1
|
Love D, Slovisky M, Costa KA, Megarani D, Mehdi Q, Colombo V, Ivantsova E, Subramaniam K, Bowden JA, Bisesi JH, Martyniuk CJ. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2530-2544. [PMID: 39291828 DOI: 10.1002/etc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. β-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation β1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of β-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;43:2530-2544. © 2024 SETAC.
Collapse
Affiliation(s)
- Deirdre Love
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Megan Slovisky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaylie Anne Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Dorothea Megarani
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Qaim Mehdi
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Vincent Colombo
- Department of Animal Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Emma Ivantsova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodelling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024; 40:2569-2588. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling and diastolic function. The clinical significance of T-tubules has become evident in that their remodelling is recognised as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodelling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction, implying that T-tubule remodelling may play a crucial pathophysiologic role in HFrEF. While research on the functional importance of T-tubules is ongoing, T-tubule remodelling has been found to be reversible. That finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodelling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
3
|
Andersen S, Axelsen JS, Nielsen‐Kudsk AH, Schwab J, Jensen CD, Ringgaard S, Andersen A, Smal R, Llucià‐Valldeperas A, Handoko de Man F, Igreja B, Pires N. Effects of dopamine β-hydroxylase inhibition in pressure overload-induced right ventricular failure. Pulm Circ 2024; 14:e70008. [PMID: 39539945 PMCID: PMC11558268 DOI: 10.1002/pul2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Activation of the sympathetic nervous system is observed in pulmonary arterial hypertension patients. This study investigates whether inhibiting the conversion of dopamine into noradrenaline by dopamine β-hydroxylase (DβH) inhibition with BIA 21-5337 improved right ventricular (RV) function or remodeling in pressure overload-induced RV failure. RV failure was induced in male Wistar rats by pulmonary trunk banding (PTB). Two weeks after the procedure, PTB rats were randomized to vehicle (n = 8) or BIA 21-5337 (n = 11) treatment. An additional PTB group treated with ivabradine (n = 11) was included to control for the potential heart rate-reducing effects of BIA 21-5337. A sham group (n = 6) received vehicle treatment. After 5 weeks of treatment, RV function was assessed by echocardiography, magnetic resonance imaging, and invasive pressure-volume measurements before rats were euthanized. RV myocardium was analyzed to evaluate RV remodeling. PTB caused a fourfold increase in RV afterload which led to RV dysfunction, remodeling, and failure. Treatment with BIA 21-5337 reduced adrenal gland DβH activity and 24-h urinary noradrenaline levels confirming relevant physiological response to the treatment. At end-of-study, there were no differences in RV function or RV remodeling between BIA 21-5337 and vehicle-treated rats. In conclusion, treatment with BIA 21-5337 did not have any beneficial-nor adverse-effects on the development of RV failure after PTB despite reduced adrenal gland DβH activity.
Collapse
Affiliation(s)
- Stine Andersen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Julie Sørensen Axelsen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anders H. Nielsen‐Kudsk
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Janne Schwab
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Caroline D. Jensen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research CentreAarhus UniversityAarhusDenmark
| | - Asger Andersen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rowan Smal
- Department of PulmonologyAmsterdam University Medical CentreAmsterdamThe Netherlands
| | | | | | - Bruno Igreja
- Department of ResearchBIAL, Portela & Cª, S.A.CoronadoS. Romão e S. MamedePortugal
| | - Nuno Pires
- Department of ResearchBIAL, Portela & Cª, S.A.CoronadoS. Romão e S. MamedePortugal
| |
Collapse
|
4
|
Kwan ED, Hardie BA, Garcia KM, Mu H, Wang TM, Valdez-Jasso D. Sex-dependent remodeling of right ventricular function in a rat model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2024; 327:H351-H363. [PMID: 38847755 PMCID: PMC11932540 DOI: 10.1152/ajpheart.00098.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/17/2024]
Abstract
Right ventricular (RV) function is an important prognostic indicator for pulmonary arterial hypertension (PAH), a vasculopathy that primarily and disproportionally affects women with distinct pre- and postmenopausal clinical outcomes. However, most animal studies have overlooked the impact of sex and ovarian hormones on RV remodeling in PAH. Here, we combined invasive measurements of RV hemodynamics and morphology with computational models of RV biomechanics in sugen-hypoxia (SuHx)-treated male, ovary-intact female, and ovariectomized female rats. Despite similar pressure overload levels, SuHx induced increases in end-diastolic elastance and passive myocardial stiffening, notably in male SuHx animals, corresponding to elevated diastolic intracellular calcium. Increases in end-systolic chamber elastance were largely explained by myocardial hypertrophy in male and ovary-intact female rats, whereas ovariectomized females exhibited contractility recruitment via calcium transient augmentation. Ovary-intact female rats primarily responded with hypertrophy, showing fewer myocardial mechanical alterations and less stiffening. These findings highlight sex-related RV remodeling differences in rats, affecting systolic and diastolic RV function in PAH.NEW & NOTEWORTHY Combining hemodynamic and morphological measurements from male, female, and ovariectomized female pulmonary arterial hypertension (PAH) rats revealed distinct adaptation mechanisms despite similar pressure overload. Males showed the most diastolic stiffening. Ovariectomized females had enhanced myocyte contractility and calcium transient upregulation. Ovary-intact females primarily responded with hypertrophy, experiencing milder passive myocardial stiffening and no changes in myocyte shortening. These findings suggest potential sex-specific pathways in right ventricular (RV) adaptation to PAH, with implications for targeted interventions.
Collapse
MESH Headings
- Animals
- Female
- Male
- Ventricular Function, Right
- Ventricular Remodeling
- Disease Models, Animal
- Rats, Sprague-Dawley
- Ovariectomy
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/etiology
- Sex Factors
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Rats
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/etiology
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Models, Cardiovascular
- Calcium Signaling
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/etiology
- Hemodynamics
Collapse
Affiliation(s)
- Ethan D Kwan
- Shu Chien-Gene Ley Department of BioengineeringUniversity of California, San Diego, La Jolla, California, United States
| | - Becky A Hardie
- Shu Chien-Gene Ley Department of BioengineeringUniversity of California, San Diego, La Jolla, California, United States
| | - Kristen M Garcia
- Shu Chien-Gene Ley Department of BioengineeringUniversity of California, San Diego, La Jolla, California, United States
| | - Hao Mu
- Shu Chien-Gene Ley Department of BioengineeringUniversity of California, San Diego, La Jolla, California, United States
| | - Tsui-Min Wang
- Shu Chien-Gene Ley Department of BioengineeringUniversity of California, San Diego, La Jolla, California, United States
| | - Daniela Valdez-Jasso
- Shu Chien-Gene Ley Department of BioengineeringUniversity of California, San Diego, La Jolla, California, United States
| |
Collapse
|
5
|
Chinnappa S, Maqbool A, Viswambharan H, Mooney A, Denby L, Drinkhill M. Beta Blockade Prevents Cardiac Morphological and Molecular Remodelling in Experimental Uremia. Int J Mol Sci 2023; 25:373. [PMID: 38203544 PMCID: PMC10778728 DOI: 10.3390/ijms25010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Heart failure and chronic kidney disease (CKD) share several mediators of cardiac pathological remodelling. Akin to heart failure, this remodelling sets in motion a vicious cycle of progressive pathological hypertrophy and myocardial dysfunction in CKD. Several decades of heart failure research have shown that beta blockade is a powerful tool in preventing cardiac remodelling and breaking this vicious cycle. This phenomenon remains hitherto untested in CKD. Therefore, we set out to test the hypothesis that beta blockade prevents cardiac pathological remodelling in experimental uremia. Wistar rats had subtotal nephrectomy or sham surgery and were followed up for 10 weeks. The animals were randomly allocated to the beta blocker metoprolol (10 mg/kg/day) or vehicle. In vivo and in vitro cardiac assessments were performed. Cardiac tissue was extracted, and protein expression was quantified using immunoblotting. Histological analyses were performed to quantify myocardial fibrosis. Beta blockade attenuated cardiac pathological remodelling in nephrectomised animals. The echocardiographic left ventricular mass and the heart weight to tibial length ratio were significantly lower in nephrectomised animals treated with metoprolol. Furthermore, beta blockade attenuated myocardial fibrosis associated with subtotal nephrectomy. In addition, the Ca++- calmodulin-dependent kinase II (CAMKII) pathway was shown to be activated in uremia and attenuated by beta blockade, offering a potential mechanism of action. In conclusion, beta blockade attenuated hypertrophic signalling pathways and ameliorated cardiac pathological remodelling in experimental uremia. The study provides a strong scientific rationale for repurposing beta blockers, a tried and tested treatment in heart failure, for the benefit of patients with CKD.
Collapse
Affiliation(s)
- Shanmugakumar Chinnappa
- Department of Nephrology, Doncaster and Bassetlaw Teaching Hospitals NHS Trust, Doncaster DN2 5LT, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| | - Andrew Mooney
- Department of Nephrology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| | - Laura Denby
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Mark Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| |
Collapse
|
6
|
Roubenne L, Laisné M, Benoist D, Campagnac M, Prunet B, Pasdois P, Cardouat G, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Le Grand B, Freund-Michel V, Guibert C. OP2113, a new drug for chronic hypoxia-induced pulmonary hypertension treatment in rat. Br J Pharmacol 2023; 180:2802-2821. [PMID: 37351910 DOI: 10.1111/bph.16174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary hypertension (PH) is a cardiovascular disease characterised by an increase in pulmonary arterial (PA) resistance leading to right ventricular (RV) failure. Reactive oxygen species (ROS) play a major role in PH. OP2113 is a drug with beneficial effects on cardiac injuries that targets mitochondrial ROS. The aim of the study was to address the in vivo therapeutic effect of OP2113 in PH. EXPERIMENTAL APPROACH PH was induced by 3 weeks of chronic hypoxia (CH-PH) in rats treated with OP2113 or its vehicle via subcutaneous osmotic mini-pumps. Haemodynamic parameters and both PA and heart remodelling were assessed. Reactivity was quantified in PA rings and in RV or left ventricular (LV) cardiomyocytes. Oxidative stress was detected by electron paramagnetic resonance and western blotting. Mitochondrial mass and respiration were measured by western blotting and oxygraphy, respectively. KEY RESULTS In CH-PH rats, OP2113 reduced the mean PA pressure, PA remodelling, PA hyperreactivity in response to 5-HT, the contraction slowdown in RV and LV and increased the mitochondrial mass in RV. Interestingly, OP2113 had no effect on haemodynamic parameters, both PA and RV wall thickness and PA reactivity, in control rats. Whereas oxidative stress was evidenced by an increase in protein carbonylation in CH-PH, this was not affected by OP2113. CONCLUSION AND IMPLICATIONS Our study provides evidence for a selective protective effect of OP2113 in vivo on alterations in both PA and RV from CH-PH rats without side effects in control rats.
Collapse
Affiliation(s)
- Lukas Roubenne
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- OP2 Drugs SAS, Pessac, France
| | - Margaux Laisné
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | - David Benoist
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, F-33000, Bordeaux, France
| | | | | | - Philippe Pasdois
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, F-33000, Bordeaux, France
| | | | - Thomas Ducret
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | | | - Pierre Vacher
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | | | - Roger Marthan
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, INSERM, U 1045, Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, INSERM, U 1045, Bordeaux, France
| | | | | | | |
Collapse
|
7
|
Hurley ME, White E, Sheard TMD, Steele D, Jayasinghe I. Correlative super-resolution analysis of cardiac calcium sparks and their molecular origins in health and disease. Open Biol 2023; 13:230045. [PMID: 37220792 PMCID: PMC10205181 DOI: 10.1098/rsob.230045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Rapid release of calcium from internal stores via ryanodine receptors (RyRs) is one of the fastest types of cytoplasmic second messenger signalling in excitable cells. In the heart, rapid summation of the elementary events of calcium release, 'calcium sparks', determine the contraction of the myocardium. We adapted a correlative super-resolution microscopy protocol to correlate sub-plasmalemmal spontaneous calcium sparks in rat right ventricular myocytes with the local nanoscale RyR2 positions. This revealed a steep relationship between the integral of a calcium spark and the sum of the local RyR2s. Segmentation of recurring spark sites showed evidence of repeated and triggered saltatory activation of multiple local RyR2 clusters. In myocytes taken from failing right ventricles, RyR2 clusters themselves showed a dissipated morphology and fragmented (smaller) clusters. They also featured greater heterogeneity in both the spark properties and the relationship between the integral of the calcium spark and the local ensemble of RyR2s. While fragmented (smaller) RyR2 clusters were rarely observed directly underlying the larger sparks or the recurring spark sites, local interrogation of the channel-to-channel distances confirmed a clear link between the positions of each calcium spark and the tight, non-random clustering of the local RyR2 in both healthy and failing ventricles.
Collapse
Affiliation(s)
- Miriam E. Hurley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ed White
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas M. D. Sheard
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Izzy Jayasinghe
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Liu T, Li X, Wang Y, Zhou M, Liang F. Computational modeling of electromechanical coupling in human cardiomyocyte applied to study hypertrophic cardiomyopathy and its drug response. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107372. [PMID: 36736134 DOI: 10.1016/j.cmpb.2023.107372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Knowledge of electromechanical coupling in cardiomyocyte and how it is influenced by various pathophysiological factors is fundamental to understanding the pathogenesis of myocardial disease and its response to medication, which is however hard to be thoroughly addressed by clinical/experimental studies due to technical limitations. At this point, computational modeling offers an alternative approach. The main objective of the study was to develop a computational model capable of simulating the process of electromechanical coupling and quantifying the roles of various factors in play in the human left ventricular cardiomyocyte. METHODS A new electrophysiological model was firstly built by combining several existing electrophysiological models and incorporating the mechanism of electrophysiological homeostasis, which was subsequently coupled to models representing the cross-bridge dynamics and active force generation during excitation-contraction coupling and the passive mechanical properties of cardiomyocyte to yield an integrative electromechanical model. Model parameters were calibrated or optimized based on a large amount of experimental data. The resulting model was applied to delineate the characteristics of electromechanical coupling and explore underlying determinant factors in hypertrophic cardiomyopathy (HCM) cardiomyocyte, as well as quantify their changes in response to different medications. RESULTS Model predictions captured the major electromechanical characteristics of cardiomyocyte under both normal physiological and HCM conditions. In comparison with normal cardiomyocyte, HCM cardiomyocyte suffered from systemic changes in both electrophysiological and mechanical variables. Numerical simulations of drug response revealed that Mavacamten and Metoprolol could both reduce the active contractility and alleviate calcium overload but had marked differential influences on many other electromechanical variables, which theoretically explained why the two drugs have differential therapeutic effects. In addition, our numerical experiments demonstrated the important role of compensatory ion transport in maintaining electrophysiological homeostasis and regulating cytoplasmic volume. CONCLUSIONS A sophisticated computational model has the advantage of providing quantitative and integrative insights for understanding the pathogenesis and drug responses of HCM or other myocardial diseases at the level of cardiomyocyte, and hence may contribute as a useful complement to clinical/experimental studies. The model may also be coupled to tissue- or organ-level models to strengthen the physiological implications of macro-scale numerical simulations.
Collapse
Affiliation(s)
- Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xuanyu Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 19991, Russia.
| |
Collapse
|
9
|
Increased Mitochondrial Calcium Fluxes in Hypertrophic Right Ventricular Cardiomyocytes from a Rat Model of Pulmonary Artery Hypertension. Life (Basel) 2023; 13:life13020540. [PMID: 36836897 PMCID: PMC9967871 DOI: 10.3390/life13020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pulmonary artery hypertension causes right ventricular hypertrophy which rapidly progresses to heart failure with underlying cardiac mitochondrial dysfunction. Prior to failure, there are alterations in cytosolic Ca2+ handling that might impact mitochondrial function in the compensatory phase of RV hypertrophy. Our aims, therefore, were (i) to measure beat-to-beat mitochondrial Ca2+ fluxes, and (ii) to determine mitochondrial abundance and function in non-failing, hypertrophic cardiomyocytes. Male Wistar rats were injected with either saline (CON) or monocrotaline (MCT) to induce pulmonary artery hypertension and RV hypertrophy after four weeks. Cytosolic Ca2+ ([Ca2+]cyto) transients were obtained in isolated right ventricular (RV) cardiomyocytes, and mitochondrial Ca2+ ([Ca2+]mito) was recorded in separate RV cardiomyocytes. The distribution and abundance of key proteins was determined using confocal and stimulated emission depletion (STED) microscopy. The RV mitochondrial function was also assessed in RV homogenates using oxygraphy. The MCT cardiomyocytes had increased area, larger [Ca2+]cyto transients, increased Ca2+ store content, and faster trans-sarcolemmal Ca2+ extrusion relative to CON. The MCT cardiomyocytes also had larger [Ca2+]mito transients. STED images detected increased mitochondrial protein abundance (TOM20 clusters per μm2) in MCT, yet no difference was found when comparing mitochondrial respiration and membrane potential between the groups. We suggest that the larger [Ca2+]mito transients compensate to match ATP supply to the increased energy demands of hypertrophic cardiomyocytes.
Collapse
|
10
|
Sheard TMD, Hurley ME, Smith AJ, Colyer J, White E, Jayasinghe I. Three-dimensional visualization of the cardiac ryanodine receptor clusters and the molecular-scale fraying of dyads. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210316. [PMID: 36189802 PMCID: PMC9527906 DOI: 10.1098/rstb.2021.0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Clusters of ryanodine receptor calcium channels (RyRs) form the primary molecular machinery of intracellular calcium signalling in cardiomyocytes. While a range of optical super-resolution microscopy techniques have revealed the nanoscale structure of these clusters, the three-dimensional (3D) nanoscale topologies of the clusters have remained mostly unresolved. In this paper, we demonstrate the exploitation of molecular-scale resolution in enhanced expansion microscopy (EExM) along with various 2D and 3D visualization strategies to observe the topological complexities, geometries and molecular sub-domains within the RyR clusters. Notably, we observed sub-domains containing RyR-binding protein junctophilin-2 (JPH2) occupying the central regions of RyR clusters in the deeper interior of the myocytes (including dyads), while the poles were typically devoid of JPH2, lending to a looser RyR arrangement. By contrast, peripheral RyR clusters exhibited variable co-clustering patterns and ratios between RyR and JPH2. EExM images of dyadic RyR clusters in right ventricular (RV) myocytes isolated from rats with monocrotaline-induced RV failure revealed hallmarks of RyR cluster fragmentation accompanied by breaches in the JPH2 sub-domains. Frayed RyR patterns observed adjacent to these constitute new evidence that the destabilization of the RyR arrays inside the JPH2 sub-domains may seed the primordial foci of dyad remodelling observed in heart failure. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Thomas M. D. Sheard
- School of Biosciences, Faculty of Science, University of Sheffield, Sheffield S10 2TN, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Miriam E. Hurley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew J. Smith
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John Colyer
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ed White
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Izzy Jayasinghe
- School of Biosciences, Faculty of Science, University of Sheffield, Sheffield S10 2TN, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Wu J, Liu T, Shi S, Fan Z, Hiram R, Xiong F, Cui B, Su X, Chang R, Zhang W, Yan M, Tang Y, Huang H, Wu G, Huang C. Dapagliflozin reduces the vulnerability of rats with pulmonary arterial hypertension-induced right heart failure to ventricular arrhythmia by restoring calcium handling. Cardiovasc Diabetol 2022; 21:197. [PMID: 36171554 PMCID: PMC9516842 DOI: 10.1186/s12933-022-01614-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
Background Malignant ventricular arrhythmia (VA) is a major contributor to sudden cardiac death (SCD) in patients with pulmonary arterial hypertension (PAH)-induced right heart failure (RHF). Recently, dapagliflozin (DAPA), a sodium/glucose cotransporter-2 inhibitor (SGLT2i), has been found to exhibit cardioprotective effects in patients with left ventricular systolic dysfunction. In this study, we examined the effects of DAPA on VA vulnerability in a rat model of PAH-induced RHF. Methods Rats randomly received monocrotaline (MCT, 60 mg/kg) or vehicle via a single intraperitoneal injection. A day later, MCT-injected rats were randomly treated with placebo, low-dose DAPA (1 mg/kg/day), or high-dose (3 mg/kg/day) DAPA orally for 35 days. Echocardiographic analysis, haemodynamic experiments, and histological assessments were subsequently performed to confirm the presence of PAH-induced RHF. Right ventricle (RV) expression of calcium (Ca2+) handling proteins were detected via Western blotting. RV expression of connexin 43 (Cx43) was determined via immunohistochemical staining. An optical mapping study was performed to assess the electrophysiological characteristics in isolated hearts. Cellular Ca2+ imaging from RV cardiomyocytes (RVCMs) was recorded using Fura-2 AM or Fluo-4 AM. Results High-dose DAPA treatment attenuated RV structural remodelling, improved RV function, alleviated Cx43 remodelling, increased the conduction velocity, restored the expression of key Ca2+ handling proteins, increased the threshold for Ca2+ and action potential duration (APD) alternans, decreased susceptibility to spatially discordant APD alternans and spontaneous Ca2+ events, promoted cellular Ca2+ handling, and reduced VA vulnerability in PAH-induced RHF rats. Low-dose DAPA treatment also showed antiarrhythmic effects in hearts with PAH-induced RHF, although with a lower level of efficacy. Conclusion DAPA administration reduced VA vulnerability in rats with PAH-induced RHF by improving RVCM Ca2+ handling. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01614-5.
Collapse
Affiliation(s)
- Jinchun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Department of Cardiology, Qinghai Provincial People's Hospital, No.2 Gong He Road, Xining, 810007, People's Republic of China
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Zhixing Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Montreal, QC, Canada
| | - Feng Xiong
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Montreal, QC, Canada
| | - Bo Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, No.2 Gong He Road, Xining, 810007, People's Republic of China
| | - Rong Chang
- Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, No. 187 Guanlan Road, Longhua District, Shenzhen, 518109, China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Min Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
12
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
13
|
Badagliacca R, Mercurio V, Romeo E, Correale M, Masarone D, Papa S, Tocchetti C, Agostoni P. Beta-blockers in pulmonary arterial hypertension: Time for a second thought? Vascul Pharmacol 2022; 144:106974. [DOI: 10.1016/j.vph.2022.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
|
14
|
miR-1226-3p Promotes eNOS Expression of Pulmonary Arterial Endothelial Cells to Mitigate Hypertension in Rats via Targeting Profilin-1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1724722. [PMID: 34778448 PMCID: PMC8580645 DOI: 10.1155/2021/1724722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022]
Abstract
In pulmonary arterial hypertension (PAH), microRNAs (miRNAs) are related with dysfunction of pulmonary arterial endothelial cells. miR-1226-3p was found to be downregulated in the serum of PAH patients, while few studies have illustrated the regulation mechanism of miR-1226-3p on PAH. In this study, we aimed to systematically investigate the role of miR-1226-3p in PAH. Sprague-Dawley (SD) rats were treated with monocrotaline (MCT) to establish the PAH models. The right ventricular systolic pressure (RVSP), ratio of the right ventricle to the left ventricle with septum (RV/(LV+S) ratio), and nitric oxide (NO) content were used to reflect the symptom of the rats. The rat models were used to observe the regulation mechanism of miR-1226-3p on PAH, and dual-luciferase reporter assay was used to verify the binding effect of miR-1226-3p to Pfn1. Besides, the qRT-PCR and western blot were used to measure the expression levels of miR-1226-3p and some keys proteins such as eNOS and Pfn1, respectively. The results showed that the PAH models were established successfully. The RVSP levels and the RV/(LV+S) ratio of the PAH rats were higher than those indexes in normal rats, while the NO content showed the opposite trends. Besides, the decreased miR-1226-3p and eNOS were, respectively, found in the PAH rats and rPAECs, and overexpressed miR-1226-3p could reverse the disadvantages of the PAH rats including increased RVSP, high RV/(LV+S) ratio, and decreased NO content. Furthermore, miR-1226-3p could directly target the 3'-UTR of Profilin-1 (Pfn1). Overexpressed Pfn1 led to decreased eNOS, while miR-1226-3p could partly inhibit the expression of Pfn1 and increase the expression level of eNOS in rPAECs. In summary, this study suggests miR-1226-3p as a protector to increase eNOS, improve NO content in rPAECs of the PAH rats via targeting Pfn, and finally protect the rats from the injury induced by PAH.
Collapse
|
15
|
Reddy SA, Nethercott SL, Khialani BV, Grace AA, Martin CA. Management of arrhythmias in pulmonary hypertension. J Interv Card Electrophysiol 2021; 62:219-229. [DOI: 10.1007/s10840-021-00988-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/28/2021] [Indexed: 12/24/2022]
|
16
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
17
|
Silva FDJ, Drummond FR, Fidelis MR, Freitas MO, Leal TF, de Rezende LMT, de Moura AG, Carlo Reis EC, Natali AJ. Continuous Aerobic Exercise Prevents Detrimental Remodeling and Right Heart Myocyte Contraction and Calcium Cycling Dysfunction in Pulmonary Artery Hypertension. J Cardiovasc Pharmacol 2021; 77:69-78. [PMID: 33060546 DOI: 10.1097/fjc.0000000000000928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pulmonary artery hypertension (PAH) imposes right heart and lung detrimental remodeling which impairs cardiac contractility, physical effort tolerance, and survival. The effects of an early moderate-intensity continuous aerobic exercise training on the right ventricle and lung structure, and on contractility and the calcium (Ca2+) transient in isolated myocytes from rats with severe PAH induced by monocrotaline were analyzed. Rats were divided into control sedentary (CS), control exercise (CE), monocrotaline sedentary (MS), and monocrotaline exercise (ME) groups. Animals from control exercise and ME groups underwent a moderate-intensity aerobic exercise on a treadmill (60 min/d; 60% intensity) for 32 days, after a monocrotaline (60 mg/kg body weight i.p.) or saline injection. The pulmonary artery resistance was higher in MS than in control sedentary (1.36-fold) and was reduced by 39.39% in ME compared with MS. Compared with MS, the ME group presented reduced alveolus (17%) and blood vessel (46%) wall, fibrosis (25.37%) and type I collagen content (55.78%), and increased alveolus (52.96%) and blood vessel (146.97%) lumen. In the right ventricle, the ME group exhibited diminished hypertrophy index (25.53%) and type I collagen content (40.42%) and improved myocyte contraction [ie, reduced times to peak (29.27%) and to 50% relax (13.79%)] and intracellular Ca2+ transient [ie, decreased times to peak (16.06%) and to 50% decay (7.41%)] compared with MS. Thus, early moderate-intensity continuous aerobic exercise prevents detrimental remodeling in the right heart and lung increases in the pulmonary artery resistance and dysfunction in single myocyte contraction and Ca2+ cycling in this model.
Collapse
MESH Headings
- Airway Remodeling
- Animals
- Arterial Pressure
- Calcium Signaling
- Disease Models, Animal
- Exercise Therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Male
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/therapy
- Pulmonary Artery/physiopathology
- Rats, Wistar
- Vascular Resistance
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
| | - Filipe Rios Drummond
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil; and
| | | | | | - Tiago Ferreira Leal
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
18
|
Medvedev R, Sanchez-Alonso JL, Alvarez-Laviada A, Rossi S, Dries E, Schorn T, Abdul-Salam VB, Trayanova N, Wojciak-Stothard B, Miragoli M, Faggian G, Gorelik J. Nanoscale Study of Calcium Handling Remodeling in Right Ventricular Cardiomyocytes Following Pulmonary Hypertension. Hypertension 2020; 77:605-616. [PMID: 33356404 DOI: 10.1161/hypertensionaha.120.14858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension is a complex disorder characterized by pulmonary vascular remodeling and right ventricular hypertrophy, leading to right heart failure. The mechanisms underlying this process are not well understood. We hypothesize that the structural remodeling occurring in the cardiomyocytes of the right ventricle affects the cytosolic Ca2+ handling leading to arrhythmias. After 12 days of monocrotaline-induced pulmonary hypertension in rats, epicardial mapping showed electrical remodeling in both ventricles. In myocytes isolated from the hypertensive rats, a combination of high-speed camera and confocal line-scan documented a prolongation of Ca2+ transients along with a higher local Ca2+-release activity. These Ca2+ transients were less synchronous than in controls, likely due to disorganized transverse-axial tubular system. In fact, following pulmonary hypertension, hypertrophied right ventricular myocytes showed significantly reduced number of transverse tubules and increased number of axial tubules; however, Stimulation Emission Depletion microscopy demonstrated that the colocalization of L-type Ca2+ channels and RyR2 (ryanodine receptor 2) remained unchanged. Finally, Stimulation Emission Depletion microscopy and super-resolution scanning patch-clamp analysis uncovered a decrease in the density of active L-type Ca2+ channels in right ventricular myocytes with an elevated open probability of the T-tubule anchored channels. This may represent a general mechanism of how nanoscale structural changes at the early stage of pulmonary hypertension impact on the development of the end stage failing phenotype in the right ventricle.
Collapse
Affiliation(s)
- Roman Medvedev
- From the Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, Italy (R.M., G.F.).,National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | - Eef Dries
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Lab of Experimental Cardiology, University of Leuven, Belgium (E.D.)
| | - Tilo Schorn
- Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Vahitha B Abdul-Salam
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Natalia Trayanova
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation; Johns Hopkins University; Baltimore, MD (N.T.)
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | | | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| |
Collapse
|
19
|
The Protective Effect of Qishen Granule on Heart Failure after Myocardial Infarction through Regulation of Calcium Homeostasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1868974. [PMID: 33149749 PMCID: PMC7603572 DOI: 10.1155/2020/1868974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Qishen granule (QSG) is a frequently prescribed traditional Chinese medicine formula, which improves heart function in patients with heart failure (HF). However, the cardioprotective mechanisms of QSG have not been fully understood. The current study aimed to elucidate whether the effect of QSG is mediated by ameliorating cytoplasmic calcium (Ca2+) overload in cardiomyocytes. The HF rat model was induced by left anterior descending (LAD) artery ligation surgery. Rats were randomly divided into sham, model, QSG-low dosage (QSG-L) treatment, QSG-high dosage (QSG-H) treatment, and positive drug (diltiazem) treatment groups. 28 days after surgery, cardiac functions were assessed by echocardiography. Levels of norepinephrine (NE) and angiotensin II (AngII) in the plasma were evaluated. Expressions of critical proteins in the calcium signaling pathway, including cell membrane calcium channel CaV1.2, sarcoendoplasmic reticulum ATPase 2a (SERCA2a), calcium/calmodulin-dependent protein kinase type II (CaMKII), and protein phosphatase calcineurin (CaN), were measured by Western blotting (WB) and immunohistochemistry (IHC). Echocardiography showed that left ventricular ejection fraction (EF) and fractional shortening (FS) value significantly decreased in the model group compared to the sham group, and illustrating heart function was severely impaired. Furthermore, levels of NE and AngII in the plasma were dramatically increased. Expressions of CaV1.2, CaMKII, and CaN in the cardiomyocytes were upregulated, and expressions of SERCA2a were downregulated in the model group. After treatment with QSG, both EF and FS values were increased. QSG significantly reduced levels of NE and AngII in the plasma. In particular, QSG prevented cytoplasmic Ca2+ overload by downregulating expression of CaV1.2 and upregulating expression of SERCA2a. Meanwhile, expressions of CaMKII and CaN were inhibited by QSG treatment. In conclusion, QSG could effectively promote heart function in HF rats by restoring cardiac Ca2+ homeostasis. These findings revealed novel therapeutic mechanisms of QSG and provided potential targets in the treatment of HF.
Collapse
|
20
|
Zhao J, Lei Y, Yang Y, Gao H, Gai Z, Li X. Metoprolol alleviates arginine vasopressin-induced cardiomyocyte hypertrophy by upregulating the AKT1-SERCA2 cascade in H9C2 cells. Cell Biosci 2020; 10:72. [PMID: 32489586 PMCID: PMC7247229 DOI: 10.1186/s13578-020-00434-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arginine vasopressin (AVP) is elevated in patients with heart failure, and the increase in the AVP concentration in plasma is positively correlated with disease severity and mortality. Metoprolol (Met) is a beta blocker that is widely used in the clinic to treat pathological cardiac hypertrophy and to improve heart function. However, the specific mechanism by which Met alleviates AVP-induced pathological cardiac hypertrophy is still unknown. Our current study aimed to evaluate the inhibitory effects of Met on AVP-induced cardiomyocyte hypertrophy and the underlying mechanisms. METHODS AVP alone or AVP plus Met was added to the wild type or AKT1-overexpressing rat cardiac H9C2 cell line. The cell surface areas and ANP/BNP/β-MHC expressions were used to evaluate the levels of hypertrophy. Western bolting was used to analyze AKT1/P-AKT1, AKT2/P-AKT2, total AKT, SERCA2, and Phospholamban (PLN) expression. Fluo3-AM was used to measure the intracellular Ca2+ stores. RESULTS In the current study, we found that AKT1 but not AKT2 mediated the pathogenesis of AVP-induced cardiomyocyte hypertrophy. Sustained stimulation (48 h) with AVP led to hypertrophy in the H9C2 rat cardiomyocytes, resulting in the downregulation of AKT1 (0.48 fold compared to control) and SERCA2 (0.62 fold), the upregulation of PLN (1.32 fold), and the increase in the cytoplasmic calcium concentration (1.52 fold). In addition, AKT1 overexpression increased the expression of SERCA2 (1.34 fold) and decreased the expression of PLN (0.48 fold) in the H9C2 cells. Moreover, we found that Met could attenuate the AVP-induced changes in AKT1, SERCA2 and PLN expression and decreased the cytoplasmic calcium concentration in the H9C2 cells. CONCLUSIONS Our results demonstrated that the AKT1-SERCA2 cascade served as an important regulatory pathway in AVP-induced pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jieqiong Zhao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| | - Yonghong Lei
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing, 100853 People’s Republic of China
| | - Yanping Yang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| | - Haibo Gao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| | - Zhongchao Gai
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 Shaanxi People’s Republic of China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi People’s Republic of China
| |
Collapse
|
21
|
Antigny F, Mercier O, Humbert M, Sabourin J. Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Arch Cardiovasc Dis 2020; 113:70-84. [DOI: 10.1016/j.acvd.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/09/2023]
|
22
|
Soares LL, Drummond FR, Rezende LMT, Lopes Dantas Costa AJ, Leal TF, Fidelis MR, Neves MM, Prímola-Gomes TN, Carneiro-Junior MA, Carlo Reis EC, Natali AJ. Voluntary running counteracts right ventricular adverse remodeling and myocyte contraction impairment in pulmonary arterial hypertension model. Life Sci 2019; 238:116974. [DOI: 10.1016/j.lfs.2019.116974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
23
|
Fowler ED, Hauton D, Boyle J, Egginton S, Steele DS, White E. Energy Metabolism in the Failing Right Ventricle: Limitations of Oxygen Delivery and the Creatine Kinase System. Int J Mol Sci 2019; 20:E1805. [PMID: 31013688 PMCID: PMC6514649 DOI: 10.3390/ijms20081805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) results in hypertrophic remodeling of the right ventricle (RV) to overcome increased pulmonary pressure. This increases the O2 consumption of the myocardium, and without a concomitant increase in energy generation, a mismatch with demand may occur. Eventually, RV function can no longer be sustained, and RV failure occurs. Beta-adrenergic blockers (BB) are thought to improve survival in left heart failure, in part by reducing energy expenditure and hypertrophy, however they are not currently a therapy for PAH. The monocrotaline (MCT) rat model of PAH was used to investigate the consequence of RV failure on myocardial oxygenation and mitochondrial function. A second group of MCT rats was treated daily with the beta-1 blocker metoprolol (MCT + BB). Histology confirmed reduced capillary density and increased capillary supply area without indications of capillary rarefaction in MCT rats. A computer model of O2 flux was applied to the experimentally recorded capillary locations and predicted a reduction in mean tissue PO2 in MCT rats. The fraction of hypoxic tissue (defined as PO2 < 0.5 mmHg) was reduced following beta-1 blocker (BB) treatment. The functionality of the creatine kinase (CK) energy shuttle was measured in permeabilized RV myocytes by sequential ADP titrations in the presence and absence of creatine. Creatine significantly decreased the KmADP in cells from saline-injected control (CON) rats, but not MCT rats. The difference in KmADP with or without creatine was not different in MCT + BB cells compared to CON or MCT cells. Improved myocardial energetics could contribute to improved survival of PAH with chronic BB treatment.
Collapse
Affiliation(s)
- Ewan D Fowler
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK.
- Cardiac Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| | - David Hauton
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK.
- Metabolomics Research Group, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK.
| | - John Boyle
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK.
| | - Stuart Egginton
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK.
| | - Derek S Steele
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK.
| | - Ed White
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
24
|
Power AS, Norman R, Jones TLM, Hickey AJ, Ward ML. Mitochondrial function remains impaired in the hypertrophied right ventricle of pulmonary hypertensive rats following short duration metoprolol treatment. PLoS One 2019; 14:e0214740. [PMID: 30964911 PMCID: PMC6456253 DOI: 10.1371/journal.pone.0214740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) increases the work of the right ventricle (RV) and causes right-sided heart failure. This study examined RV mitochondrial function and ADP transfer in PH animals advancing to right heart failure, and investigated a potential therapy with the specific β1-adrenergic-blocker metoprolol. Adult Wistar rats (317 ± 4 g) were injected either with monocrotaline (MCT, 60 mg kg-1) to induce PH, or with an equivalent volume of saline for controls (CON). At three weeks post-injection the MCT rats began oral metoprolol (10 mg kg-1 day-1-) or placebo treatment until heart failure was observed in the MCT group. Mitochondrial function was then measured using high-resolution respirometry from permeabilised RV fibres. Relative to controls, MCT animals had impaired mitochondrial function but maintained coupling between myofibrillar ATPases and mitochondria, despite an increase in ADP diffusion distances. Cardiomyocytes from the RV of MCT rats were enlarged, primarily due to an increase in myofibrillar protein. The ratio of mitochondria per myofilament area was decreased in both MCT groups (p ≤ 0.05) in comparison to control (CON: 1.03 ± 0.04; MCT: 0.74 ± 0.04; MCT + BB: 0.74 ± 0.03). This not only implicates impaired energy production in PH, but also increases the diffusion distance for metabolites within the MCT cardiomyocytes, adding an additional hindrance to energy supply. Together, these changes may limit energy supply in MCT rat hearts, particularly at high cardiac workloads. Metoprolol treatment did not delay the onset of heart failure symptoms, improve mitochondrial function, or regress RV hypertrophy.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (M-L W); (ASP)
| | - Ruth Norman
- School of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Timothy L. M. Jones
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony J. Hickey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (M-L W); (ASP)
| |
Collapse
|
25
|
Sheard TD, Hurley ME, Colyer J, White E, Norman R, Pervolaraki E, Narayanasamy KK, Hou Y, Kirton HM, Yang Z, Hunter L, Shim JU, Clowsley AH, Smith AJ, Baddeley D, Soeller C, Colman MA, Jayasinghe I. Three-Dimensional and Chemical Mapping of Intracellular Signaling Nanodomains in Health and Disease with Enhanced Expansion Microscopy. ACS NANO 2019; 13:2143-2157. [PMID: 30715853 PMCID: PMC6396323 DOI: 10.1021/acsnano.8b08742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/04/2019] [Indexed: 05/08/2023]
Abstract
Nanodomains are intracellular foci which transduce signals between major cellular compartments. One of the most ubiquitous signal transducers, the ryanodine receptor (RyR) calcium channel, is tightly clustered within these nanodomains. Super-resolution microscopy has previously been used to visualize RyR clusters near the cell surface. A majority of nanodomains located deeper within cells have remained unresolved due to limited imaging depths and axial resolution of these modalities. A series of enhancements made to expansion microscopy allowed individual RyRs to be resolved within planar nanodomains at the cell periphery and the curved nanodomains located deeper within the interiors of cardiomyocytes. With a resolution of ∼ 15 nm, we localized both the position of RyRs and their individual phosphorylation for the residue Ser2808. With a three-dimensional imaging protocol, we observed disturbances to the RyR arrays in the nanometer scale which accompanied right-heart failure caused by pulmonary hypertension. The disease coincided with a distinct gradient of RyR hyperphosphorylation from the edge of the nanodomain toward the center, not seen in healthy cells. This spatial profile appeared to contrast distinctly from that sustained by the cells during acute, physiological hyperphosphorylation when they were stimulated with a β-adrenergic agonist. Simulations of RyR arrays based on the experimentally determined channel positions and phosphorylation signatures showed how the nanoscale dispersal of the RyRs during pathology diminishes its intrinsic likelihood to ignite a calcium signal. It also revealed that the natural topography of RyR phosphorylation could offset potential heterogeneity in nanodomain excitability which may arise from such RyR reorganization.
Collapse
Affiliation(s)
- Thomas
M. D. Sheard
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Miriam E. Hurley
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John Colyer
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ed White
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ruth Norman
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eleftheria Pervolaraki
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kaarjel K. Narayanasamy
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yufeng Hou
- Institute
of Experimental Medical Research, Oslo University
Hospital Ullevål, Oslo 0407, Norway
| | - Hannah M. Kirton
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Zhaokang Yang
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Liam Hunter
- School
of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jung-uk Shim
- School
of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Andrew J. Smith
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David Baddeley
- Auckland
Bioengineering Institute, University of
Auckland, UniServices
House, Level, 6/70 Symonds St, Grafton, Auckland 1010, New Zealand
| | - Christian Soeller
- Living
Systems Institute, University of Exeter, Devon EX4 4QL, United Kingdom
| | - Michael A. Colman
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Izzy Jayasinghe
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
26
|
Viswanathan G, Mamazhakypov A, Schermuly RT, Rajagopal S. The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Front Cardiovasc Med 2018; 5:179. [PMID: 30619886 PMCID: PMC6305072 DOI: 10.3389/fcvm.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH.
Collapse
Affiliation(s)
- Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|