1
|
Lin P, Gao R, Yang W, Fang Z, Wang Z, Yu M, Xu L, Ma Z, Fang J, Yu W. Platelet membrane-cloaked biomimetic nanoparticles for targeted acute lung injury therapy. Colloids Surf B Biointerfaces 2025; 250:114542. [PMID: 39893893 DOI: 10.1016/j.colsurfb.2025.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Acute lung injury (ALI) is a medical condition characterized by significant morbidity and elevated mortality rates; however, to date, there are no clinically approved pharmacological interventions that are both safe and effective for its treatment. In the pathophysiology of ALI, a robust inflammatory response is a critical factor. Dexamethasone (Dex), a potent glucocorticoid, is commonly employed in clinical settings to manage inflammatory conditions. However, the frequent or high-dose administration of corticosteroids can result in significant adverse effects and long-term complications. In this study, we have developed a biomimetic anti-inflammatory nanosystem, designated PM-LPs@Dex, aimed at treating ALI. This system leverages the inherent affinity of platelets for sites of inflammation, alongside the advantageous drug encapsulation properties of liposomes (LPs). By harnessing the suitable physicochemical characteristics of LPs and the distinctive biological functions of platelet membranes (PM), PM-LPs@Dex is capable of stable and sustained drug release in vitro. Experimental results regarding cellular uptake and biodistribution reveal that PM-LPs@Dex is preferentially internalized by inflammatory cells and exhibits enhanced accumulation in inflamed lung tissue compared to LPs@Dex. Pharmacokinetic studies displayed that PM-LPs@Dex showed prolonged circulation time in blood. Additionally, pharmacodynamic assessments demonstrate that PM-LPs@Dex significantly mitigates the severity of ALI, as evidenced by reductions in pulmonary edema, tissue pathology, bronchoalveolar lavage cell counts, protein concentration, and levels of inflammatory cytokines. Notably, PM-LPs@Dex also exhibits favorable biocompatibility. This research is anticipated to contribute novel strategies for the safe and effective targeted management of inflammatory diseases.
Collapse
Affiliation(s)
- Peihong Lin
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China
| | - Wenjing Yang
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China
| | - Zhouru Wang
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China
| | - Mengdie Yu
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China
| | - Lihua Xu
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou 310013, China
| | - Zhen Ma
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China
| | - Jie Fang
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China.
| | - Wenying Yu
- School of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
2
|
Li X, Kempf S, Delgado Lagos F, Ukan Ü, Popp R, Hu J, Frömel T, Günther S, Weigert A, Fleming I. A regulatory loop involving the cytochrome P450-soluble epoxide hydrolase axis and TGF-β signaling. iScience 2024; 27:110938. [PMID: 39398242 PMCID: PMC11466655 DOI: 10.1016/j.isci.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Fatty acid metabolites, produced by cytochrome P450 enzymes and soluble epoxide hydrolase (sEH), regulate inflammation. Here, we report that the transforming growth factor β (TGF-β)-induced polarization of macrophages to a pro-resolving phenotype requires Alk5 and Smad2 activation to increase sEH expression and activity. Macrophages lacking sEH showed impaired repolarization, reduced phagocytosis, and maintained a pro-inflammatory gene expression profile. 11,12-Epoxyeicosatrienoic acid (EET) was one altered metabolite in sEH-/- macrophages and mimicked the effect of sEH deletion on gene expression. Notably, 11,12-EET also reduced Alk5 expression, inhibiting TGF-β-induced Smad2 phosphorylation by triggering the cytosolic translocation of the E3 ligase Smurf2. These findings suggest that sEH expression is controlled by TGF-β and that sEH activity, which lowers 11,12-EET levels and promotes TGF-β signaling by metabolizing 11,12-EET to prevent Alk5 degradation. Thus, an autocrine loop between sEH/11,12-EET and TGF-β1 regulates macrophage function.
Collapse
Affiliation(s)
- Xiaoming Li
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Sebastian Kempf
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Fredy Delgado Lagos
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Ürün Ukan
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Jiong Hu
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Timo Frömel
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas Weigert
- Goethe University, Institute of Biochemistry I, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Jiang S, Han S, Wang DW. The involvement of soluble epoxide hydrolase in the development of cardiovascular diseases through epoxyeicosatrienoic acids. Front Pharmacol 2024; 15:1358256. [PMID: 38628644 PMCID: PMC11019020 DOI: 10.3389/fphar.2024.1358256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Arachidonic acid (AA) has three main metabolic pathways: the cycloxygenases (COXs) pathway, the lipoxygenases (LOXs) pathway, and the cytochrome P450s (CYPs) pathway. AA produces epoxyeicosatrienoic acids (EETs) through the CYPs pathway. EETs are very unstable in vivo and can be degraded in seconds to minutes. EETs have multiple degradation pathways, but are mainly degraded in the presence of soluble epoxide hydrolase (sEH). sEH is an enzyme of bifunctional nature, and current research focuses on the activity of its C-terminal epoxide hydrolase (sEH-H), which hydrolyzes the EETs to the corresponding inactive or low activity diol. Previous studies have reported that EETs have cardiovascular protective effects, and the activity of sEH-H plays a role by degrading EETs and inhibiting their protective effects. The activity of sEH-H plays a different role in different cells, such as inhibiting endothelial cell proliferation and migration, but promoting vascular smooth muscle cell proliferation and migration. Therefore, it is of interest whether the activity of sEH-H is involved in the initiation and progression of cardiovascular diseases by affecting the function of different cells through EETs.
Collapse
Affiliation(s)
- Shan Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Siyi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
4
|
Kelly AG, Wang W, Rothenberger E, Yang J, Gilligan MM, Kipper FC, Attaya A, Gartung A, Hwang SH, Gillespie MJ, Bayer RL, Quinlivan KM, Torres KL, Huang S, Mitsiades N, Yang H, Hammock BD, Panigrahy D. Enhancing cancer immunotherapy via inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci U S A 2024; 121:e2314085121. [PMID: 38330013 PMCID: PMC10873624 DOI: 10.1073/pnas.2314085121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.
Collapse
Affiliation(s)
- Abigail G. Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Weicang Wang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Food Science, Purdue University, West Lafayette, IN47907
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Molly M. Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Franciele C. Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Michael J. Gillespie
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Rachel L. Bayer
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Katherine M. Quinlivan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Kimberly L. Torres
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sui Huang
- Institute of Systems Biology, Seattle, WA98109
| | - Nicholas Mitsiades
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Internal Medicine, University of CaliforniaDavis,CA95817
| | - Haixia Yang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Food Nutrition and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
5
|
Sosnowski DK, Jamieson KL, Gruzdev A, Li Y, Valencia R, Yousef A, Kassiri Z, Zeldin DC, Seubert JM. Cardiomyocyte-specific disruption of soluble epoxide hydrolase limits inflammation to preserve cardiac function. Am J Physiol Heart Circ Physiol 2022; 323:H670-H687. [PMID: 35985007 PMCID: PMC9512117 DOI: 10.1152/ajpheart.00217.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
Abstract
Endotoxemia elicits a multiorgan inflammatory response that results in cardiac dysfunction and often leads to death. Inflammation-induced metabolism of endogenous N-3 and N-6 polyunsaturated fatty acids generates numerous lipid mediators, such as epoxy fatty acids (EpFAs), which protect the heart. However, EpFAs are hydrolyzed by soluble epoxide hydrolase (sEH), which attenuates their cardioprotective actions. Global genetic disruption of sEH preserves EpFA levels and attenuates cardiac dysfunction in mice following acute lipopolysaccharide (LPS)-induced inflammatory injury. In leukocytes, EpFAs modulate the innate immune system through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. However, the mechanisms by which both EpFAs and sEH inhibition exert their protective effects in the cardiomyocyte are still elusive. This study investigated whether cardiomyocyte-specific sEH disruption attenuates inflammation and cardiac dysfunction in acute LPS inflammatory injury via modulation of the NLRP3 inflammasome. We use tamoxifen-inducible CreER recombinase technology to target sEH genetic disruption to the cardiomyocyte. Primary cardiomyocyte studies provide mechanistic insight into inflammasome signaling. For the first time, we demonstrate that cardiomyocyte-specific sEH disruption preserves cardiac function and attenuates inflammatory responses by limiting local cardiac inflammation and activation of the systemic immune response. Mechanistically, inhibition of cardiomyocyte-specific sEH activity or exogenous EpFA treatment do not prevent upregulation of NLRP3 inflammasome machinery in neonatal rat cardiomyocytes. Rather, they limit downstream activation of the pathway leading to release of fewer chemoattractant factors and recruitment of immune cells to the heart. These data emphasize that cardiomyocyte sEH is vital for mediating detrimental systemic inflammation.NEW & NOTEWORTHY The cardioprotective effects of genetic disruption and pharmacological inhibition of sEH have been demonstrated in a variety of cardiac disease models, including acute LPS inflammatory injury. For the first time, it has been demonstrated that sEH genetic disruption limited to the cardiomyocyte profoundly preserves cardiac function and limits local and systemic inflammation following acute LPS exposure. Hence, cardiomyocytes serve a critical role in the innate immune response that can be modulated to protect the heart.
Collapse
Affiliation(s)
- Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Artiom Gruzdev
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yingxi Li
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Darryl C Zeldin
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
7
|
Wu YT, Li JB, Lin HQ, Zhang GX, Hong CM, Li M, Guo ZJ, Yang YB. Inhibition of miR-200b-3p alleviates lipid accumulation and promotes cholesterol efflux by targeting ABCA1 in macrophage-derived foam cells. Exp Ther Med 2021; 22:831. [PMID: 34149877 PMCID: PMC8200800 DOI: 10.3892/etm.2021.10263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (As) is a chronic cardiovascular disease characterized by abnormal of lipid accumulation and cholesterol efflux. The present study aimed to investigate whether the micro-RNA (miR)-200b-3p could exacerbate As by promoting lipid accumulation and inhibiting cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) in macrophage-derived foam cells. Blood samples from 30 patients with As and 30 healthy people were collected at Quanzhou First Hospital. RAW264.7 cells were used to establish foam cells using oxidized low-density lipoprotein. The expression of miR-200b-3p and ABCA1 was evaluated by reverse transcription quantitative PCR and western blotting. Lipid accumulation was analyzed by Oil Red O staining and cholesterol content was assessed by ELISA. A targeting relationship between miR-200b-3p and ABCA1 was demonstrated by luciferase reporter assays. Compared with healthy volunteers and RAW264.7 cells, the expression level of miR-200b-3p was significantly increased whereas the expression level of ABCA1 was significantly decreased in patients with As and foam cells. Furthermore, miR-200b-3p expression was negatively correlated with ABCA1 expression in the blood of the patients with As. Lipid content was significantly decreased and cholesterol efflux was significantly increased in foam cells transfected with the miR-200b-3p inhibitor compared with inhibitor control cells. In addition, ABCA1 was shown to be targeted by miR-200b-3p. Furthermore, the lipid content in foam cells transfected with the miR-200b-3p inhibitor and small interfering-ABCA1 was significantly increased, while the cholesterol efflux was significantly decreased compared with foam cells transfected with the miR-200b-3p inhibitor. In conclusion, the findings from the present study indicated that inhibition of miR-200b-3p may alleviate lipid accumulation and promote cholesterol efflux by targeting ABCA1 in macrophage-derived foam cells.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Department of Geriatrics, Quanzhou First Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Jiang-Bin Li
- Department of Ultrasound, Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Hui-Qin Lin
- Department of Geriatrics, Quanzhou First Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Guo-Xin Zhang
- Department of Geriatrics, Quanzhou First Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Cong-Min Hong
- Department of Geriatrics, Quanzhou First Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Ming Li
- School of Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Zhi-Jun Guo
- Department of Geriatrics, Quanzhou First Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Yan-Bing Yang
- Department of Imaging, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
8
|
Zhang L, Dai Z, Guo R, Wang X, Gong W, Duan J, He Z, Ding R, Zhang X, Nie S, Liang C. Metabolomics reveal dynamic changes in eicosanoid profile in patients with ST-elevation myocardial infarction after percutaneous coronary intervention. Clin Exp Pharmacol Physiol 2021; 48:463-470. [PMID: 33141433 DOI: 10.1111/1440-1681.13435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Eicosanoids play important roles in the cardiovascular system. The metabolic disorders involving some eicosanoids in the pathophysiologic process include myocardial infarction and myocardial ischaemia-reperfusion injury. Percutaneous coronary intervention (PCI) is often the first-choice strategy for acute ST-segment elevation myocardial infarction (STEMI) according to current guidelines. This study aimed to investigate the dynamic eicosanoid metabolic profile in STEMI patients after PCI. The eicosanoid profiles in plasma of 20 patients at seven times (30 minutes before surgery; 6, 12, 24, and 72 hours after surgery; 1 day before discharge; and 28 days after surgery) were studied by using metabolomics. Levels of PGE2, PGD2, and TXA2 were decreased significantly and EETs contents were increased significantly at 6 hours after PCI. EETs were hydrolysed to DHETs within a short time after surgery (12-72 hours). 20-HETE content was significantly increased. In samples taken at the time of discharge and at follow-up after discharge, LTB4 level continued to increase. This work suggests that change in content of some functional eicosanoids may be involved in cardiac injury and repair after PCI in a synergistic manner.
Collapse
Affiliation(s)
- Liuyang Zhang
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Zhi Dai
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd.2., Beijing, China
| | - Ruifeng Guo
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiao Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Gong
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Juanhui Duan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd.2., Beijing, China
| | - Zhiqing He
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Ru Ding
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Fu M, Yu J, Chen Z, Tang Y, Dong R, Yang Y, Luo J, Hu S, Tu L, Xu X. Epoxyeicosatrienoic acids improve glucose homeostasis by preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells. Mol Cell Endocrinol 2021; 523:111149. [PMID: 33387601 DOI: 10.1016/j.mce.2020.111149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Studies have shown that epoxyeicosatrienoic acids (EETs) can regulate glucose homeostasis, but the specific mechanisms need further exploration. The sodium-glucose co-transporter 2 (SGLT2) is highly expressed in diabetic kidneys, which further promotes renal reabsorption of glucose to respond to the hyperglycemic state of diabetes. Herein, whether EETs can be a latent inhibitor of SGLT2 to regulate glucose homeostasis in diabetic state needs to be elucidated. Our study demonstrated that EETs attenuated the glucose reabsorption via renal tubular epithelial cells in diabetic mice, which partly accounted for the beneficial effects of EETs on glucose homeostasis. Moreover, 14,15-EET suppressed SGLT2 expression in both diabetic kidney and renal tubular epithelial cells. Further, inhibition of NF-κB with BAY 11-7082 decreased insulin-induced SGLT2 expression while NF-κB overexpression reversed the above effects. In addition, 14,15-EET attenuated SGLT2 expression via inactivating NF-κB. Mechanistically, 14,15-EET attenuated NF-κB mediated SGLT2 transcription at the -1821/-1812 P65-binding site. These results showed that EETs ameliorated glucose homeostasis via preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells, providing a unique therapeutic strategy for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Yu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihui Chen
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Tang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqing Hu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xizhen Xu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
10
|
Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 2021; 164:44-57. [PMID: 33418110 DOI: 10.1016/j.freeradbiomed.2020.12.450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Our previous findings have demonstrated the protective effect of endothelial Nox4-based NADPH oxidase on atherosclerosis. One of the possible mechanisms is the inhibition of soluble epoxide hydrolase (sEH), a proinflammatory and atherogenic factor. Our goal was to investigate whether in vivo inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) alleviates endothelial Nox4 dysfunction caused atherosclerosis and the regulatory mechanism of endothelial Nox4 on sEH. METHODS & results: We used endothelial human Nox4 dominant-negative (EDN) transgenic mice in ApoE deficient background to mimic the dysfunction of endothelial Nox4 in atherosclerosis-prone conditions. In EDN aortic endothelium, sEH and the inflammatory marker vascular cell adhesion molecule 1 (VCAM1) were upregulated. TPPU reduced atherosclerotic lesions in EDN mice. In EDN endothelial cells (ECs), the endoplasmic reticulum (ER) stress markers (BIP, IRE1α, phosphorylation of PERK, ATF6) were upregulated, and they can be suppressed by ER stress inhibitor 4-phenyl butyric acid (4-PBA). In EDN ECs, 4-PBA downregulated the expression of sEH and VCAM1, suppressed inflammation, and its application in vivo reduced atherosclerotic lesions of EDN mice. CONCLUSIONS Endothelial Nox4 dysfunction upregulated sEH to enhance inflammation, probably by its induction of ER stress. Inhibition of ER stress or sEH is beneficial to alleviate atherosclerosis caused by endothelial Nox4 dysfunction.
Collapse
Affiliation(s)
- Weimin Yu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| | - Lili Chen
- Wuhan Easy Diagnosis Biomedicine Co., Ltd, Wuhan, 430075, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
11
|
Zhang L, Li Y, Ma X, Liu J, Wang X, Zhang L, Li C, Li Y, Yang W. Ginsenoside Rg1-Notoginsenoside R1-Protocatechuic Aldehyde Reduces Atherosclerosis and Attenuates Low-Shear Stress-Induced Vascular Endothelial Cell Dysfunction. Front Pharmacol 2021; 11:588259. [PMID: 33568993 PMCID: PMC7868340 DOI: 10.3389/fphar.2020.588259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background: The Fufang Danshen formula is a clinically important anti-atherosclerotic preparation in traditional Chinese medicine. However, its anti-atherosclerotic effect is not well recognized, and the mechanisms of its combined active ingredients, namely Ginsenoside Rg1-Notoginsenoside R1-Protocatechuic aldehyde (RRP), remain unclear. The purpose of this study was to investigate the anti-atherosclerotic effects and potential mechanism of RRP in ApoE-/- mice and in low-shear stress-injured vascular endothelial cells. Methods: ApoE-/- mice were randomly divided into three groups: model group, rosuvastatin group, and RRP group, with C57BL/6J mice as the control group. Oil-red O, hematoxylin and eosin, Masson, and Movat staining were utilized for the observation of aortic plaque. Changes in the blood lipid indexes were observed with an automatic biochemistry analyzer. ET-1, eNOS, TXA2, and PGI2 levels were analyzed by enzyme-linked immunosorbent assay. In vitro, a fluid shear stress system was used to induce cell injury. Piezo1 expression in HUVECs was silenced using siRNA. Changes in morphology, proliferation, migration, and tube formation activity of cells were observed after RRP treatment. Quantitative Real-Time PCR and western blot analysis were employed to monitor mRNA and protein expression. Results: RRP treatment reduced the atherosclerotic area and lipid levels and improved endothelial function in ApoE-/- mice. RRP significantly repaired cell morphology, reduced excessive cell proliferation, and ameliorated migration and tube formation activity. In addition, RRP affected the FAK-PI3K/Akt signaling pathway. Importantly, Piezo1 silencing abolished the protective effects of RRP. Conclusion: RRP has anti-atherosclerotic effects and antagonizes endothelial cell damage via modulating the FAK-PI3K/Akt signaling pathway. Piezo1 is a possible target of RRP in the treatment of atherosclerosis. Thus, RRP has promising therapeutic potential and broad application prospect for atherosclerosis.
Collapse
Affiliation(s)
- Lei Zhang
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classic Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Ma
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiali Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojie Wang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxiao Zhang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classic Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Hasumi K, Suzuki E. Impact of SMTP Targeting Plasminogen and Soluble Epoxide Hydrolase on Thrombolysis, Inflammation, and Ischemic Stroke. Int J Mol Sci 2021; 22:954. [PMID: 33477998 PMCID: PMC7835936 DOI: 10.3390/ijms22020954] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Stachybotrys microspora triprenyl phenol (SMTP) is a large family of small molecules derived from the fungus S. microspora. SMTP acts as a zymogen modulator (specifically, plasminogen modulator) that alters plasminogen conformation to enhance its binding to fibrin and subsequent fibrinolysis. Certain SMTP congeners exert anti-inflammatory effects by targeting soluble epoxide hydrolase. SMTP congeners with both plasminogen modulation activity and anti-inflammatory activity ameliorate various aspects of ischemic stroke in rodents and primates. A remarkable feature of SMTP efficacy is the suppression of hemorrhagic transformation, which is exacerbated by conventional thrombolytic treatments. No drug with such properties has been developed yet, and SMTP would be the first to promote thrombolysis but suppress disease-associated bleeding. On the basis of these findings, one SMTP congener is under clinical study and development. This review summarizes the discovery, mechanism of action, pharmacological activities, and development of SMTP.
Collapse
Affiliation(s)
- Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Division of Research and Development, TMS Co., Ltd., Tokyo 183-0023, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| |
Collapse
|
13
|
Sun CP, Zhang XY, Morisseau C, Hwang SH, Zhang ZJ, Hammock BD, Ma XC. Discovery of Soluble Epoxide Hydrolase Inhibitors from Chemical Synthesis and Natural Products. J Med Chem 2020; 64:184-215. [PMID: 33369424 DOI: 10.1021/acs.jmedchem.0c01507] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an α/β hydrolase fold protein and widely distributed in numerous organs including the liver, kidney, and brain. The inhibition of sEH can effectively maintain endogenous epoxyeicosatrienoic acids (EETs) levels and reduce dihydroxyeicosatrienoic acids (DHETs) levels, resulting in therapeutic potentials for cardiovascular, central nervous system, and metabolic diseases. Therefore, since the beginning of this century, the development of sEH inhibitors is a hot research topic. A variety of potent sEH inhibitors have been developed by chemical synthesis or isolated from natural sources. In this review, we mainly summarized the interconnected aspects of sEH with cardiovascular, central nervous system, and metabolic diseases and then focus on representative inhibitors, which would provide some useful guidance for the future development of potential sEH inhibitors.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xin-Yue Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
14
|
Soluble Epoxide Hydrolase Inhibition in Liver Diseases: A Review of Current Research and Knowledge Gaps. BIOLOGY 2020; 9:biology9060124. [PMID: 32545637 PMCID: PMC7345757 DOI: 10.3390/biology9060124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that soluble epoxide hydrolase (sEH) inhibition is a valuable therapeutic strategy for the treatment of numerous diseases, including those of the liver. sEH rapidly degrades cytochrome P450-produced epoxygenated lipids (epoxy-fatty acids), which are synthesized from omega-3 and omega-6 polyunsaturated fatty acids, that generally exert beneficial effects on several cellular processes. sEH hydrolysis of epoxy-fatty acids produces dihydroxy-fatty acids which are typically less biologically active than their parent epoxide. Efforts to develop sEH inhibitors have made available numerous compounds that show therapeutic efficacy and a wide margin of safety in a variety of different diseases, including non-alcoholic fatty liver disease, liver fibrosis, portal hypertension, and others. This review summarizes research efforts which characterize the applications, underlying effects, and molecular mechanisms of sEH inhibitors in these liver diseases and identifies gaps in knowledge for future research.
Collapse
|
15
|
Sarı İ, Ökten H, Aktan Ç, Cihan E. Association of the sEH gene promoter polymorphisms and haplotypes with preeclampsia. J Med Biochem 2020; 39:428-435. [PMID: 33312058 DOI: 10.5937/jomb0-27745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background The epoxyeicosatrienoic acids (EETs) have antihypertensive, anti-inflammatory, and organ protective properties and their circulation levels are related to hypertension, diabetes mellitus, cardiovascular diseases, and preeclampsia. Soluble epoxide hydrolase (sEH) catalyses the degradation of EETs to less biologically active dihydroxyeicosatrienoic acids. Here, we sequenced the promoter region of EPHX2 to investigate the association between promoter sequence alterations that we thought to affect the expression levels of the enzyme and preeclampsia (PE). Methods Nucleotide sequencing of the promoter region of the EPHX2, spanning from position -671 to +30, was performed on 100 pregnant women with PE and, 20 or more weeks pregnant normotensive, healthy women (n=100). Results Pregnant women who carry rs4149235, rs4149232, rs73227309, and rs62504268 polymorphisms have 4.4, 2.4, 2.3, and 2.8 times significantly increased risk of PE, respectively. CCGG (OR: 3.11; 95% CI: 1.12-8.62) and CCCA (OR: 0.45; 95% CI: 0.36-0.55) haplotypes were associated with an increased and decreased risk of PE, respectively. Conclusions Four SNPs (rs4149232, rs4149235, rs73227309, and rs62504268) in the promoter region of the EPHX2, and CCGG and CCCA haplotypes of these 4 SNPs were significantly associated with PE. These SNPs in the promoter region may affect sEH expression and thus enzyme activity and may play a role in PE pathogenesis by causing individual differences in EET levels. However, future studies are needed to confirm our findings and examine the effect of these SNPs on the sEH expression and/or enzyme activity.
Collapse
Affiliation(s)
- İsmail Sarı
- Niğde Omer Halisdemir University, Faculty of Medicine, Department of Medical Biochemistry, Niğde, Turkey
| | - Hatice Ökten
- Beykent University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Çağdaş Aktan
- Beykent University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Esra Cihan
- Niğde Omer Halisdemir University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Niğde, Turkey
| |
Collapse
|
16
|
Peng H, Tang J, Zhao S, Shen L, Xu D. Inhibition of Soluble Epoxide Hydrolase in Macrophages Ameliorates the Formation of Foam Cells - Role of Heme Oxygenase-1. Circ J 2019; 83:2555-2566. [PMID: 31666457 DOI: 10.1253/circj.cj-19-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
BACKGROUND Accumulation of foam cells in the neointima represents an early stage of atherosclerosis. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHi), effectively elevates epoxyeicosatrienoic acid (EET) levels. The effects of EETs on macrophages foam cells formation are poorly understood. METHODS AND RESULTS Incubation of foam cells with TPPU markedly ameliorate cholesterol deposition in oxidized low-density lipoprotein (oxLDL)-loaded macrophages by increasing the levels of EETs. Notably, TPPU treatment significantly inhibits oxLDL internalization and promotes cholesterol efflux. The elevation of EETs results in a decrease of class A scavenger receptor (SR-A) expression via downregulation of activator protein 1 (AP-1) expression. Additionally, TPPU selectively increases protein but not the mRNA level of ATP-binding cassette transporter A1 (ABCA1) through the reduction of calpain activity that stabilizes the protein. Moreover, TPPU treatment reduces the cholesterol content of macrophages and inhibits atherosclerotic plaque formation in apolipoprotein E-deficient mice. These changes induced by TPPU are dependent on heme oxygenase-1 (HO-1) activation. CONCLUSIONS The present study findings elucidate a precise mechanism of regulating cholesterol uptake and efflux in macrophages, which involves the prevention of atherogenesis by increasing the levels of EETs with TPPU.
Collapse
Affiliation(s)
| | - Jianjun Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| |
Collapse
|
17
|
Lien CC, Chen CH, Lee YM, Guo BC, Cheng LC, Pan CC, Shyue SK, Lee TS. The phosphatase activity of soluble epoxide hydrolase regulates ATP-binding cassette transporter-A1-dependent cholesterol efflux. J Cell Mol Med 2019; 23:6611-6621. [PMID: 31436906 PMCID: PMC6787517 DOI: 10.1111/jcmm.14519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
The contribution of soluble epoxide hydrolase (sEH) to atherosclerosis has been well defined. However, less is understood about the role of sEH and its underlying mechanism in the cholesterol metabolism of macrophages. The expression of sEH protein was increased in atherosclerotic aortas of apolipoprotein E‐deficient mice, primarily in macrophage foam cells. Oxidized low‐density lipoprotein (oxLDL) increased sEH expression in macrophages. Genetic deletion of sEH (sEH−/−) in macrophages markedly exacerbated oxLDL‐induced lipid accumulation and decreased the expression of ATP‐binding cassette transporters‐A1 (ABCA1) and apolipoprotein AI‐dependent cholesterol efflux following oxLDL treatment. The down‐regulation of ABCA1 in sEH−/− macrophages was due to an increase in the turnover rate of ABCA1 protein but not in mRNA transcription. Inhibition of phosphatase activity, but not hydrolase activity, of sEH decreased ABCA1 expression and cholesterol efflux following oxLDL challenge, which resulted in increased cholesterol accumulation. Additionally, oxLDL increased the phosphatase activity, promoted the sEH‐ABCA1 complex formation and decreased the phosphorylated level of ABCA1 at threonine residues. Overexpression of phosphatase domain of sEH abrogated the oxLDL‐induced ABCA1 phosphorylation and further increased ABCA1 expression and cholesterol efflux, leading to the attenuation of oxLDL‐induced cholesterol accumulation. Our findings suggest that the phosphatase domain of sEH plays a crucial role in the cholesterol metabolism of macrophages.
Collapse
Affiliation(s)
- Chih-Chan Lien
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hui Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yeng-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ching Cheng
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ching-Chien Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Cansby E, Magnusson E, Nuñez-Durán E, Amrutkar M, Pedrelli M, Parini P, Hoffmann J, Ståhlman M, Howell BW, Marschall HU, Borén J, Mahlapuu M. STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2019; 38:1723-1737. [PMID: 29930001 DOI: 10.1161/atvbaha.118.311241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Recent cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), and especially nonalcoholic steatohepatitis (NASH), associate with atherosclerosis and cardiovascular disease, independently of conventional cardiometabolic risk factors. However, the mechanisms underlying the pathophysiological link between NAFLD/NASH and cardiovascular disease still remain unclear. Our previous studies have identified STK25 (serine/threonine protein kinase 25) as a critical determinant in ectopic lipid storage, meta-inflammation, and progression of NAFLD/NASH. The aim of this study was to assess whether STK25 is also one of the mediators in the complex molecular network controlling the cardiovascular disease risk. Approach and Results- Atherosclerosis was induced in Stk25 knockout and transgenic mice, and their wild-type littermates, by gene transfer of gain-of-function mutant of PCSK9 (proprotein convertase subtilisin/kexin type 9), which induces the downregulation of hepatic LDLR (low-density lipoprotein receptor), combined with an atherogenic western-type diet. We found that Stk25-/- mice displayed reduced atherosclerosis lesion area as well as decreased lipid accumulation, macrophage infiltration, collagen formation, and oxidative stress in aortic lesions compared with wild-type littermates, independently from alterations in dyslipidemia. Reciprocally, Stk25 transgenic mice presented aggravated plaque formation and maturation compared with wild-type littermates despite similar levels of fasting plasma cholesterol. We also found that STK25 protein was expressed in all layers of the aorta, suggesting a possible direct role in cardiovascular disease. Conclusions- This study provides the first evidence that STK25 plays a critical role in regulation of cardiovascular disease risk and suggests that pharmacological inhibition of STK25 function may provide new possibilities for prevention/treatment of atherosclerosis.
Collapse
Affiliation(s)
- Emmelie Cansby
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Elin Magnusson
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Esther Nuñez-Durán
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Manoj Amrutkar
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway (M.A.)
| | | | - Paolo Parini
- Department of Laboratory Medicine (M.P., P.P.).,Department of Medicine, Metabolism Unit (P.P.)
| | - Jenny Hoffmann
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | | | - Brian W Howell
- Karolinska Institute, Stockholm, Sweden; and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse (B.W.H.)
| | | | - Jan Borén
- Wallenberg Laboratory (M.S., H.-U.M., J.B.)
| | - Margit Mahlapuu
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| |
Collapse
|
19
|
Abstract
Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
20
|
Tang L, Wang G, Jiang L, Chen P, Wang W, Chen J, Wang L. Role of sEH R287Q in LDLR expression, LDL binding to LDLR and LDL internalization in BEL-7402 cells. Gene 2018; 667:95-100. [PMID: 29665449 DOI: 10.1016/j.gene.2018.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Familial hypercholesterolemia (FH) is an autosomal dominant disorder of cholesterol metabolism. Three recognized genes (LDLR, APOB and PCSK9) present in only 20-30% of patients with possible FH cases. Additional FH-causing genes need to be explored. The present study found an isolated gene change, sEH R287Q, in a core family of FH. In this study, we aimed to investigate the roles of R287Q on sEH expression and on LDLR expression, LDL binding to LDLR and LDL internalization. MATERIALS AND METHODS 167 lipid-related genes of a core FH family were sequenced using a gene-capture chip. Through carrier dependent protein expression, the expression level (western blot), hydrolase activity (fluorescent chemistry) and intracellular localization (immunofluorescence and Confocal Laser Scanning Microscope) of recombinant sEH R287Q in cultured BEL-7402 cells were conducted. The effect of wild type and R287Q of sEH on LDLR expression, LDL binding to LDLR and LDL internalization were also conducted through Flow Cytometry. RESULTS sEH R287Q was the only gene changes among 167 lipid-related genes in the FH core family. Both expression level and hydrolase activity of recombinant sEH R287Q in cultured cells were significantly declined compared with that of the wild type sEH. sEH R287Q also decreased the binding of LDL to LDLR and LDL internalization and had no effect on cell-surface LDLR protein level. CONCLUSION Our results suggest that sEH R287Q may have a role in the elevation of blood LDL in FH. The exactly role of sEH R287Q on FH deserves further study.
Collapse
Affiliation(s)
- Ling Tang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan 430030, China
| | - Guoliang Wang
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Long Jiang
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Panpan Chen
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; University of South China, Hengyang 421001, China
| | - Wei Wang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; The Affiliated Hospital of North China University of Science and Technology, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan 430030, China
| | - Luya Wang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
22
|
Wang Q, Liang Y, Qiao Y, Zhao X, Yang Y, Yang S, Li B, Zhao Q, Dong L, Quan S, Tian R, Liu Z. Expression of soluble epoxide hydrolase in renal tubular epithelial cells regulates macrophage infiltration and polarization in IgA nephropathy. Am J Physiol Renal Physiol 2018; 315:F915-F926. [PMID: 29717935 DOI: 10.1152/ajprenal.00534.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tubulointerstitial inflammatory cell infiltration and activation contribute to kidney inflammation and fibrosis. Epoxyeicosatrienoic acids (EETs), which are rapidly metabolized to dihydroxyeicosatrienoic acids by the soluble epoxide hydrolase (sEH), have multiple biological functions, including vasodilation, anti-inflammatory action, and others. Inhibition of sEH has been demonstrated to attenuate inflammation in many renal disease models. However, the relationship between sEH expression and macrophage polarization in the kidney remains unknown. In this study, we investigated the relationships between the level of sEH and clinical and pathological parameters in IgA nephropathy. The level of sEH expression positively correlated with proteinuria and infiltration of macrophages. sEH-positive tubules were found to be surrounded by macrophages. Furthermore, we found that incubation of immortalized human proximal tubular HK-2 cells with total urinary protein and overexpression of sEH promoted inflammatory factor production, which was associated with M1 polarization. We also exposed RAW264.7 mouse leukemic monocytes/macrophages to different HK-2 cell culture media conditioned by incubation with various substances affecting sEH amount or activity. We found that the upregulation of sEH promoted M1 polarization. However, pharmacological inhibition of sEH and supplementation with EETs reversed the conditioning effects of urinary proteins by inhibiting M1 polarization through the NF-κB pathway and stimulating M2 polarization through the phosphatidylinositol 3-kinase pathway. These data suggest that inhibition of sEH could be a new strategy to prevent the progression of inflammation and to attenuate renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Nephrology, Zhengzhou University , Zhengzhou , China
| | - Yan Liang
- Institute of Nephrology, Zhengzhou University , Zhengzhou , China.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yingjin Qiao
- Institute of Nephrology, Zhengzhou University , Zhengzhou , China.,Blood Purification Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Xiangya Zhao
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Yang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengnan Yang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Li
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qianru Zhao
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Dong
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songxia Quan
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Rui Tian
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Institute of Nephrology, Zhengzhou University , Zhengzhou , China.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
23
|
Swardfager W, Hennebelle M, Yu D, Hammock BD, Levitt AJ, Hashimoto K, Taha AY. Metabolic/inflammatory/vascular comorbidity in psychiatric disorders; soluble epoxide hydrolase (sEH) as a possible new target. Neurosci Biobehav Rev 2018; 87:56-66. [PMID: 29407524 DOI: 10.1016/j.neubiorev.2018.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
The common and severe psychiatric disorders, including major depressive disorder (MDD) and bipolar disorder (BD), are associated with inflammation, oxidative stress and changes in peripheral and brain lipid metabolism. Those pathways are implicated in the premature development of vascular and metabolic comorbidities, which account for considerable morbidity and mortality, including increased dementia risk. During endoplasmic reticulum stress, the soluble epoxide hydrolase (sEH) enzyme converts anti-inflammatory fatty acid epoxides generated by cytochrome p450 enzymes into their corresponding and generally less anti-inflammatory, or even pro-inflammatory, diols, slowing the resolution of inflammation. The sEH enzyme and its oxylipin products are elevated post-mortem in MDD, BD and schizophrenia. Preliminary clinical data suggest that oxylipins increase with symptoms in seasonal MDD and anorexia nervosa, requiring confirmation in larger studies and other cohorts. In rats, a soluble sEH inhibitor mitigated the development of depressive-like behaviors. We discuss sEH inhibitors under development for cardiovascular diseases, post-ischemic brain injury, neuropathic pain and diabetes, suggesting new possibilities to address the mood and cognitive symptoms of psychiatric disorders, and their most common comorbidities.
Collapse
Affiliation(s)
- W Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; University Health Network Toronto Rehabilitation Institute, Toronto, Canada.
| | - M Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - D Yu
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - B D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center UCDMC, University of California, Davis, CA, USA
| | - A J Levitt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - K Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - A Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
24
|
Li B, Lu X, Wang J, He X, Gu Q, Wang L, Yang Y. The metabonomics study of P-selectin glycoprotein ligand-1 (PSGL-1) deficiency inhibiting the progression of atherosclerosis in LDLR -/- mice. Int J Biol Sci 2018; 14:36-46. [PMID: 29483823 PMCID: PMC5821047 DOI: 10.7150/ijbs.23082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 01/24/2023] Open
Abstract
Atherosclerosis (AS) is a multi-factorial chronic disease commonly associated with the mechanisms of metabolism disorder, endothelial dysfunction and chronic inflammation. AS an inflammatory molecule, p-selectin glycoprotein ligand-1 (PSGL-1) played an important role in the inflammatory process of atherogenesis involving the recruitment of leukocyte and transmitting signals to activate leukocyte during the adhesion process. So far, there has been little study regarding the effects of PSGL-1 on AS progression and the metabolic regulation. In this report, we studied the effect of PSGL-1 deficiency on the formation and progression of AS and the metabolic regulation by use of LDLR-/-, PSGL-1-/- transgenic mice based on metabonomics. It was found that the PSGL-1 deficiency reduced the atherosclerotic plaque area, inflammatory cells infiltration and fiber hyperplasia during the AS development. The serum metabonomics study showed that the LDLR-/- ,PSGL-1-/- mice had higher levels of HDL, valine, acetate, pyruvate, choline, PC, GPC and glycine, and lower levels of LDL+VLDL and lactate at the early stage of atherosclerosis, while lactate, citrate and glutamine showed statistical significance at the late stage of atherosclerosis. These results showed that the PSGL-1 deficiency inhibited the AS progression and regulated glucose metabolism, lipid metabolism, amino acid and phospholipid metabolism in LDLR-/- mice.
Collapse
Affiliation(s)
- Binglin Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xin Lu
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jia Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Quliang Gu
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yongxia Yang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| |
Collapse
|
25
|
Liu Y, Fang X, Zhang X, Huang J, He J, Peng L, Ye C, Wang Y, Xue F, Ai D, Li D, Zhu Y. Metabolic profiling of murine plasma reveals eicosapentaenoic acid metabolites protecting against endothelial activation and atherosclerosis. Br J Pharmacol 2017; 175:1190-1204. [PMID: 28771708 DOI: 10.1111/bph.13971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis results from a maladaptive inflammatory response initiated by the intramural retention of LDL in susceptible areas of the arterial vasculature. The ω-3 polyunsaturated fatty acids (ω-3) have protective effects in atherosclerosis; however, their molecular mechanism is still largely unknown. The present study used a metabolomic approach to reveal the atheroprotective metabolites of ω-3 and investigate the underlying mechanisms. EXPERIMENTAL APPROACH We evaluated the development of atherosclerosis in LDL receptor-deficient mice (LDLR-/- ) fed a Western-type diet (WTD) plus ω-3 and also LDLR-/- and fat-1 transgenic (LDLR-/- -fat-1tg ) mice fed a WTD. The profiles of ω-3 in the plasma were screened by LC-MS/MS using unbiased systematic metabolomics analysis. We also studied the effect of metabolites of eicosapentaenoic acid (EPA) on endothelial activation in vitro. KEY RESULTS The ω-3 diet and fat-1 transgene decreased monocyte infiltration, inhibited the expression of pro-inflammatory genes and significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in LDLR-/- mice. The content of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EEQ), from the cytochrome P450 pathway of EPA, was significantly higher in plasma from both ω-3-treated LDLR-/- and LDLR-/- -fat-1tg mice as compared with WTD-fed LDLR-/- mice. In vitro in endothelial cells, 18-HEPE or 17,18-EEQ decreased inflammatory gene expression induced by TNFα via NF-κB signalling and thereby inhibited monocyte adhesion to endothelial cells. CONCLUSIONS AND IMPLICATIONS EPA protected against the development of atherosclerosis in atheroprone mice via the metabolites 18-HEPE and/or 17,18-EEQ, which reduced endothelial activation. These compounds may have therapeutic implications in atherosclerosis. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuan Fang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing Huang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Liyuan Peng
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Dan Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|