1
|
Cull J, Cooper S, Alharbi H, Chothani S, Rackham O, Meijles D, Dash P, Kerkelä R, Ruparelia N, Sugden P, Clerk A. Striatin plays a major role in angiotensin II-induced cardiomyocyte and cardiac hypertrophy in mice in vivo. Clin Sci (Lond) 2024; 138:573-597. [PMID: 38718356 PMCID: PMC11130554 DOI: 10.1042/cs20240496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Sonia P. Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Owen J.L. Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
- School of Biological Sciences, University of Southampton, Southampton, U.K
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Philip R. Dash
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Centre Oulu (Oulu University Hospital) and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Neil Ruparelia
- School of Biological Sciences, University of Reading, Reading, U.K
- Department of Cardiology, Royal Berkshire Hospital, Reading, U.K
| | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
2
|
Zhang M, Zhang Z, Li H, Xia Y, Xing M, Xiao C, Cai W, Bu L, Li Y, Park TE, Tang Y, Ye X, Lin WJ. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer's disease. Transl Neurodegener 2024; 13:1. [PMID: 38173017 PMCID: PMC10763201 DOI: 10.1186/s40035-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the predominant type of dementia worldwide. It is characterized by the progressive and irreversible decline of cognitive functions. In addition to the pathological beta-amyloid (Aβ) deposition, glial activation, and neuronal injury in the postmortem brains of AD patients, increasing evidence suggests that the often overlooked vascular dysfunction is an important early event in AD pathophysiology. Vascular endothelial growth factor (VEGF) plays a critical role in regulating physiological functions and pathological changes in blood vessels, but whether VEGF is involved in the early stage of vascular pathology in AD remains unclear. METHODS We used an antiangiogenic agent for clinical cancer treatment, the humanized monoclonal anti-VEGF antibody bevacizumab, to block VEGF binding to its receptors in the 5×FAD mouse model at an early age. After treatment, memory performance was evaluated by a novel object recognition test, and cerebral vascular permeability and perfusion were examined by an Evans blue assay and blood flow scanning imaging analysis. Immunofluorescence staining was used to measure glial activation and Aβ deposits. VEGF and its receptors were analyzed by enzyme-linked immunosorbent assay and immunoblotting. RNA sequencing was performed to elucidate bevacizumab-associated transcriptional signatures in the hippocampus of 5×FAD mice. RESULTS Bevacizumab treatment administered from 4 months of age dramatically improved cerebrovascular functions, reduced glial activation, and restored long-term memory in both sexes of 5×FAD mice. Notably, a sex-specific change in different VEGF receptors was identified in the cortex and hippocampus of 5×FAD mice. Soluble VEGFR1 was decreased in female mice, while full-length VEGFR2 was increased in male mice. Bevacizumab treatment reversed the altered expression of receptors to be comparable to the level in the wild-type mice. Gene Set Enrichment Analysis of transcriptomic changes revealed that bevacizumab effectively reversed the changes in the gene sets associated with blood-brain barrier integrity and vascular smooth muscle contraction in 5×FAD mice. CONCLUSIONS Our study demonstrated the mechanistic roles of VEGF at the early stage of amyloidopathy and the protective effects of bevacizumab on cerebrovascular function and memory performance in 5×FAD mice. These findings also suggest the therapeutic potential of bevacizumab for the early intervention of AD.
Collapse
Affiliation(s)
- Min Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Honghong Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuting Xia
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Mengdan Xing
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lulu Bu
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yamei Tang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
3
|
Borger M, von Haefen C, Bührer C, Endesfelder S. Cardioprotective Effects of Dexmedetomidine in an Oxidative-Stress In Vitro Model of Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2023; 12:1206. [PMID: 37371938 DOI: 10.3390/antiox12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm birth is a risk factor for cardiometabolic disease. The preterm heart before terminal differentiation is in a phase that is crucial for the number and structure of cardiomyocytes in further development, with adverse effects of hypoxic and hyperoxic events. Pharmacological intervention could attenuate the negative effects of oxygen. Dexmedetomidine (DEX) is an α2-adrenoceptor agonist and has been mentioned in connection with cardio-protective benefits. In this study, H9c2 myocytes and primary fetal rat cardiomyocytes (NRCM) were cultured for 24 h under hypoxic condition (5% O2), corresponding to fetal physioxia (pO2 32-45 mmHg), ambient oxygen (21% O2, pO2 ~150 mmHg), or hyperoxic conditions (80% O2, pO2 ~300 mmHg). Subsequently, the effects of DEX preconditioning (0.1 µM, 1 µM, 10 µM) were analyzed. Modulated oxygen tension reduced both proliferating cardiomyocytes and transcripts (CycD2). High-oxygen tension induced hypertrophy in H9c2 cells. Cell-death-associated transcripts for caspase-dependent apoptosis (Casp3/8) increased, whereas caspase-independent transcripts (AIF) increased in H9c2 cells and decreased in NRCMs. Autophagy-related mediators (Atg5/12) were induced in H9c2 under both oxygen conditions, whereas they were downregulated in NRCMs. DEX preconditioning protected H9c2 and NRCMs from oxidative stress through inhibition of transcription of the oxidative stress marker GCLC, and inhibited the transcription of both the redox-sensitive transcription factors Nrf2 under hyperoxia and Hif1α under hypoxia. In addition, DEX normalized the gene expression of Hippo-pathway mediators (YAP1, Tead1, Lats2, Cul7) that exhibited abnormalities due to differential oxygen tensions compared with normoxia, suggesting that DEX modulates the activation of the Hippo pathway. This, in the context of the protective impact of redox-sensitive factors, may provide a possible rationale for the cardio-protective effects of DEX in oxygen-modulated requirements on survival-promoting transcripts of immortalized and fetal cardiomyocytes.
Collapse
Affiliation(s)
- Moritz Borger
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
4
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Maejima Y, Zablocki D, Nah J, Sadoshima J. The role of the Hippo pathway in autophagy in the heart. Cardiovasc Res 2023; 118:3320-3330. [PMID: 35150237 DOI: 10.1093/cvr/cvac014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
The Hippo pathway, an evolutionarily conserved signalling mechanism, controls organ size and tumourigenesis. Increasing lines of evidence suggest that autophagy, an important mechanism of lysosome-mediated cellular degradation, is regulated by the Hippo pathway, which thereby profoundly affects cell growth and death responses in various cell types. In the heart, Mst1, an upstream component of the Hippo pathway, not only induces apoptosis but also inhibits autophagy through phosphorylation of Beclin 1. YAP/TAZ, transcription factor co-factors and the terminal effectors of the Hippo pathway, affect autophagy through transcriptional activation of TFEB, a master regulator of autophagy and lysosomal biogenesis. The cellular abundance of YAP is negatively regulated by autophagy and suppression of autophagy induces accumulation of YAP, which, in turn, acts as a feedback mechanism to induce autophagosome formation. Thus, the Hippo pathway and autophagy regulate each other, thereby profoundly affecting cardiomyocyte survival and death. This review discusses the interaction between the Hippo pathway and autophagy and its functional significance during stress conditions in the heart and the cardiomyocytes therein.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Yang J, Tong T, Zhu C, Zhou M, Jiang Y, Chen H, Que L, Liu L, Zhu G, Ha T, Chen Q, Li C, Xu Y, Li J, Li Y. Peli1 contributes to myocardial ischemia/reperfusion injury by impairing autophagy flux via its E3 ligase mediated ubiquitination of P62. J Mol Cell Cardiol 2022; 173:30-46. [PMID: 36179399 DOI: 10.1016/j.yjmcc.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy flux is impaired during myocardial ischemia/reperfusion (M-I/R) via the accumulation of autophagosome and insufficient clearance, which exacerbates cardiomyocyte death. Peli1 (Pellion1) is a RING finger domain-containing ubiquitin E3 ligase that could catalyze the polyubiquitination of substrate proteins. Peli1 has been demonstrated to play an important role in ischemic cardiac diseases. However, little is known about whether Peli1 is involved in the regulation of autophagy flux during M-I/R. The present study investigated whether M-I/R induced impaired autophagy flux could be mediated through Peli1 dependent mechanisms. We induced M-I/R injury in wild type (WT) and Peli1 knockout mice and observed that M-I/R significantly decreased cardiac function that was associated with increased cardiac Peli1 expression and upregulated autophagy-associated protein LC3II and P62. In contrast, Peli1 knockout mice exhibited significant improvement of M-I/R induced cardiac dysfunction and decreased LC3II and P62 expression. Besides, inhibitors of autophagy also increased the infarct size in Peli1 knockout mice after 24 h of reperfusion. Mechanistic studies demonstrated that in vivo I/R or in vitro hypoxia/reoxygenation (H/R) markedly increased the Peli1 E3 ligase activity which directly promoted the ubiquitination of P62 at lysine(K)7 via K63-linkage to inhibit its dimerization and autophagic degradation. Co-immunoprecipitation and GST-pull down assay indicated that Peli1 interacted with P62 via the Ring domain. In addition, Peli1 deficiency also decreased cardiomyocyte apoptosis. Together, our work demonstrated a critical link between increased expression and activity of Peli1 and autophagy flux blockage in M-I/R injury, providing insight into a promising strategy for treating myocardium M-I/R injury.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chenghao Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Miao Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuqing Jiang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hao Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Li Liu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guoqing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Institute of Biomedical Research, Liaocheng University, Liaocheng 252000, Shandong, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
7
|
Kwon Y, Haam CE, Byeon S, Choi SK, Lee YH. Effects of 3-methyladenine, an autophagy inhibitor, on the elevated blood pressure and arterial dysfunction of angiotensin II-induced hypertensive mice. Biomed Pharmacother 2022; 154:113588. [PMID: 35994821 DOI: 10.1016/j.biopha.2022.113588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Autophagy is an intracellular degradation system that disassembles cytoplasmic components through autophagosomes fused with lysosomes. Recently, it has been reported that autophagy is associated with cardiovascular diseases, including pulmonary hypertension, atherosclerosis, and myocardial ischemia. However, the involvement of autophagy in hypertension is not well understood. In the present study, we hypothesized that excessive autophagy contributes to the dysfunction of mesenteric arteries in angiotensin II (Ang II)-induced hypertensive mice. Treatment of an autophagy inhibitor, 3-methyladenine (3-MA), reduced the elevated blood pressure and wall thickness, and improved endothelium-dependent relaxation in mesenteric arteries of Ang II-treated mice. The expression levels of autophagy markers, beclin1 and LC3 II, were significantly increased by Ang II infusion, which was reduced by treatment of 3-MA. Furthermore, treatment of 3-MA induced vasodilation in the mesenteric resistance arteries pre-contracted with U46619 or phenylephrine, which was dependent on endothelium. Interestingly, nitric oxide production and phosphorylated endothelial nitric oxide synthase (p-eNOS) at S1177 in the mesenteric arteries of Ang II-treated mice were increased by treatment with 3-MA. In HUVECs, p-eNOS was reduced by Ang II, which was increased by treatment of 3-MA. 3-MA had direct vasodilatory effect on the pre-contracted mesenteric arteries. In cultured vascular smooth muscle cells (VSMCs), Ang II induced increase in beclin1 and LC3 II and decrease in p62, which was reversed by treatment of 3-MA. These results suggest that autophagy inhibition exerts beneficial effects on the dysfunction of mesenteric arteries in hypertension.
Collapse
Affiliation(s)
- Youngin Kwon
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea
| | - Chae Eun Haam
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea
| | - Seonhee Byeon
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea.
| | - Young-Ho Lee
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea.
| |
Collapse
|
8
|
Shang H, VanDusseldorp TA, Ma R, Zhao Y, Cholewa J, Zanchi NE, Xia Z. Role of MST1 in the regulation of autophagy and mitophagy: implications for aging-related diseases. J Physiol Biochem 2022; 78:709-719. [PMID: 35727484 DOI: 10.1007/s13105-022-00904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
As a key mechanism to maintain cellular homeostasis under stress conditions, autophagy/mitophagy is related to the occurrence of metabolic disorders, neurodegenerative diseases, cancer, and other aging-related diseases, but the relevant signal pathways regulating autophagy have not been clarified. Mammalian sterile 20-like kinase 1 (MST1) is a central regulatory protein of many metabolic pathways involved in the pathophysiological processes of aging and aging-related diseases and has become a critical integrator affecting autophagic signaling. Recent studies show that MST1 not only suppresses autophagy through directly phosphorylating Beclin-1 and/or inhibiting the protein expression of silent information regulator 1 (SIRT1) in the cytoplasm, but also inhibits BCL2/adenovirus E1B protein-interacting protein 3 (BNIP3)-, FUN14 domain containing 1 (FUNDC1)-, and Parkin (Parkinson protein 2)-mediated mitophagy by interacting with factors such as Ras association domain family 1A (RASSF1A). Indeed, a common pharmacological strategy for anti-aging is to induce autophagy/mitophagy through MST1 inhibition. This article reviews the role and mechanism of MST1 in regulating autophagy during aging, to provide evidence for the development of drugs targeting MST1.
Collapse
Affiliation(s)
- Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Ranggui Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Jason Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), Sao Luis, MA, Brazil
- Laboratory of Skeletal Muscle Biology and Human Strength Performance (LABFORCEH), Sao Luis, MA, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China.
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.
| |
Collapse
|
9
|
Liang Y, Jie H, Liu Q, Li C, Xiao R, Xing X, Sun J, Yu S, Hu Y, Xu GH. Knockout of circRNA single stranded interacting protein 1 (circRBMS1) played a protective role in myocardial ischemia-reperfusion injury though inhibition of miR-2355-3p/Mammalian Sterile20-like kinase 1 (MST1) axis. Bioengineered 2022; 13:12726-12737. [PMID: 35611768 PMCID: PMC9275998 DOI: 10.1080/21655979.2022.2068896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evidence suggests circRBMS1 regulates mRNA to mediate cell apoptosis, inflammation, and oxidative stress in different diseases. MST1 is reported to be the target and activator of apoptosis-related molecules and signaling pathways. Hence, the present study aims to investigate the role of circ-RBMS1/miR-2355-3p/MST1 in the development of I/R injury. In vitro experiments showed increased circ-RBMS1 and decreased miR-2355-3p in H/R-induced HCMs. CircRBMS1 served as a sponge for miR-2355-3p and miR-2355-3p targeted MST1. Furthermore, knockout of circRBMS1 attenuated cell apoptosis, oxidized stress, and inflammation in H/R-induced HCMs. In vivo experiments indicated circRBMS1 knockdown attenuated cardiac function damage, cell apoptosis, oxidative stress injury and inflammatory response through miR-2355-3p/MST1 axis in mice. In summary, these results demonstrated circRBMS1 played a protective role in myocardial I/R injury though inhibition of miR-2355-3p/MST1 axis. It might provide a new therapeutic target for cardiac I/R injury.
Collapse
Affiliation(s)
- Yingping Liang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huanhuan Jie
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Liu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang Li
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renjie Xiao
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianliang Xing
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Sun
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanhui Hu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guo-Hai Xu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Saha S, Singh PK, Roy P, Kakar SS. Cardiac Cachexia: Unaddressed Aspect in Cancer Patients. Cells 2022; 11:cells11060990. [PMID: 35326441 PMCID: PMC8947289 DOI: 10.3390/cells11060990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived cachectic factors such as proinflammatory cytokines and neuromodulators not only affect skeletal muscle but also affect other organs, including the heart, in the form of cardiac muscle atrophy, fibrosis, and eventual cardiac dysfunction, resulting in poor quality of life and reduced survival. This article reviews the holistic approaches of existing diagnostic, pathophysiological, and multimodal therapeutic interventions targeting the molecular mechanisms that are responsible for cancer-induced cardiac cachexia. The major drivers of cardiac muscle wasting in cancer patients are autophagy activation by the cytokine-NFkB, TGF β-SMAD3, and angiotensin II-SOCE-STIM-Ca2+ pathways. A lack of diagnostic markers and standard treatment protocols hinder the early diagnosis of cardiac dysfunction and the initiation of preventive measures. However, some novel therapeutic strategies, including the use of Withaferin A, have shown promising results in experimental models, but Withaferin A’s effectiveness in human remains to be verified. The combined efforts of cardiologists and oncologists would help to identify cost effective and feasible solutions to restore cardiac function and to increase the survival potential of cancer patients.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Praveen Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India;
| | - Sham S. Kakar
- Department of Physiology and Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
- Correspondence: ; Tel.: +1-(502)-852-0812
| |
Collapse
|
11
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2021; 474:63-81. [PMID: 34967935 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
12
|
Chen G, Xu Y, Yao Y, Cao Y, Liu Y, Chai H, Chen W, Chen X. IKKε knockout alleviates angiotensin II-induced apoptosis and excessive autophagy in vascular smooth muscle cells by regulating the ERK1/2 pathway. Exp Ther Med 2021; 22:1051. [PMID: 34434265 PMCID: PMC8353624 DOI: 10.3892/etm.2021.10485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of nuclear factor-κB kinase subunit ε (IKKε) is an important signal regulator in the formation of abdominal aortic aneurysm (AAA). However, the underlying mechanism remains to be elucidated. Therefore, the present study aimed to investigate the mechanism underlying IKKε function in AAA formation by studying apoptosis and autophagy in angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs). AngII was used to stimulate VSMCs for 24 h to simulate the process of AAA formation. VSMCs were transfected with IKKε small interfering RNA to investigate the effect of IKKε on AAA formation, cell apoptosis and autophagy. IKKε deficiency led to reduced mitochondrial damage and apoptosis in VSMCs in the early stage of apoptosis in vitro, as demonstrated using a JC-1 probe. IKKε deficiency also reduced autophagy and decreased the formation of autophagic vacuoles in VSMCs, demonstrated using transmission electron microscopy. The decrease in apoptosis caused by IKKε knockdown was reversed when the autophagic flow was blocked using bafilomycin A1. Western blot analysis further revealed that IKKε deficiency negatively regulated the ERK1/2 signaling pathway to reduce autophagy. Collectively, the results of the present study revealed that IKKε played a key role in apoptosis by inducing excessive autophagy, thereby potentially contributing to AAA formation. These findings further revealed the mechanism underlying IKKε function in the formation of AAA.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
13
|
Feng X, Yu T, Zhang Y, Li L, Qu M, Wang J, Dong F, Zhang L, Wang F, Zhang F, Zhou X, Xu Z, Man D. Prenatal High-Sucrose Diet Induced Vascular Dysfunction in Thoracic Artery of Fetal Offspring. Mol Nutr Food Res 2021; 65:e2100072. [PMID: 33938121 DOI: 10.1002/mnfr.202100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/19/2021] [Indexed: 12/18/2022]
Abstract
SCOPE Maternal nutrition during pregnancy is related to intrauterine fetal development. The authors' previous work reports that prenatal high sucrose (HS) diet impaired micro-vascular functions in postnatal offspring. It is unclear whether/how prenatal HS causes vascular injury during fetal life. METHODS AND RESULTS Pregnant rats are fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Pregnant HS increases maternal weight before delivery. Fetal thoracic aorta is separated for experiments. Angiotensin II (AII)-stimulated vascular contraction of fetal thoracic arteries in HS group is greater, which mainly results from the enhanced AT1 receptor (AT1R) function and the downstream signaling. Nifedipine significantly increases vascular tension in HS group, indicating that the L-type calcium channels (LTCCs) function is strengthened. 2-Aminoethyl diphenylborinate (2-APB), inositol 1,4,5-trisphosphate receptors (IP3Rs) inhibitor, increases vascular tension induced by AII in HS group and ryanodine receptors-sensitive vascular tone shows no difference in the two groups, which suggested that the activity of IP3Rs-operated calcium channels is increased. CONCLUSION These findings suggest that prenatal HS induces vascular dysfunction of thoracic arteries in fetal offspring by enhancing AT1R, LTCCs function and IP3Rs-associated calcium channels, providing new information regarding the impact of prenatal HS on the functional development of fetal vascular systems.
Collapse
Affiliation(s)
- Xueqin Feng
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Tiantian Yu
- Department of Clinical Medicine, Jining Medical University, Hehua Road 133, Jining, 272067, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Renmin Road 708, Jiangsu, 215006, China
| | - Lijuan Li
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Miaomiao Qu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Jishui Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Fangxiang Dong
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Lihua Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Fengge Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Fanyong Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Renmin Road 708, Jiangsu, 215006, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Renmin Road 708, Jiangsu, 215006, China
- Institute for Fetology, Maternal and Child Health Care Hospital of Wuxi, Huaishu Road 48, Jiangsu, 214002, China
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| |
Collapse
|
14
|
Liu Z, Gao Z, Zeng L, Liang Z, Zheng D, Wu X. Nobiletin ameliorates cardiac impairment and alleviates cardiac remodeling after acute myocardial infarction in rats via JNK regulation. Pharmacol Res Perspect 2021; 9:e00728. [PMID: 33660406 PMCID: PMC7931132 DOI: 10.1002/prp2.728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
Nobiletin was found to protect against acute myocardial infarction (AMI)-induced cardiac function decline and myocardial remodeling, although the dose-effect relationship and underlying pathways remained unclear. In the current research, different doses of Nobiletin (7.5, 15 and 30 mg/kg/day) were administered to AMI rat model for 21 days. Survival rate, echocardiography, and histological analysis were assessed in vivo. In addition, MTT assay, flow cytometry, and Western blotting were conducted to explore Nobiletin's cytotoxicity and antiapoptotic effect on H9C2 cells. Mechanistically, the activation of MAPK effectors and p38 in vivo was studied. The results showed medium- and high-dose Nobiletin could significantly improve survival rate and cardiac function and reduce the area of infarction and cardiac fibrosis. Medium dose showed the best protection on cardiac functions, whereas high dose showed the best protective effect on cellular apoptosis and histological changes. JNK activation was significantly inhibited by Nobiletin in vivo, which could help to explain the partial contribution of autophagy to AMI-induced apoptosis and the discrepancy on dose-effect relationships. Together, our study suggested that JNK inhibition plays an important role in Nobiletin-induced antiapoptotic effect in myocardial infarction, and medium-dose Nobiletin demonstrated the strongest effect in vivo.
Collapse
Affiliation(s)
- Zumei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
- Department of Central LaboratoryGuangdong Second Provincial General HospitalGuangzhouGuangdongPR China
| | - Zhimin Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Lihuan Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Zhenye Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Dechong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauPR China
| | - Xiaoqian Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| |
Collapse
|
15
|
Feng X, Wang S, Yang X, Lin J, Man W, Dong Y, Zhang Y, Zhao Z, Wang H, Sun D. Mst1 Knockout Alleviates Mitochondrial Fission and Mitigates Left Ventricular Remodeling in the Development of Diabetic Cardiomyopathy. Front Cell Dev Biol 2021; 8:628842. [PMID: 33553168 PMCID: PMC7859113 DOI: 10.3389/fcell.2020.628842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023] Open
Abstract
The disruption of mitochondrial dynamics is responsible for the development of diabetic cardiomyopathy (DCM). However, the mechanisms that regulate the balance of mitochondrial fission and fusion are not well-understood. Wild-type, Mst1 transgenic and Mst1 knockout mice were induced with experimental diabetes by streptozotocin injection. In addition, primary neonatal cardiomyocytes were isolated and cultured to simulate diabetes to explore the mechanisms. Echocardiograms and hemodynamic measurements revealed that Mst1 knockout alleviated left ventricular remodeling and cardiac dysfunction in diabetic mice. Mst1 knockdown significantly decreased the number of TUNEL-positive cardiomyocytes subjected to high-glucose (HG) medium culture. Immunofluorescence study indicated that Mst1 overexpression enhanced, while Mst1 knockdown mitigated mitochondrial fission in DCM. Mst1 participated in the regulation of mitochondrial fission by upregulating the expression of Drp1, activating Drp1S616 phosphorylation and Drp1S637 dephosphorylation, as well as promoting Drp1 recruitment to the mitochondria. Furthermore, Drp1 knockdown abolished the effects of Mst1 on mitochondrial fission, mitochondrial membrane potential and mitochondrial dysfunction in cardiomyocytes subjected to HG treatment. These results indicated that Mst1 knockout inhibits mitochondrial fission and alleviates left ventricular remodeling thus prevents the development of DCM.
Collapse
Affiliation(s)
- Xinyu Feng
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingjun Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Dong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Dongdong Sun
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| |
Collapse
|
16
|
Han D, Wang B, Cui X, He W, zhang Y, Jiang Q, Wang F, Liu Z, Shen D. ICS II protects against cardiac hypertrophy by regulating metabolic remodelling, not by inhibiting autophagy. J Cell Mol Med 2021. [PMCID: PMC7812268 DOI: 10.1111/jcmm.16175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization. Therefore, the regulation of ketone body uptake and metabolism may have beneficial effects on heart injuries that induce cardiac remodelling. In this study, we investigated whether icariside II (ICS II) protects against cardiac hypertrophy in mice and cardiomyocytes. To create cardiac hypertrophy animal and cell models, mice were subjected to transverse aortic constriction (TAC), and embryonic rat cardiomyocytes (H9C2) were stimulated with angiotensin II, a neurohumoral stressor. Both the in vivo and in vitro results suggest that ICS II treatment ameliorated pressure overload–induced cardiac hypertrophy and preserved heart function. In addition, apoptosis and oxidative stress were reduced in the presence of ICS II. Moreover, ICS II inhibited excess autophagy in TAC‐induced hearts and angiotensin II–stimulated cardiomyocytes. Mechanistically, we found that ICS II administration regulated SIRT3 expression in cardiac remodelling. SIRT3 activation increased ketone body transportation and utilization. Collectively, our data show that ICS II attenuated cardiac hypertrophy by modulating ketone body and fatty acid metabolism, and that this was likely due to the activation of the SIRT3‐AMPK pathway. ICS II treatment may provide a new therapeutic strategy for improving myocardial metabolism in cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Bo Wang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Xinyue Cui
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Weiwei He
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yi zhang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Qingjiao Jiang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Fuhang Wang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Zhiyu Liu
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Deliang Shen
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
17
|
Corosolic acid ameliorates cardiac hypertrophy via regulating autophagy. Biosci Rep 2020; 39:221187. [PMID: 31746323 PMCID: PMC6893168 DOI: 10.1042/bsr20191860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: In this work, we explored the role of corosolic acid (CRA) during pressure overload-induced cardiac hypertrophy. Methods and results: Cardiac hypertrophy was induced in mice by aortic banding. Four weeks post-surgery, CRA-treated mice developed blunted cardiac hypertrophy, fibrosis, and dysfunction, and showed increased LC3 II and p-AMPK expression. In line with the in vivo studies, CRA also inhibited the hypertrophic response induced by PE stimulation accompanying with increased LC3 II and p-AMPK expression. It was also found that CRA blunted cardiomyocyte hypertrophy and promoted autophagy in Angiotensin II (Ang II)-treated H9c2 cells. Moreover, to further verify whether CRA inhibits cardiac hypertrophy by the activation of autophagy, blockade of autophagy was achieved by CQ (an inhibitor of the fusion between autophagosomes and lysosomes) or 3-MA (an inhibitor of autophagosome formation). It was found that autophagy inhibition counteracts the protective effect of CRA on cardiac hypertrophy. Interestingly, AMPK knockdown with AMPKα2 siRNA-counteracted LC3 II expression increase and the hypertrophic response inhibition caused by CRA in PE-treated H9c2 cells. Conclusion: These results suggest that CRA may protect against cardiac hypertrophy through regulating AMPK-dependent autophagy.
Collapse
|
18
|
Xiong Z, Li Y, Zhao Z, Zhang Y, Man W, Lin J, Dong Y, Liu L, Wang B, Wang H, Guo B, Li C, Li F, Wang H, Sun D. Mst1 knockdown alleviates cardiac lipotoxicity and inhibits the development of diabetic cardiomyopathy in db/db mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165806. [PMID: 32320827 DOI: 10.1016/j.bbadis.2020.165806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) accounts for increasing deaths of diabetic patients, and effective therapeutic targets are urgently needed. Myocardial lipotoxicity, which is caused by cardiac non-oxidative metabolic fatty acids and cardiotoxic fatty acid metabolites accumulation, has gained more attention to explain the increasing prevalence of DCM. However, whether mammalian Ste20-like kinase 1 (Mst1) plays a role in lipotoxicity in type 2 diabetes-induced cardiomyopathy has not yet been illustrated. Here, we found that Mst1 expression was elevated transcriptionally in the hearts of type 2 diabetes mellitus mice and palmitic acid-treated neonatal rat ventricular myocytes. Adeno-associated virus 9 (AAV9)-mediated Mst1 silencing in db/db mouse hearts significantly alleviated cardiac dysfunction and fibrosis. Notably, Mst1 knockdown in db/db mouse hearts decreased lipotoxic apoptosis and inflammatory response. Mst1 knockdown exerted protective effects through inactivation of MAPK/ERK kinase kinase 1 (MEKK1)/c-Jun N-terminal kinase (JNK) signaling pathway. Moreover, lipotoxicity induced Mst1 expression through promoting the binding of forkhead box O3 (FoxO3) and Mst1 promoter. Conclusively, we elucidated for the first time that Mst1 expression is regulated by FOXO3 under lipotoxicity stimulation and downregulation of Mst1 protects db/db mice from lipotoxic cardiac injury through MEKK1/JNK signaling inhibition, indicating that Mst1 abrogation may be a potential treatment strategy for DCM in type 2 diabetic patients.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Fatty Acids/metabolism
- Fatty Acids/toxicity
- Forkhead Box Protein O3/agonists
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/metabolism
- Gene Expression Regulation
- Hepatocyte Growth Factor
- Humans
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Kinase Kinase 1/antagonists & inhibitors
- MAP Kinase Kinase Kinase 1/genetics
- MAP Kinase Kinase Kinase 1/metabolism
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidation-Reduction
- Primary Cell Culture
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Signal Transduction
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengqing Zhao
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Dong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liyuan Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
19
|
Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, Sunahara KKS, Martins JO, Moustaid-Moussa N. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system. Cell Death Dis 2020; 11:87. [PMID: 32015340 PMCID: PMC6997396 DOI: 10.1038/s41419-020-2275-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.
Collapse
Affiliation(s)
- Kalhara R Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Jannette M Dufour
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Karen K S Sunahara
- Department of Experimental Physiopatholgy, Medical School University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
20
|
Ouyang H, Li Q, Zhong J, Xia F, Zheng S, Lu J, Deng Y, Hu Y. Combination of melatonin and irisin ameliorates lipopolysaccharide-induced cardiac dysfunction through suppressing the Mst1-JNK pathways. J Cell Physiol 2020; 235:6647-6659. [PMID: 31976559 DOI: 10.1002/jcp.29561] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Despite significant advances in therapies in past decades, the mortality rate of septic cardiomyopathy remains high. The aim of this study is to explore the therapeutic effects of combined treatment using melatonin and irisin in a mouse model of lipopolysaccharide (LPS)-mediated septic cardiomyopathy. Our data found that melatonin and irisin could further attenuate LPS-induced myocardial depression. Molecular investigation illustrated that melatonin and irisin cotreatment sustained cardiomyocyte viability and improved mitochondrial function under LPS stress. Pathway analysis demonstrated that macrophage-stimulating 1 (Mst1), which was significantly activated by LPS, was drastically inhibited by melatonin/irisin cotreatment. Mechanically, Mst1 activated c-Jun N-terminal kinase (JNK) pathway and the latter induced oxidative stress, adenosine triphosphate metabolism disorder, mitochondrial membrane potential reduction, and cardiomyocyte death activation. Melatonin and irisin cotreatment effectively inhibited the Mst1-JNK pathway and, thus, promoted cardiomyocyte survival and mitochondrial homeostasis. Interestingly, Mst1 overexpression abolished the beneficial effects of melatonin and irisin in vivo and in vitro. Altogether, our results confirmed that melatonin and irisin combination treatment could protect heart against sepsis-induced myocardial depression via modulating the Mst1-JNK pathways.
Collapse
Affiliation(s)
- Haichun Ouyang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Fengfan Xia
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Sulin Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yuanyan Deng
- Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
21
|
Zhang Y, Dong Y, Xiong Z, Zhu Z, Gao F, Wang T, Man W, Sun D, Lin J, Li T, Li C, Zhao Z, Shen M, Sun D, Fan Y. Sirt6-Mediated Endothelial-to-Mesenchymal Transition Contributes Toward Diabetic Cardiomyopathy via the Notch1 Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:4801-4808. [PMID: 33324079 PMCID: PMC7732976 DOI: 10.2147/dmso.s287287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) is an important source of myofibroblasts that directly affects cardiac function in diabetic cardiomyopathy (DCM) via an unknown underlying mechanism. Sirt6 is a member of the Sirtuin family of NAD(+)-dependent enzymes that plays an important role in glucose and fatty acid metabolism. In this study, we investigated whether Sirt6 participates in EndMT during the development of T2DM and the possible underlying regulatory mechanisms. METHODS Endothelium-specific Sirt6 knockout (Sirt6-KOEC) mice (C57BL/6 genetic background) were generated using the classic Cre/loxp gene recombination system. T2DM was induced in eight-week-old male mice by feeding with a high-fat diet for three weeks followed by i.p. injection with 30 mg/kg of streptozotocin. The weight, lipids profiles, insulin, food intake and water intake of experimental animals were measured on a weekly basis. Cardiac microvascular endothelial cells (CMECs) were obtained from adult male mice; the isolated cells were cultured with high glucose (HG; 33 mmol/L) and palmitic acid (PA; 500 μmol/L) in DMEM for 24 h, or with normal glucose (NG; 5 mmol/L) as the control. RESULTS Sirt6 expression is significantly downregulated in CMECs treated with HG+PA. Additionally, Sirt6-KOEC was found to worsen DCM, as indicated by aggravated perivascular fibrosis, cardiomyocyte hypertrophy, and decreased cardiac function. In vitro, Sirt6 knockdown exacerbated the proliferation, and migration of CMECs exposed to HG+PA. Mechanistically, Sirt6 knockdown significantly enhanced Notch1 activation in CMECs treated with HG+PA, whereas Notch1 adenoviral interference significantly blunted the effects of Sirt6 knockdown on CMECs. CONCLUSION This study is the first to demonstrate that Sirt6 participates in EndMT via the Notch1 signaling pathway in CMECs stimulated with HG+PA. Therefore, the findings of this study suggest that Sirt6 could provide a potential treatment strategy for DCM.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yuan Dong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhengru Zhu
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Fanya Gao
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an Medical University, Xi’an, People’s Republic of China
| | - Tingting Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Tongbin Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Min Shen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Correspondence: Dongdong Sun; Yanhong Fan Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi’an, Shaanxi710032, People’s Republic of ChinaTel +86 18691569930; +86 18829395402 Email ;
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
22
|
You P, Cheng Z, He X, Deng J, Diao J, Chen H, Cheng G. Lin28a protects against diabetic cardiomyopathy through Mst1 inhibition. J Cell Physiol 2019; 235:4455-4465. [PMID: 31637712 DOI: 10.1002/jcp.29321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
Lin28a has been found to enhance glucose uptake and insulin sensitivity. Lin28a alleviates cardiac dysfunction under various pathological conditions. However, the effects and underlying mechanisms of Lin28a on diabetic cardiomyopathy (DCM) are not well-understood. The aim of this study was to determine whether Lin28a protects against DCM and the potential mechanisms. Two to three days old mouse neonatal primary cardiomyocytes were randomized for treatment with adenoviruses harboring Lin28a and mammalian sterile 20-like kinase 1 (Mst1) short hairpin RNA, 48 hr before culturing in normal or high glucose medium. Cardiomyocyte apoptosis, autophagy, mitochondrial morphology, adenosine triphosphate content, and cytokine levels in the high glucose or normal conditions were observed between all groups. Either Lin28a overexpression or Mst1 knockdown alleviated mitochondrial ultrastructure impairment, decreased cytokine levels, inhibited apoptosis, and enhanced autophagy in primary neonatal mouse cardiomyocytes treated with high glucose. Importantly, the protective effects of Lin28a and Mst1 disappeared after treatment with 3-methyladenine, an autophagy inhibitor. Interestingly, in Mst1 knockdown cardiomyocytes, Lin28a overexpression failed to further enhance autophagy and alleviate high glucose-induced cardiomyocyte injury, which implies the protective roles of Lin28a counteracting high glucose-induced cardiomyocyte injury are dependent on Mst1 inhibition. Furthermore, co-immunoprecipitation and immunofluorescence double staining suggested that there were no direct interactions between Mst1 and Lin28a. Lin28a increased the expression of Akt, which inhibited the activation of Mst1-mediated apoptotic pathways.
Collapse
Affiliation(s)
- Penghua You
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaomin He
- Department of Internal Medicine, The Hospital of Xi'an University of Technology, Xi'an, China
| | - Jizhao Deng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jiayu Diao
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Haichao Chen
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
23
|
Chang W, Feng M, Li Y, Sun Y, Sun L. MKP1 overexpression reduces TNF-α-induced cardiac injury via suppressing mitochondrial fragmentation and inhibiting the JNK-MIEF1 pathways. J Cell Physiol 2019; 234:16148-16159. [PMID: 30740674 DOI: 10.1002/jcp.28273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Mitochondrial stress has been acknowledged as the pathogenesis for tumor necrosis factor-α (TNF-α)-induced septic cardiomyopathy. Recently, MAP kinase phosphatase 1 (MKP1) downregulation and mitochondrial fragmentation modulate the mitochondrial stress via multiple molecular mechanisms. Thereby, the goal of our current work is to figure out the functional role of mitochondrial fragmentation in TNF-α-induced septic cardiomyopathy. Our results exhibited that MKP1 expression was significantly repressed in hearts treated by TNF-α. Overexpression of MKP1 sustained cardiac function and attenuated cardiomyocytes death in TNF-α-treated hearts. At the molecular levels, decreased MKP1 induced mitochondrial stress, as indicated by mitochondrial calcium overloading, mitochondrial oxidative stress, mitochondrial antioxidant downregulation, mitochondrial membrane potential reduction, mitochondrial bioenergetics suppression, mitochondrial proapoptotic factors liberation, and caspase-9 apoptotic pathway activation. To the end, we illustrated that MKP1-modulated mitochondrial stress via mitochondrial fragmentation; reactivation of mitochondrial fragmentation abolished the protective effect of MKP1 overexpression on mitochondrial function. Further, MKP1 affected mitochondrial division in a mechanism through the JNK-MIEF1 axis. Blockade of JNK pathway abolished the regulatory actions of MKP1 on mitochondrial division. Altogether, our results identify MKP1 as a novel cardioprotective factor in TNF-α-related septic cardiomyopathy via affecting mitochondrial division by the way of JNK-MIEF1 signaling pathway. Therefore, MKP1 expression, mitochondrial fragmentation modification, and JNK-MIEF1 pathway modulation may be considered as potential therapeutic targets for the treatment of cardiac injury induced by sepsis.
Collapse
Affiliation(s)
- Wei Chang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Feng
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuexia Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lulu Sun
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Endothelial SIRT6 Is Vital to Prevent Hypertension and Associated Cardiorenal Injury Through Targeting Nkx3.2-GATA5 Signaling. Circ Res 2019; 124:1448-1461. [DOI: 10.1161/circresaha.118.314032] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
26
|
Cheng Z, Zhang M, Hu J, Lin J, Feng X, Wang S, Wang T, Gao E, Wang H, Sun D. Cardiac-specific Mst1 deficiency inhibits ROS-mediated JNK signalling to alleviate Ang II-induced cardiomyocyte apoptosis. J Cell Mol Med 2018; 23:543-555. [PMID: 30338935 PMCID: PMC6307828 DOI: 10.1111/jcmm.13958] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/15/2023] Open
Abstract
Apoptosis is associated with various myocardial diseases. Angiotensin II (Ang II) plays a central role in the pathogenesis of RAAS‐triggered cardiac apoptosis. Our previous studies showed that mammalian Ste20‐like kinase 1 (Mst1) aggravates cardiac dysfunction in cardiomyocyte under pathological conditions, but its role in Ang II‐mediated cardiomyocyte apoptosis is not known. We addressed this in the present study by investigating whether cardiac‐specific Mst1 knockout can alleviate Ang II‐induced cardiomyocyte apoptosis along with the underlying mechanisms. In vitro and in vivo experiments showed that Ang II increased intracellular reactive oxygen species (ROS) production and cardiomyocyte apoptosis; these were reversed by administration of the ROS scavenger N‐acetylcysteine and by Mst1 deficiency, which suppressed c‐Jun N‐terminal kinase (JNK) phosphorylation and downstream signaling. Interestingly, Mst1 knockout failed to alleviate Ang II‐induced phosphorylation of extracellular signal‐regulated kinase 1/2, and inactivated apoptosis signal‐regulating kinase1 (ASK1) by promoting its association with thioredoxin (Trx), which reversed the Ang II‐induced activation of the ASK1–JNK pathway and suppressed Ang II‐induced cardiomyocyte apoptosis. Thus, cardiac‐specific Mst1 knockout inhibits ROS‐mediated JNK signalling to block Ang II‐induced cardiomyocyte apoptosis, suggesting Mst1 as a potential therapeutic target for treatment of RAAS‐activated heart failure.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanjie Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|