1
|
Li T, Liu T, Wang Y, Li Y, Liu L, Bae J, He Y, Luo X, Liu Z, Chen T, Ou X, Zhang D, Lan H, Wan J, Wei Y, Zhao F, Wang X, Li T, Huang CL, Zhang C, Lei M, Tan X. P21-Activated Kinase 2 as a Novel Target for Ventricular Tachyarrhythmias Associated with Cardiac Adrenergic Stress and Hypertrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411987. [PMID: 40068092 PMCID: PMC12061314 DOI: 10.1002/advs.202411987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Ventricular arrhythmias associated with cardiac adrenergic stress and hypertrophy pose a significant clinical challenge. We explored ventricular anti-arrhythmic effects of P21-activated kinase 2 (Pak2), comparing in vivo and ex vivo cardiomyocyte-specific Pak2 knockout (Pak2cko) or overexpression (Pak2ctg) murine models, under conditions of acute adrenergic stress, and hypertrophy following chronic transverse aortic constriction (TAC). Pak2 was downregulated 5 weeks following the latter TAC challenge. Cellular physiological, optical action potential and Ca2+ transient, measurements, demonstrated increased incidences of triggered ventricular arrhythmias, and prolonged action potential durations (APD) and altered Ca2+ transients with increases in their beat-to beat variations, in Pak2cko hearts. Electron microscopic, proteomic, and molecular biological methods revealed a mitochondrial localization of stress-related proteins on proteomic and phosphoproteomic analyses, particularly in TAC stressed Pak2cko mice. They further yielded accompanying evidence for mitochondrial oxidative stress, increased reactive oxygen species (ROS) biosynthesis, reduced mitochondrial complexes I-V, diminished ATP synthesis and elevated NADPH oxidase 4 (NOX4) levels. Pak2 overexpression and the novel Pak2 activator JB2019A ameliorated these effects, enhanced cardiac function and decreased the frequencies of triggered ventricular arrhythmias. Pak2 activation thus protects against ventricular arrhythmia associated with cardiac stress and hypertrophy, through unique mechanisms offering potential novel therapeutic anti-arrhythmic targets.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
- Department of CardiologyThe Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Ting Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Yangpeng Li
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
- Department of CardiologyThe Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Leiying Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - James Bae
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3QTUK
| | - Yu He
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3QTUK
| | - Xian Luo
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
- Department of CardiologyThe Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Zhu Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
- Department of CardiologyThe Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Dan Zhang
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Juyi Wan
- Department of CardiologyThe Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Fang Zhao
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3QTUK
- Department of CardiologyZhongnan Hospital of Wuhan UniversityEast Lake Road 169Wuhan430071China
| | - Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterDover StreetManchesterM13 9GBUK
| | - Tao Li
- Laboratory of Mitochondria and MetabolismWest China Hospital of Sichuan UniversityChengdu610041China
| | - Christopher L.‐H. Huang
- Physiological LaboratoryUniversity of CambridgeDowning StreetCambridgeCB2 3EGUK
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
- Department of CardiologyThe Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3QTUK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of EducationMedical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
- Department of CardiologyThe Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of PhysiologySchool of Basic Medical SciencesSouthwest Medical UniversityLuzhouSichuan646000China
| |
Collapse
|
2
|
Rosas PC, Solaro RJ. p21-Activated Kinase 1 (Pak1) as an Element in Functional and Dysfunctional Interplay Among the Myocardium, Adipose Tissue, and Pancreatic Beta Cells. Compr Physiol 2025; 15:e70006. [PMID: 40065530 PMCID: PMC11894248 DOI: 10.1002/cph4.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
This review focuses on p21-activated kinase 1 (Pak1), a multifunctional, highly conserved enzyme that regulates multiple downstream effectors present in many tissues. Upstream signaling via Ras-related small G-proteins, Cdc42/Rac1 promotes the activity of Pak1. Our hypothesis is that this signaling cascade is an important element in communication among the myocardium, adipose tissue, and pancreatic β-cells. Evidence indicates that a shared property of these tissues is that structure/function stability requires homeostatic Pak1 activity. Increases or decreases in Pak1 activity may promote dysfunction or increase susceptibility to stressors. Evidence that increased levels of Pak1 activity may be protective provides support for efforts to develop therapeutic approaches activating Pak1 with potential use in prevalent disorders associated with obesity, diabetes, and myocardial dysfunction. On the other hand, since increased Pak1 activity is associated with cancer progression, there has been a significant effort to develop Pak1 inhibitors. These opposing therapeutic approaches highlight the need for a deep understanding of Pak1 signaling in relation to the development of effective and selective therapies with minimal or absent off-target effects.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - R. John Solaro
- Department of Physiology and Biophysics, College of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Guo S, Hudmon A, Sahoo FK, Motes MR, Tsai WC, Chen PS, Rubart M. K + currents in ventricular cardiomyocytes of p.N98S-calmodulin mutant mice. Am J Physiol Heart Circ Physiol 2025; 328:H658-H675. [PMID: 39739562 DOI: 10.1152/ajpheart.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated the role of cardiac K+ channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the Calm1 gene (Calm1N98S/+). Single-cell patch-clamp technique and whole heart optical voltage mapping were used to assess action potentials and whole cell currents. Ventricular action potential duration (APD) at baseline was similar between genotypes. The β-adrenergic agonist isoproterenol prolonged APD in myocytes and isolated perfused hearts from Calm1N98S/+, but not wild-type (Calm1+/+), mice. Current density-voltage relationships for the small-conductance calcium-activated K+ (SK) current and the inward rectifier K+ current did not significantly differ between Calm1+/+ and Calm1N98S/+ ventricular cardiomyocytes ± isoproterenol. Peak densities of other voltage-gated K+ currents were significantly larger in Calm1N98S/+ versus Calm1+/+ cells at voltages ≥40 mV, both without and with isoproterenol. Isoproterenol reduced outward KATP currents more in Calm1N98S/+ versus Calm1+/+ myocytes. Dialysis of Calm1+/+ cardiomyocytes with exogenous wild-type or N98S-CaM protein (5 µmol/L) via the pipette, respectively, increased and eliminated SK currents. The specific SK channel inhibitor apamin did not significantly alter the APD of Calm1+/+ or Calm1N98S/+ hearts ± isoproterenol. Thus, dysregulation of SK or voltage-gated K+ channels does not contribute to the β-adrenergic-induced LQTS of Calm1N98S/+ mice, possibly because cardiomyocyte content of endogenous N98S-CaM and/or its affinity for CaM-binding domains may be too low to modulate channel properties. The larger KATP current inhibition by isoproterenol may delay Calm1N98S/+ myocyte repolarization at low intracellular [ATP].NEW & NOTEWORTHY Despite in vitro and in silico evidence implicating cardiac K+ channel dysregulation in LQTS associated with missense mutations in genes-encoding calmodulin, their effects on native cardiac K+ currents are unknown. Using a knock-in mouse model harboring the p.N98S mutation in the Calm1 gene, we found no evidence for dysregulation of major cardiac K+ channels. Although these data do not support mechanistic findings from heterologous systems, our finding impacts efforts to improve therapies for calmodulinopathies.
Collapse
Affiliation(s)
- Shuai Guo
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Andy Hudmon
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Firoj K Sahoo
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Madeline R Motes
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Wen-Chin Tsai
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, United States
| | - Michael Rubart
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Rodríguez MD, Morris JA, Bardsley OJ, Matthews HR, Huang CLH. Nernst-Planck-Gaussian finite element modelling of Ca 2+ electrodiffusion in amphibian striated muscle transverse tubule-sarcoplasmic reticular triadic junctional domains. Front Physiol 2024; 15:1468333. [PMID: 39703671 PMCID: PMC11655509 DOI: 10.3389/fphys.2024.1468333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/22/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Intracellular Ca2+ signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca2+ electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca2+] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions. Materials and methods Finite element computational analysis characterised the formation and steady state and kinetic properties of the Ca2+ microdomains using established empirical physiological and anatomical values. It progressively incorporated Fick diffusion and Nernst-Planck electrodiffusion gradients, K+, Cl-, and Donnan protein, and calmodulin (CaM)-mediated Ca2+ buffering. It solved for temporal-spatial patterns of free and buffered Ca2+, Gaussian charge differences, and membrane potential changes, following Ca2+ release into the T-SR junction. Results Computational runs using established low and high Ca2+ diffusibility (D Ca2+) limits both showed that voltages arising from intracytosolic total [Ca2+] gradients and the counterions little affected microdomain formation, although elevated D Ca2+ reduced attained [Ca2+] and facilitated its kinetics. Contrastingly, adopting known cytosolic CaM concentrations and CaM-Ca2+ affinities markedly increased steady-state free ([Ca2+]free) and total ([Ca2+]), albeit slowing microdomain formation, all to extents reduced by high D Ca2+. However, both low and high D Ca2+ yielded predictions of similar, physiologically effective, [Ca2+-CaM]. This Ca2+ trapping by the relatively immobile CaM particularly increased [Ca2+] at the junction centre. [Ca2+]free, [Ca2+-CaM], [Ca2+], and microdomain kinetics all depended on both CaM-Ca2+ affinity and D Ca2+. These changes accompanied only small Gaussian (∼6 mV) and surface charge (∼1 mV) effects on tubular transmembrane potential at either D Ca2+. Conclusion These physical predictions of T-SR Ca2+ microdomain formation and properties are compatible with the microdomain roles in Ca2+ and Ca2+-CaM-mediated signalling but limited the effects on tubular transmembrane potentials. CaM emerges as a potential major regulator of both the kinetics and the extent of microdomain formation. These possible cellular Ca2+ signalling roles are discussed in relation to possible feedback modulation processes sensitive to the μM domain but not nM bulk cytosolic, [Ca2+]free, and [Ca2+-CaM], including ryanodine receptor-mediated SR Ca2+ release; Na+, K+, and Cl- channel-mediated membrane excitation and stabilisation; and Na+/Ca2+ exchange transport.
Collapse
Affiliation(s)
- Marco D. Rodríguez
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Joshua A. Morris
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Oliver J. Bardsley
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Bertagna F, Ahmad S, Lewis R, Silva SRP, McFadden J, Huang CLH, Matthews HR, Jeevaratnam K. Loose-patch clamp analysis applied to voltage-gated ionic currents following pharmacological ryanodine receptor modulation in murine hippocampal cornu ammonis-1 pyramidal neurons. Front Physiol 2024; 15:1359560. [PMID: 38720787 PMCID: PMC11076846 DOI: 10.3389/fphys.2024.1359560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction The loose-patch clamp technique was first developed and used in native amphibian skeletal muscle (SkM), offering useful features complementing conventional sharp micro-electrode, gap, or conventional patch voltage clamping. It demonstrated the feedback effects of pharmacological modification of ryanodine receptor (RyR)-mediated Ca2+ release on the Na+ channel (Nav1.4) currents, initiating excitation-contraction coupling in native murine SkM. The effects of the further RyR and Ca2+-ATPase (SERCA) antagonists, dantrolene and cyclopiazonic acid (CPA), additionally implicated background tubular-sarcoplasmic Ca2+ domains in these actions. Materials and methods We extend the loose-patch clamp approach to ion current measurements in murine hippocampal brain slice cornu ammonis-1 (CA1) pyramidal neurons. We explored the effects on Na+ currents of pharmacologically manipulating RyR and SERCA-mediated intracellular store Ca2+ release and reuptake. We adopted protocols previously applied to native skeletal muscle. These demonstrated Ca2+-mediated feedback effects on the Na+ channel function. Results Experiments applying depolarizing 15 ms duration loose-patch clamp steps to test voltages ranging from -40 to 120 mV positive to the resting membrane potential demonstrated that 0.5 mM caffeine decreased inward current amplitudes, agreeing with the previous SkM findings. It also decreased transient but not prolonged outward current amplitudes. However, 2 mM caffeine affected neither inward nor transient outward but increased prolonged outward currents, in contrast to its increasing inward currents in SkM. Furthermore, similarly and in contrast to previous SkM findings, both dantrolene (10 μM) and CPA (1 μM) pre-administration left both inward and outward currents unchanged. Nevertheless, dantrolene pretreatment still abrogated the effects of subsequent 0.5- and 2-mM caffeine challenges on both inward and outward currents. Finally, CPA abrogated the effects of 0.5 mM caffeine on both inward and outward currents, but with 2 mM caffeine, inward and transient outward currents were unchanged, but sustained outward currents increased. Conclusion We, thus, extend loose-patch clamping to establish pharmacological properties of murine CA1 pyramidal neurons and their similarities and contrasts with SkM. Here, evoked though not background Ca2+-store release influenced Nav and Kv excitation, consistent with smaller contributions of background store Ca2+ release to resting [Ca2+]. This potential non-canonical mechanism could modulate neuronal membrane excitability or cellular firing rates.
Collapse
Affiliation(s)
- Federico Bertagna
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Shiraz Ahmad
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - S. Ravi P. Silva
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- Advanced Technology Institute, University of Surrey, Guildford, United Kingdom
| | - Johnjoe McFadden
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Christopher L.-H. Huang
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
6
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Huang CLH, Lei M. Cardiomyocyte electrophysiology and its modulation: current views and future prospects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220160. [PMID: 37122224 PMCID: PMC10150219 DOI: 10.1098/rstb.2022.0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Normal and abnormal cardiac rhythms are of key physiological and clinical interest. This introductory article begins from Sylvio Weidmann's key historic 1950s microelectrode measurements of cardiac electrophysiological activity and Singh & Vaughan Williams's classification of cardiotropic targets. It then proceeds to introduce the insights into cardiomyocyte function and its regulation that subsequently emerged and their therapeutic implications. We recapitulate the resulting view that surface membrane electrophysiological events underlying cardiac excitation and its initiation, conduction and recovery constitute the final common path for the cellular mechanisms that impinge upon this normal or abnormal cardiac electrophysiological activity. We then consider progress in the more recently characterized successive regulatory hierarchies involving Ca2+ homeostasis, excitation-contraction coupling and autonomic G-protein signalling and their often reciprocal interactions with the surface membrane events, and their circadian rhythms. Then follow accounts of longer-term upstream modulation processes involving altered channel expression, cardiomyocyte energetics and hypertrophic and fibrotic cardiac remodelling. Consideration of these developments introduces each of the articles in this Phil. Trans. B theme issue. The findings contained in these articles translate naturally into recent classifications of cardiac electrophysiological targets and drug actions, thereby encouraging future iterations of experimental cardiac electrophysiological discovery, and testing directed towards clinical management. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
8
|
Liu T, Li T, Xu D, Wang Y, Zhou Y, Wan J, Huang CLH, Tan X. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220171. [PMID: 37122223 PMCID: PMC10150224 DOI: 10.1098/rstb.2022.0171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/25/2022] [Indexed: 05/02/2023] Open
Abstract
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dandi Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Juyi Wan
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
9
|
Wu X, Yan Q, Liu L, Xue X, Yao W, Li X, Li W, Ding S, Xia Y, Zhang D, Zhu F. Domesticated HERV-W env contributes to the activation of the small conductance Ca 2+-activated K + type 2 channels via decreased 5-HT4 receptor in recent-onset schizophrenia. Virol Sin 2023; 38:9-22. [PMID: 36007838 PMCID: PMC10006216 DOI: 10.1016/j.virs.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The human endogenous retroviruses type W family envelope (HERV-W env) gene is located on chromosome 7q21-22. Our previous studies show that HERV-W env is elevated in schizophrenia and HERV-W env can increase calcium influx. Additionally, the 5-HTergic system and particularly 5-hydroxytryptamine (5-HT) receptors play a prominent role in the pathogenesis and treatment of schizophrenia. 5-hydroxytryptamine receptor 4 (5-HT4R) agonist can block calcium channels. However, the underlying relationship between HERV-W env and 5-HT4R in the etiology of schizophrenia has not been revealed. Here, we used enzyme-linked immunosorbent assay to detect the concentration of HERV-W env and 5-HT4R in the plasma of patients with schizophrenia and we found that there were decreased levels of 5-HT4R and a negative correlation between 5-HT4R and HERV-W env in schizophrenia. Overexpression of HERV-W env decreased the transcription and protein levels of 5-HT4R but increased small conductance Ca2+-activated K+ type 2 channels (SK2) expression levels. Further studies revealed that HERV-W env could interact with 5-HT4R. Additionally, luciferase assay showed that an essential region (-364 to -176 from the transcription start site) in the SK2 promoter was required for HERV-W env-induced SK2 expression. Importantly, 5-HT4R participated in the regulation of SK2 expression and promoter activity. Electrophysiological recordings suggested that HERV-W env could increase SK2 channel currents and the increase of SK2 currents was inhibited by 5-HT4R. In conclusion, HERV-W env could activate SK2 channels via decreased 5-HT4R, which might exhibit a novel mechanism for HERV-W env to influence neuronal activity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
10
|
Xu H, Wang D, Ramponi C, Wang X, Zhang H. The P21-Activated Kinase 1 and 2 As Potential Therapeutic Targets for the Management of Cardiovascular Disease. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2022:5. [PMID: 39899001 PMCID: PMC7617276 DOI: 10.53941/ijddp.v1i1.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Group I p21-activated kinases (Paks) are members of the serine/threonine protein kinase family. Paks are encoded by three genes (Pak 1 - 3) and are involved in the regulation of various biological processes. Pak1 and Pak2 are key members, sharing 91% sequence identity in their kinase domains. Recent studies have shown that Pak1/2 protect the heart from various types of stresses. Activated Pak1/2 participate in the maintenance of cellular homeostasis and metabolism, thus enhancing the adaptation and resilience of cardiomyocytes to stress. The structure, activation and function of Pak1/2 as well as their protective roles against the occurrence of cardiovascular disease are described in this review. The values of Pak1/2 as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Honglin Xu
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dingwei Wang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chiara Ramponi
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hongyuan Zhang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
12
|
Ageing Increases Cardiac Electrical Remodelling in Rats and Mice via NOX4/ROS/CaMKII-Mediated Calcium Signalling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8538296. [PMID: 35387264 PMCID: PMC8979732 DOI: 10.1155/2022/8538296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
Objective Ageing is one of the risk factors associated with cardiovascular diseases including cardiac arrhythmias and heart failure. Ageing-related cardiac dysfunction involves a complicated pathophysiological progress. Abnormal membrane voltage and Ca2+ dynamics in aged cardiomyocytes contribute to ageing-related arrhythmias. However, its underlying mechanisms have not been well clarified. Methods Young and old rats or mice were included in this study. Cardiac electrophysiological properties and functions were assessed by ECG, echocardiography, and ex vivo heart voltage and Ca2+ optical mapping. Proteomics, phosphor-proteomics, Western blotting, Masson staining, and ROS measurement were used to investigate the underlying mechanisms. Results Ageing increased the incidence of cardiac hypertrophy and fibrosis in rats. Moreover, ageing increased the occurrence of ventricular tachycardia or ventricular fibrillation induced by rapid pacing and during isoprenaline (ISO) (1 mg/kg i.p.) challenge in mice in vivo. Optical mapping with dual dyes (membrane voltage (Vm) dye and intracellular Ca2+ dye) simultaneously recording revealed that ageing increased the action potential duration (APD) and Ca2+ transient duration (CaTD) and slowed the ventricular conduction with the Langendorff-perfused mouse heart. More importantly, ageing increased the ISO-induced (1 μM) changes of APD (ΔAPD80) and CaTD (ΔCaTD50). Ageing also delayed the decay of Ca2+ transient by extending the decay time constant from 30% to 90% (τ30−90). In addition, ageing decreased the Vm/Ca2+ latency which represented the coupling of Vm/Ca2+ including between the midpoint of AP depolarization and Ca2+ upstroke, peak transmembrane voltage and peak cytosolic calcium, and time to 50% voltage repolarization and extrusion of cytosolic calcium. Optical mapping also revealed that ageing increased the ISO-induced arrhythmia incidence and occurrence of the excitation rotor. Proteomics and phosphor-proteomics assays from rat hearts demonstrated ageing-induced protein and phosphor-protein changes, suggesting that CaMKII was involved in ageing-induced change. Ageing increased the level of ROS and the expression of NOX4, oxidative CaMKII (ox-CaMKII), phosphorated CaMKII (p-CaMKII), and periostin. Conclusion Ageing accelerates cardiac remodelling and increases the susceptibility to ventricular arrhythmias through NOX4/ROS/CaMKII pathway-mediated abnormal membrane voltage and intracellular Ca2+ handling and Vm/Ca2+ coupling.
Collapse
|