2051122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yield efficiency of transgenic animal generation is relatively low[1]. To improve its efficiency has become a priority task for researchers[2]. Melatonin (N-acetyl-5-methoxytryptamine, MT) is a potent-free radical scavenger and antioxidant to protect mitochondria, lipids, protein and DNA from oxidative stress[3]. In this study, we observed that improving the quality of both donor and recipient cells by giving physiological concentration (10-7 M) of MT significantly increase the sheep transgenic embryo development in the in vitro condition. MT promotes the donor cell viability, proliferation, efficiency of monoclonal formation and the electrotransferring efficiency of fetal fibroblast cells (FFCs). The mechanistic exploration indicates that MT has the capacity for the synchronization of cell division cycle, reduction of cellular oxidative stress, apoptosis, and the increase of mitochondrial number and function. All of these render MT's ability to increase the efficiency of animal transgenic processes such as somatic cell nuclear transfer (SCNT) and electroporation. The outcomes are the increased cleavage rate and blastocyst rate of the transgenic sheep embryos after MT treatment. These beneficial effects of MT on transgenic embryo development are worth to be tested in the in vivo condition in the future.
Collapse
Affiliation(s)
- Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ailing Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- Cas Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hai Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- CONTACT Zhengxing Lian National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Lu Zhang National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guoshi Liu National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Lagonegro P, Rossi S, Salvarani N, Lo Muzio FP, Rozzi G, Modica J, Bigi F, Quaretti M, Salviati G, Pinelli S, Alinovi R, Catalucci D, D'Autilia F, Gazza F, Condorelli G, Rossi F, Miragoli M. Synthetic recovery of impulse propagation in myocardial infarction via silicon carbide semiconductive nanowires. Nat Commun 2022; 13:6. [PMID: 35013167 PMCID: PMC8748722 DOI: 10.1038/s41467-021-27637-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/02/2021] [Indexed: 01/30/2023] Open
Abstract
Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction. Silicon-based materials have the ability to support bioelectrical activity. Here the authors show how injectable silicon carbide nanowires reduce arrhythmias and rapidly restore conduction in a myocardial infarction model.
Collapse
Affiliation(s)
- Paola Lagonegro
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via A. Corti 12, 20133, Milan, IT, Italy
| | - Stefano Rossi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Nicolò Salvarani
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Francesco Paolo Lo Muzio
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università di Verona, Policlinico G.B. Rossi, - P.le L.A. Scuro 10, 37134, Verona, IT, Italy
| | - Giacomo Rozzi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy.,Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy
| | - Jessica Modica
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Franca Bigi
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze, 11/a - 43124, Parma, IT, Italy
| | - Martina Quaretti
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze, 11/a - 43124, Parma, IT, Italy
| | - Giancarlo Salviati
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy
| | - Silvana Pinelli
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Rossella Alinovi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Daniele Catalucci
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Francesca D'Autilia
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy
| | - Ferdinando Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio 10, 43126, Parma, IT, Italy
| | - Gianluigi Condorelli
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Department of Biomedical Sciences Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele Milan, IT, Italy
| | - Francesca Rossi
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy
| | - Michele Miragoli
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy. .,Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.
| |
Collapse
|
7
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
8
|
Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165836. [PMID: 32413386 DOI: 10.1016/j.bbadis.2020.165836] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Acetylation belongs to a class of post-translational modification (PTM) processes that epigenetically regulate gene expression and gene transcriptional activity. Reversible histone acetylation on lysine residues governs the interactions between DNA and histones to mediate chromatin remodeling and gene transcription. Non-histone protein acetylation complicates cellular function whereas acetylation of key mitochondrial enzymes regulates bioenergetic metabolism. Acetylation and deacetylation of functional proteins are essential to the delicated homeostatic regulation of embryonic development, postnatal maturation, cardiomyocyte differentiation, cardiac remodeling and onset of various cardiovascular diseases including obesity, diabetes mellitus, cardiometabolic diseases, ischemia-reperfusion injury, cardiac remodeling, hypertension, and arrhythmias. Histone acetyltransferase (HATs) and histone deacetylases (HDACs) are essential enzymes mainly responsible for the regulation of lysine acetylation levels, thus providing possible drugable targets for therapeutic interventions in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| |
Collapse
|
9
|
Qu P, Shen C, Du Y, Qin H, Luo S, Fu S, Dong Y, Guo S, Hu F, Xue Y, Liu E. Melatonin Protects Rabbit Somatic Cell Nuclear Transfer (SCNT) Embryos from Electrofusion Damage. Sci Rep 2020; 10:2186. [PMID: 32042116 PMCID: PMC7010831 DOI: 10.1038/s41598-020-59161-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The study's objectives were to examine the effects of electrofusion on rabbit somatic cell nuclear transfer (SCNT) embryos, and to test melatonin as a protective agent against electrofusion damage to SCNT embryos. The levels of reactive oxygen species (ROS), the epigenetic state (H3K9me3), and the content of endoplasmic reticulum (ER) stress-associated transcripts (IRE-1 and CHOP) were measured. Melatonin was added during the preimplantation development period. The total blastocyst cell numbers were counted, and the fragmentation rate and apoptotic index were determined and used to assess embryonic development. Electrofusion increased (1) ROS levels at the 1-, 2-, 4-, and 8-cell stages; (2) H3K9me3 levels at the 2-, 4-, and 8-cell stage; and (3) the expression of IRE-1 and CHOP at the 8-cell, 16-cell, morula, and blastocyst stages. The treatment of SCNT embryos with melatonin significantly reduced the level of ROS and H3K9me3, and the expression levels of IRE-1 and CHOP. This treatment also significantly reduced the fragmentation rate and apoptotic index of blastocysts and increased their total cell number. In conclusion, the electrofusion of rabbit SCNT embryos induced oxidative stress, disturbed the epigenetic state, and caused ER stress, while melatonin reduced this damage. Our findings are of signal importance for improving the efficiency of SCNT and for optimizing the application of electrical stimulation in other biomedical areas.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi, 710061, China
| | - Chong Shen
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Yue Du
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Hongyu Qin
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Shiwei Luo
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Sixin Fu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Yue Dong
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Shuaiqingying Guo
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Fang Hu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Ying Xue
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Enqi Liu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China.
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
10
|
Xu D, He H, Liu D, Geng G, Li Q. A novel role of SIRT2 in regulating gap junction communications via connexin-43 in bovine cumulus-oocyte complexes. J Cell Physiol 2020; 235:7332-7343. [PMID: 32039484 DOI: 10.1002/jcp.29634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
Abstract
SIRT2, the predominantly cytosolic sirtuin, plays important role in multiple biological processes, including metabolism, stress response, and aging. However, the function of SIRT2 in gap junction intercellular communications (GJICs) of cumulus-oocyte complexes (COCs) is not yet known. The purpose of the present study was to evaluate the effect and underlining mechanism of SIRT2 on GJICs in COCs. Here, we found that treatment with SIRT2 inhibitors (SirReal2 or TM) inhibited bovine oocyte nuclear maturation. Further analysis revealed that SIRT2 inactivation disturbed the GJICs of COCs during in vitro maturation. Correspondingly, both the Cx43 phosphorylation levels and MEK/MER signaling pathways were induced by SIRT2 inhibition. Importantly, SIRT2-mediated Cx43 phosphorylation was completely abolished by treatment with MEK1/2 inhibitor (Trametinib). Furthermore, treatment with SIRT2 inhibitors resulted in the high levels of MEK1/2 acetylation. Functionally, downregulating the MER/ERK pathways with inhibitors (Trametinib or SCH772984) could attenuate the closure of GJICs caused by SIRT2 inactivation in partly. In addition, inhibition of SIRT2 activity significantly decreased the membrane and zona pellucida localization of Cx43 by upregulating the levels of Cx43 acetylation. Taken together, these results demonstrated a novel role that SIRT2 regulates GJICs via modulating the phosphorylation and deacetylation of Cx43 in COCs.
Collapse
Affiliation(s)
- Dejun Xu
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huanshan He
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dingbang Liu
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxia Geng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qingwang Li
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Manring HR, Dorn LE, Ex-Willey A, Accornero F, Ackermann MA. At the heart of inter- and intracellular signaling: the intercalated disc. Biophys Rev 2018; 10:961-971. [PMID: 29876873 PMCID: PMC6082301 DOI: 10.1007/s12551-018-0430-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Proper cardiac function requires the synchronous mechanical and electrical coupling of individual cardiomyocytes. The intercalated disc (ID) mediates coupling of neighboring myocytes through intercellular signaling. Intercellular communication is highly regulated via intracellular signaling, and signaling pathways originating from the ID control cardiomyocyte remodeling and function. Herein, we present an overview of the inter- and intracellular signaling that occurs at and originates from the intercalated disc in normal physiology and pathophysiology. This review highlights the importance of the intercalated disc as an integrator of signaling events regulating homeostasis and stress responses in the heart and the center of several pathophysiological processes mediating the development of cardiomyopathies.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Aidan Ex-Willey
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Zhai H, Dai W, Wang Y. Metoprolol protects cardiomyocytes in rabbit model of heart failure by regulating Cx43. Exp Ther Med 2018; 15:1902-1905. [PMID: 29434781 PMCID: PMC5776527 DOI: 10.3892/etm.2017.5590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
This study investigated the protective effect of metoprolol on cardiomyocytes in rabbits with heart failure and its possible mechanism. Sixty New Zealand white rabbits were randomly divided into infarction group and non-infarction group, 30 in each group. Myocardial infarction was constructed by ligation of anterior descending branch of coronary artery. Coronary artery threading without ligation after thoracotomy was performed for rabbits in non-infarction group. After model construction, rabbits in each group were further divided into control group (n=15) and metoprolol group (n=15), and fed with normal diet and normal diet + metoprolol. Animals were sacrificed 8 weeks later, and ventricular tissue around infarction area was collected. Expression of connexin 43 (Cx43) in myocardium was detected by immunohistochemistry. Expression of Cx43 protein and mRNA in each group was detected by western blot and reverse transcription PCR. The Cx43 protein was positively expressed in non-infarction group and was evenly distributed in intercellular space. Compared with non-infarction group, expression of Cx43 in infarction group was significantly decreased or even disappeared, while the decrease in expression level of Cx43 and the degree of dispersion were lower in metoprolol group than in control group. There was no significant difference in expression of level of Cx43 protein and mRNA between the subgroups of non-infarction group (P>0.05). In infarction group, expression level of Cx43 protein and mRNA in the metoprolol group were significantly higher than those in control group (P<0.05). The results showed that metoprolol can protect cardiomyocytes after myocardial infarction, and the possible mechanism is related to the regulation of Cx43 expression in cardiomyocytes.
Collapse
Affiliation(s)
- Hu Zhai
- Department of Cardiology, Tianjin Third Central Hospital, Tianjin 300170, P.R. China.,Tianjin Key Laboratory of Artificial Cell, Tianjin 300170, P.R. China.,Artificial Cell Engineering Technology Research Center, Ministry of Health, Tianjin 300052, P.R. China
| | - Wenyi Dai
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin 300170, P.R. China
| | - Yu Wang
- Department of Cardiology, Tianjin Third Central Hospital, Tianjin 300170, P.R. China.,Tianjin Key Laboratory of Artificial Cell, Tianjin 300170, P.R. China.,Artificial Cell Engineering Technology Research Center, Ministry of Health, Tianjin 300052, P.R. China
| |
Collapse
|
14
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
15
|
Laguesse S, Close P, Van Hees L, Chariot A, Malgrange B, Nguyen L. Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex. Front Cell Neurosci 2017; 11:122. [PMID: 28507509 PMCID: PMC5410572 DOI: 10.3389/fncel.2017.00122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
The Elongator complex is required for proper development of the cerebral cortex. Interfering with its activity in vivo delays the migration of postmitotic projection neurons, at least through a defective α-tubulin acetylation. However, this complex is already expressed by cortical progenitors where it may regulate the early steps of migration by targeting additional proteins. Here we report that connexin-43 (Cx43), which is strongly expressed by cortical progenitors and whose depletion impairs projection neuron migration, requires Elongator expression for its proper acetylation. Indeed, we show that Cx43 acetylation is reduced in the cortex of Elp3cKO embryos, as well as in a neuroblastoma cell line depleted of Elp1 expression, suggesting that Cx43 acetylation requires Elongator in different cellular contexts. Moreover, we show that histones deacetylase 6 (HDAC6) is a deacetylase of Cx43. Finally, we report that acetylation of Cx43 regulates its membrane distribution in apical progenitors of the cerebral cortex.
Collapse
Affiliation(s)
- Sophie Laguesse
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium.,GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium
| | - Laura Van Hees
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium.,GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wallonia, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of LiègeLiège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of LiègeLiège, Belgium
| |
Collapse
|