1
|
Li N, Pi C, Zhu S, Li X, Wang L, Shi P, Zuo Y, Zheng W, Jiang J, Yang Y, Zhang Q, Tao L, Chu S, Wei Y, Zhao L. Opportunities for the treatment of atherosclerosis: selectins. Pharmacol Res 2025:107807. [PMID: 40449813 DOI: 10.1016/j.phrs.2025.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/17/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Despite the widespread availability of selectins for tumor therapy, their contribution to atherosclerosis has long been under-emphasized due to their "cofactor's" status and technological limitations. However, advances in immunohistology, glycomics, and related technologies require us to reassess their relationship. Thus, this review identifies pivotal translational opportunities from the intricate mechanisms and explores the clinical promise of selectins in the diagnosis and treatment of atherosclerosis based on the latest clinical research. This review provides insights into selectin-specific tracers and inhibitors, providing lessons for more precise diagnosis and treatment of patients with atherosclerosis.
Collapse
Affiliation(s)
- Nong Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Chao Pi
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Siying Zhu
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xiumei Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Liu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Peng Shi
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Jun Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Qiong Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Lei Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College.
| | - Yumeng Wei
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
2
|
Ren S, Peng H, Zhang J, Yang J, He Y, Sun Z, Wang G. A genome-wide association study of escitalopram treatment outcomes in patients with major depressive disorder. Gene 2024; 926:148596. [PMID: 38782219 DOI: 10.1016/j.gene.2024.148596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Major depressive disorder (MDD) is a common psychological condition, the consequences of which, such as suicide, can be severe. Escitalopram, a selective serotonin reuptake inhibitor, is a commonly used antidepressant in clinics. However, more than one-third of patients with MDD do not respond to this drug. Gene polymorphism may affect the efficacy of escitalopram, but the genetic architecture of the antidepressant response in patients with MDD remains unclear. We perform a genome-wide association study (GWAS) of the genetic effect on the outcome of escitalopram in patients with MDD. A total of 203 patients with MDD and 176 healthy control (HC) adults were recruited from Beijing Anding Hospital. Patients received 12 weeks of antidepressant treatment with escitalopram. The Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR) or Hamilton depression scale (HAMD) were used to evaluate the severity of depression symptoms at the baseline and the end of 2 and 12 weeks of treatment. A total of 140 variants in MDD patients were identified by GWAS to have genome-wide significance (p < 5e - 8) compared with HCs. Similarly, 189 and 18 variants were identified to be associated with QIDS-SR and HAMD score changes in patients after antidepressant treatment (p < 1e - 5), including rs12602361, rs72799048, rs16842235, and rs2518256. In the two weeks QIDS-SR score study, the gene-level association for these variants and gene set enrichment analyses implicate the enrichment of genes involved in the synaptic plasticity process and nervous system development. Our results implicate the predictive capacity of the effect of escitalopram treatment, supporting a link between genetic basis and remission of depression.
Collapse
Affiliation(s)
- Siyu Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - He Peng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jinniu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Wang J, He Y, Zhou D. The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:827-839. [PMID: 37688775 DOI: 10.1080/14728222.2023.2257888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of diverse ubiquitination events in endothelial cells, discussing the fundamental role of ubiquitination mediated regulations involving in endothelial dysfunction to provide potential therapeutic targets for sepsis. EXPERT OPINION The central event underlying sepsis syndrome is the overwhelming host inflammatory response to the pathogen infection, leading to endothelial dysfunction. As the key components of the ubiquitin system, E3 ligases are at the center stage of the battle between host and microbial pathogens. Such a variety of ubiquitination regulates a multitude of cellular regulatory processes, including signal transduction, autophagy, inflammasome activation, redox reaction and immune response and so forth. In this review, we discuss the many mechanisms of ubiquitination-mediated regulation with a focus on those that modulate endothelial function to provide potential therapeutic targets for the management of sepsis.
Collapse
Affiliation(s)
- Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
4
|
Gao J, Zou Y, Wu XJ, Xu Y, Zhu XQ, Zheng WB. Differential miRNA expression profiles in the bone marrow of Beagle dogs at different stages of Toxocara canis infection. BMC Genomics 2022; 23:847. [PMID: 36544082 PMCID: PMC9773451 DOI: 10.1186/s12864-022-09081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toxocara canis is distributed worldwide, posing a serious threat to both human and dog health; however, the pathogenesis of T. canis infection in dogs remains unclear. In this study, the changes in microRNA (miRNA) expression profiles in the bone marrow of Beagle dogs were investigated by RNA-seq and bioinformatics analysis. RESULTS Thirty-nine differentially expressed (DE) miRNAs (DEmiRNAs) were identified in this study. Among these, four DEmiRNAs were identified at 24 h post-infection (hpi) and all were up-regulated; eight DEmiRNAs were identified with two up-regulated miRNAs and six down-regulated miRNAs at 96 hpi; 27 DEmiRNAs were identified with 13 up-regulated miRNAs and 14 down-regulated miRNAs at 36 days post-infection (dpi). Among these DEmiRNAs, cfa-miR-193b participates in the immune response by regulating the target gene cd22 at 24 hpi. The novel_328 could participate in the inflammatory and immune responses through regulating the target genes tgfb1 and tespa1, enhancing the immune response of the host and inhibiting the infection of T. canis at 96 hpi. In addition, cfa-miR-331 and novel_129 were associated with immune response and self-protection mechanisms at 36 dpi. 20 pathways were significantly enriched by KEGG pathway analysis, most of which were related to inflammatory response, immune response and cell differentiation, such as Cell adhesion molecules (CAMs), ECM-receptor interaction and Focal adhesion. CONCLUSIONS These findings suggested that miRNAs of Beagle dog bone marrow play important roles in the pathogenesis of T. canis infection in dogs and provided useful resources to better understand the interaction between T. canis and the hosts.
Collapse
Affiliation(s)
- Jin Gao
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yang Zou
- grid.454892.60000 0001 0018 8988State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu Province China
| | - Xiao-Jing Wu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yue Xu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Xing-Quan Zhu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China ,grid.410696.c0000 0004 1761 2898Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan Province China
| | - Wen-Bin Zheng
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| |
Collapse
|
5
|
Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Cancer Res 2021; 81:4652-4667. [PMID: 34183354 PMCID: PMC9397617 DOI: 10.1158/0008-5472.can-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Collapse
Affiliation(s)
- Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Juan M. González-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Corresponding Author: Zuzana Keckesova, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 16000, Czech Republic. Phone: 420-2201-83584; E-mail:
| |
Collapse
|
6
|
Pan W, Zhang Z, Kimball H, Qu F, Berlind K, Stopsack KH, Lee GSM, Choueiri TK, Kantoff PW. Abiraterone Acetate Induces CREB1 Phosphorylation and Enhances the Function of the CBP-p300 Complex, Leading to Resistance in Prostate Cancer Cells. Clin Cancer Res 2021; 27:2087-2099. [PMID: 33495313 DOI: 10.1158/1078-0432.ccr-20-4391] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Abiraterone acetate (AA), an inhibitor of cytochrome P450 17alpha-hydroxylase/17, 20 lyase, is an FDA-approved drug for advanced prostate cancer. However, not all patients respond to AA, and AA resistance ultimately develops in patients who initially respond. We aimed to identify AA resistance mechanisms in prostate cancer cells. EXPERIMENTAL DESIGN We established several AA-resistant cell lines and performed a comprehensive study on mechanisms involved in AA resistance development. RNA sequencing and phospho-kinase array screenings were performed to discover that the cAMP-response element CRE binding protein 1 (CREB1) was a critical molecule in AA resistance development. RESULTS The drug-resistant cell lines are phenotypically stable without drug selection, and exhibit permanent global gene expression changes. The phosphorylated CREB1 (pCREB1) is increased in AA-resistant cell lines and is critical in controlling global gene expression. Upregulation of pCREB1 desensitized prostate cancer cells to AA, while blocking CREB1 phosphorylation resensitized AA-resistant cells to AA. AA treatment increases intracellular cyclic AMP (cAMP) levels, induces kinases activity, and leads to the phosphorylation of CREB1, which may subsequently augment the essential role of the CBP/p300 complex in AA-resistant cells because AA-resistant cells exhibit a relatively higher sensitivity to CBP/p300 inhibitors. Further pharmacokinetics studies demonstrated that AA significantly synergizes with CBP/p300 inhibitors in limiting the growth of prostate cancer cells. CONCLUSIONS Our studies suggest that AA treatment upregulates pCREB1, which enhances CBP/p300 activity, leading to global gene expression alterations, subsequently resulting in drug resistance development. Combining AA with therapies targeting resistance mechanisms may provide a more effective treatment strategy.
Collapse
Affiliation(s)
- Wenting Pan
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zhouwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hannah Kimball
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Fangfang Qu
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kyler Berlind
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gwo-Shu Mary Lee
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
7
|
Soda K, Nakada Y, Iwanari H, Hamakubo T. AT2 receptor interacting protein 1 (ATIP1) mediates COX-2 induction by an AT2 receptor agonist in endothelial cells. Biochem Biophys Rep 2020; 24:100850. [PMID: 33381664 PMCID: PMC7767795 DOI: 10.1016/j.bbrep.2020.100850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023] Open
Abstract
Angiotensin II (Ang II) type 2 receptor (AT2R) is one of the major components of the renin-angiotensin-aldosterone system. Nevertheless, the physiological role is not well defined compared to the understanding of the Ang II type 1 receptor (AT1R), which is a well characterized G-protein coupled receptor in the cardiovascular system. While the AT2R signaling pathway remains unclear, AT2 receptor interacting protein 1 (ATIP1) has been identified as a candidate molecule for interacting with the C-terminal region of AT2R. In this study, we investigated the ATIP1 dependent AT2R inducible genes in human umbilical vein endothelial cells (HUVECs). CGP42112A, an AT2R specific agonist, resulted in an upregulation of inflammatory genes in HUVECs, which were inhibited by knocking down ATIP1 with siRNA (siATIP1). Among them, we confirmed by quantitative PCR that the induction of COX-2 mRNA expression was significantly downregulated by siATIP1. COX-2 was also upregulated by Ang II stimulation. This upregulation was suppressed by treatment with the AT2R specific antagonist PD123319, which was not replicated by the AT1R antagonist telmisartan. These findings suggest that ATIP1 plays an important role in AT2R dependent inflammatory responses. This may provide a new approach to the development of cardio-protective drugs. Only the AT2 receptor interacting protein 1 (ATIP1) of ATIP isoforms expresses in endothelial cells. A novel anti-ATIP monoclonal antibody detected endogenous ATIP1 and revealed ATIP1 localization in endothelial cells. AT2 receptor (AT2R) agonist stimulation induced inflammatory gene expression via ATIP1 in endothelial cells. An AT2R specific inhibitor blocks the Ang II induction of COX-2 mRNA in endothelial cells. There is the AT2R-ATIP1 related pathway of COX-2 induction in endothelial cells.
Collapse
Affiliation(s)
- Keita Soda
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Protein - Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yoshiko Nakada
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Protein - Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
8
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
9
|
Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat Commun 2019; 10:4179. [PMID: 31519890 PMCID: PMC6744497 DOI: 10.1038/s41467-019-12081-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. Surgical weight-loss interventions improve insulin sensitivity via incompletely understood mechanisms. Here the authors assess skeletal muscle epigenetic changes in individuals with obesity following metabolic surgery and compare them with data from individuals without obesity.
Collapse
|
10
|
Wu X, Chen L, Zeb F, Huang Y, An J, Ren J, Yang F, Feng Q. Regulation of circadian rhythms by NEAT1 mediated TMAO-induced endothelial proliferation: A protective role of asparagus extract. Exp Cell Res 2019; 382:111451. [PMID: 31173767 DOI: 10.1016/j.yexcr.2019.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
Trimethylamine N-oxide (TMAO) promotes atherosclerosis in association with the functions of endothelial cells. Clock and Bmal1, as two main components of molecular circadian clock, play important regulatory roles during progression of atherogenesis. However, whether Clock and Bmal1 are involved in the regulation of endothelial proliferation disturbed by TMAO are unclear. We observed that cell proliferation of human umbilical vein endothelial cells (HUVECs) was inhibited after exposed to TMAO for 24 h. Besides, TMAO caused increased expression of lncRNA-NEAT1, Clock and Bmal1, and inhibited MAPK pathways. While MAPK pathways were blocked, the expression of Clock and Bmal1 was elevated. NEAT1 showed a circadian rhythmic expression in HUVECs, and its overexpression reduced cell proliferation. Knockdown or overexpression of NEAT1 might decrease or increase the expression of Clock and Bmal1 respectively, while raised or suppressed the expression of MAPK pathways correspondingly. Asparagus extract (AE) was found to improve the TMAO-reduced HUVECs proliferation. Moreover, it ameliorated the disorders of NEAT1, Clock, Bmal1, and MAPK signaling pathways induced by TMAO. Therefore, our findings indicated that NEAT1 regulating Clock-Bmal1 via MAPK pathways was involved in TMAO-repressed HUVECs proliferation, and AE improved endothelial proliferation by TMAO, proposing a novel mechanism for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxiang Huang
- Asparagus Engineering Technology Research Centre of Hebei, Qinhuangdao, 066004, China
| | - Jing An
- Asparagus Engineering Technology Research Centre of Hebei, Qinhuangdao, 066004, China
| | - Jianglei Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Yang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers. Int J Mol Sci 2018; 19:ijms19082218. [PMID: 30061496 PMCID: PMC6121245 DOI: 10.3390/ijms19082218] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022] Open
Abstract
Type I disorders of glycosylation (CDG), the most frequent of which is phosphomannomutase 2 (PMM2-CDG), are a group of diseases causing the incomplete N-glycosylation of proteins. PMM2-CDG is an autosomal recessive disease with a large phenotypic spectrum, and is associated with mutations in the PMM2 gene. The biochemical analysis of mutants does not allow a precise genotype⁻phenotype correlation for PMM2-CDG. PMM2 is very tolerant to missense and loss of function mutations, suggesting that a partial deficiency of activity might be beneficial under certain circumstances. The patient phenotype might be influenced by variants in other genes associated with the type I disorders of glycosylation in the general population.
Collapse
|
12
|
Wang Y, Huang Y, Liu Y, Li J, Hao Y, Yin P, Liu Z, Chen J, Wang Y, Wang N, Zhang P. Microtubule associated tumor suppressor 1 interacts with mitofusins to regulate mitochondrial morphology in endothelial cells. FASEB J 2018; 32:4504-4518. [PMID: 29558204 DOI: 10.1096/fj.201701143rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondria are dynamic organelles that are able to change their morphology and cellular distribution by either fission or fusion. However, the molecular mechanisms controlling mitochondrial dynamics in vascular endothelial cells (ECs) remain largely unknown. In this study, we observed that knockdown of microtubule-associated tumor suppressor 1 (MTUS1) in ECs inhibited tube formation and migration, accompanied with decreased promigratory signalings. We showed that MTUS1 was localized in the outer membrane of mitochondria in ECs. Knockdown of MTUS1 disturbed the elongated mitochondrial network and induced the formation of perinuclear clusters of mitochondria. Importantly, mitochondrial motility and fusion were suppressed, whereas generation of reactive oxygen species was increased in MTUS1 knockdown ECs. Mechanistically, we showed that the N-terminal coiled-coil domain of MTUS1 interacted with the mitochondrial membrane proteins, mitofusin-1 and mitofusin-2, to maintain mitochondrial morphology in ECs. This study illustrated a novel role of MTUS1 in mitochondrial morphology and EC angiogenic responses.-Wang, Y., Huang, Y., Liu, Y., Li, J., Hao, Y., Yin, P., Liu, Z., Chen, J., Wang, Y., Wang, N., Zhang, P. Microtubule associated tumor suppressor 1 interacts with mitofusins to regulate mitochondrial morphology in endothelial cells.
Collapse
Affiliation(s)
- Yinfang Wang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youbin Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinping Li
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilong Hao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peihao Yin
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongjun Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzhou Chen
- Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Bozgeyik I, Yumrutas O, Bozgeyik E. MTUS1, a gene encoding angiotensin-II type 2 (AT2) receptor-interacting proteins, in health and disease, with special emphasis on its role in carcinogenesis. Gene 2017; 626:54-63. [PMID: 28499941 DOI: 10.1016/j.gene.2017.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 01/13/2023]
Abstract
Loss of tumor suppressor activity is a frequent event in the formation and progression of tumors and has been listed as an important hallmark of cancers. Microtubule-Associated Scaffold Protein 1 (MTUS1) is a candidate tumor suppressor gene which is reported to be frequently down-regulated in a variety of human cancers including pancreas, colon, bladder, head-and-neck, ovarian, breast cancers, gastric, lung cancers. It is also reported to be implicated in several types of pathologies such as cardiac hypertrophy, atherosclerosis, and SLE-like lymphoproliferative diseases. Moreover, MTUS1-encoded proteins are shown to be involved in the regulation of vital cellular processes such as proliferation, differentiation, DNA repair, inflammation, vascular remodeling and senescence. However, the current knowledge is very limited about the role of this gene in human cancers as well as other type diseases. Besides, there is no literature report which summarizes and criticizes the importance of MTUS1 in the cellular processes, especially in the processes of carcinogenesis. Accordingly, in this comprehensive review, we tried to shed light on the role of tumor suppressor MTUS1/ATIP in health and disease, putting special emphasis on its role in the development and progression of human cancers as well as associated molecular mechanisms and the reasons behind MTUS1/ATIP deficiency, which have been not well documented previously.
Collapse
Affiliation(s)
- Ibrahim Bozgeyik
- Adiyaman University, Faculty of Medicine, Department of Medical Biology, Adiyaman, Turkey.
| | - Onder Yumrutas
- Adiyaman University, Faculty of Medicine, Department of Medical Biology, Adiyaman, Turkey
| | - Esra Bozgeyik
- University of Gaziantep, Faculty of Medicine, Department of Medical Biology and Genetics, Gaziantep, Turkey
| |
Collapse
|