1
|
Kabakov AY, Roder K, Bronk P, Turan NN, Dhakal S, Zhong M, Lu Y, Zeltzer ZA, Najman-Licht YB, Karma A, Koren G. E3 ubiquitin ligase rififylin has yin and yang effects on rabbit cardiac transient outward potassium currents (I to) and corresponding channel proteins. J Biol Chem 2024; 300:105759. [PMID: 38367666 PMCID: PMC10945274 DOI: 10.1016/j.jbc.2024.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.
Collapse
Affiliation(s)
- Anatoli Y Kabakov
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Karim Roder
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Peter Bronk
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Nilüfer N Turan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Saroj Dhakal
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Yichun Lu
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Zachary A Zeltzer
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yonatan B Najman-Licht
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Gideon Koren
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
2
|
Nakajo K, Kasuya G. Modulation of potassium channels by transmembrane auxiliary subunits via voltage-sensing domains. Physiol Rep 2024; 12:e15980. [PMID: 38503563 PMCID: PMC10950684 DOI: 10.14814/phy2.15980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Voltage-gated K+ (KV ) and Ca2+ -activated K+ (KCa ) channels are essential proteins for membrane repolarization in excitable cells. They also play important physiological roles in non-excitable cells. Their diverse physiological functions are in part the result of their auxiliary subunits. Auxiliary subunits can alter the expression level, voltage dependence, activation/deactivation kinetics, and inactivation properties of the bound channel. KV and KCa channels are activated by membrane depolarization through the voltage-sensing domain (VSD), so modulation of KV and KCa channels through the VSD is reasonable. Recent cryo-EM structures of the KV or KCa channel complex with auxiliary subunits are shedding light on how these subunits bind to and modulate the VSD. In this review, we will discuss four examples of auxiliary subunits that bind directly to the VSD of KV or KCa channels: KCNQ1-KCNE3, Kv4-DPP6, Slo1-β4, and Slo1-γ1. Interestingly, their binding sites are all different. We also present some examples of how functionally critical binding sites can be determined by introducing mutations. These structure-guided approaches would be effective in understanding how VSD-bound auxiliary subunits modulate ion channels.
Collapse
Affiliation(s)
- Koichi Nakajo
- Division of Integrative Physiology, Department of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Go Kasuya
- Division of Integrative Physiology, Department of PhysiologyJichi Medical UniversityShimotsukeJapan
| |
Collapse
|
3
|
Altomare C, Bartolucci C, Sala L, Balbi C, Burrello J, Pietrogiovanna N, Burrello A, Bolis S, Panella S, Arici M, Krause R, Rocchetti M, Severi S, Barile L. A dynamic clamping approach using in silico IK1 current for discrimination of chamber-specific hiPSC-derived cardiomyocytes. Commun Biol 2023; 6:291. [PMID: 36934210 PMCID: PMC10024709 DOI: 10.1038/s42003-023-04674-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) constitute a mixed population of ventricular-, atrial-, nodal-like cells, limiting the reliability for studying chamber-specific disease mechanisms. Previous studies characterised CM phenotype based on action potential (AP) morphology, but the classification criteria were still undefined. Our aim was to use in silico models to develop an automated approach for discriminating the electrophysiological differences between hiPSC-CM. We propose the dynamic clamp (DC) technique with the injection of a specific IK1 current as a tool for deriving nine electrical biomarkers and blindly classifying differentiated CM. An unsupervised learning algorithm was applied to discriminate CM phenotypes and principal component analysis was used to visualise cell clustering. Pharmacological validation was performed by specific ion channel blocker and receptor agonist. The proposed approach improves the translational relevance of the hiPSC-CM model for studying mechanisms underlying inherited or acquired atrial arrhythmias in human CM, and for screening anti-arrhythmic agents.
Collapse
Affiliation(s)
- Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Euler institute, Università Svizzera italiana, Lugano, Switzerland
| | - Chiara Bartolucci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Carolina Balbi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Jacopo Burrello
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Internal Medicine 4 and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Nicole Pietrogiovanna
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Alessio Burrello
- Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Bologna, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Martina Arici
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Rolf Krause
- Euler institute, Università Svizzera italiana, Lugano, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy.
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland.
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Euler institute, Università Svizzera italiana, Lugano, Switzerland.
- Faculty of Biomedical Sciences, Università Svizzera italiana, Lugano, Switzerland.
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
4
|
Fowler ED, Wang N, Hezzell MJ, Chanoit G, Hancox JC, Cannell MB. Improved Ca 2+ release synchrony following selective modification of I tof and phase 1 repolarization in normal and failing ventricular myocytes. J Mol Cell Cardiol 2022; 172:52-62. [PMID: 35908686 PMCID: PMC11773631 DOI: 10.1016/j.yjmcc.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Loss of ventricular action potential (AP) early phase 1 repolarization may contribute to the impaired Ca2+ release and increased risk of sudden cardiac death in heart failure. Therefore, restoring AP phase 1 by augmenting the fast transient outward K+ current (Itof) might be beneficial, but direct experimental evidence to support this proposition in failing cardiomyocytes is limited. Dynamic clamp was used to selectively modulate the contribution of Itof to the AP and Ca2+ transient in both normal (guinea pig and rabbit) and in failing rabbit cardiac myocytes. Opposing native Itof in non-failing rabbit myocytes increased Ca2+ release heterogeneity, late Ca2+ sparks (LCS) frequency and AP duration. (APD). In contrast, increasing Itof in failing myocytes and guinea pig myocytes (the latter normally lacking Itof) increased Ca2+ transient amplitude, Ca2+ release synchrony, and shortened APD. Computer simulations also showed faster Ca2+ transient decay (mainly due to fewer LCS), decreased inward Na+/Ca2+ exchange current and APD. When the Itof conductance was increased to ~0.2 nS/pF in failing cells (a value slightly greater than seen in typical human epicardial myocytes), Ca2+ release synchrony improved and AP duration decreased slightly. Further increases in Itof can cause Ca2+ release to decrease as the peak of the bell-shaped ICa-voltage relationship is passed and premature AP repolarization develops. These results suggest that there is an optimal range for Itof enhancement that may support Ca2+ release synchrony and improve electrical stability in heart failure with the caveat that uncontrolled Itof enhancement should be avoided.
Collapse
Affiliation(s)
- Ewan D Fowler
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Nan Wang
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Melanie J Hezzell
- University of Bristol Veterinary School, Langford, Bristol BS40 5DU, UK
| | - Guillaume Chanoit
- University of Bristol Veterinary School, Langford, Bristol BS40 5DU, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Mark B Cannell
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|