1
|
Kulakova A, Augustijn D, El Bialy I, Gentiluomo L, Greco ML, Hervø-Hansen S, Indrakumar S, Mahapatra S, Martinez Morales M, Pohl C, Polimeni M, Roche A, Svilenov HL, Tosstorff A, Zalar M, Curtis R, Derrick JP, Frieß W, Golovanov AP, Lund M, Nørgaard A, Khan TA, Peters GHJ, Pluen A, Roessner D, Streicher WW, van der Walle CF, Warwicker J, Uddin S, Winter G, Bukrinski JT, Rinnan Å, Harris P. Chemometrics in Protein Formulation: Stability Governed by Repulsion and Protein Unfolding. Mol Pharm 2023. [PMID: 37146162 DOI: 10.1021/acs.molpharmaceut.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients. Multivariate data analysis and chemometrics were used to analyze the data in an unbiased way. First, observed changes in stability were primarily determined by the individual protein. Second, pH and ionic strength are the two most important factors determining the physical stability of proteins, where there exists a significant statistical interaction between protein and pH/ionic strength. Additionally, we developed prediction methods by partial least-squares regression. Colloidal stability indicators are important for prediction of real-time stability, while conformational stability indicators are important for prediction of stability under accelerated stress conditions at 40 °C. In order to predict real-time storage stability, protein-protein repulsion and the initial monomer fraction are the most important properties to monitor.
Collapse
Affiliation(s)
- Alina Kulakova
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| | - Dillen Augustijn
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Inas El Bialy
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Lorenzo Gentiluomo
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
- Wyatt Technology Europe GmbH, Hochstrasse 18, Dernbach 56307, Germany
| | - Maria Laura Greco
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Stefan Hervø-Hansen
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Sowmya Indrakumar
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| | | | - Marcello Martinez Morales
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Christin Pohl
- Novozymes A/S, Krogshoejvej 36, Bagsvaerd 2880, Denmark
| | - Marco Polimeni
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Aisling Roche
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Hristo L Svilenov
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Andreas Tosstorff
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Matja Zalar
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, and Manchester Institute of Biotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Robin Curtis
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Jeremy P Derrick
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Alexander P Golovanov
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, and Manchester Institute of Biotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mikael Lund
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | | | - Tarik A Khan
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, U.K
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, Dernbach 56307, Germany
| | | | - Christopher F van der Walle
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Shahid Uddin
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | | | - Åsmund Rinnan
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| |
Collapse
|
2
|
Hyer CD, Lin HJL, Haderlie CT, Berg M, Price JC. C Half: Folding Stability Made Simple. J Proteome Res 2023; 22:605-614. [PMID: 36707058 PMCID: PMC9904287 DOI: 10.1021/acs.jproteome.2c00619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 01/29/2023]
Abstract
The structure of a protein defines its function and integrity and correlates with the protein folding stability (PFS). Quantifying PFS allows researchers to assess differential stability of proteins in different disease or ligand binding states, providing insight into protein efficacy and potentially serving as a metric of protein quality. There are a number of mass spectrometry (MS)-based methods to assess PFS, such as Thermal Protein Profiling (TPP), Stability of Proteins from Rates of Oxidation (SPROX), and Iodination Protein Stability Assay (IPSA). Despite the critical value that PFS studies add to the understanding of mechanisms of disease and treatment development, proteomics research is still primarily dominated by concentration-based studies. We found that a major reason for the lack of PFS studies is the lack of a user-friendly data processing tool. Here we present the first user-friendly software, CHalf, with a graphical user interface for calculating PFS. Besides calculating site-specific PFS of a given protein from chemical denature folding stability assays, CHalf is also compatible with thermal denature folding stability assays. CHalf also includes a set of data visualization tools to help identify changes in PFS across protein sequences and in between different treatment conditions. We expect the introduction of CHalf to lower the barrier of entry for researchers to investigate PFS, promoting the usage of PFS in studies. In the long run, we expect this increase in PFS research to accelerate our understanding of the pathogenesis and pathophysiology of disease.
Collapse
Affiliation(s)
- Chad D. Hyer
- Department
of Chemistry and Biochemistry, Brigham Young
University, Provo, Utah84602, United States
| | - Hsien-Jung L. Lin
- Department
of Chemistry and Biochemistry, Brigham Young
University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department
of Chemistry and Biochemistry, Brigham Young
University, Provo, Utah84602, United States
| | - Monica Berg
- Department
of Chemistry and Biochemistry, Brigham Young
University, Provo, Utah84602, United States
| | - John C. Price
- Department
of Chemistry and Biochemistry, Brigham Young
University, Provo, Utah84602, United States
| |
Collapse
|
3
|
Lin HJ, James I, Hyer CD, Haderlie CT, Zackrison MJ, Bateman TM, Berg M, Park JS, Daley SA, Zuniga Pina NR, Tseng YJJ, Moody JD, Price JC. Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. J Proteome Res 2022; 21:2920-2935. [PMID: 36356215 PMCID: PMC9724711 DOI: 10.1021/acs.jproteome.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).
Collapse
Affiliation(s)
- Hsien-Jung
L. Lin
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Isabella James
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Chad D. Hyer
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Michael J. Zackrison
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Tyler M. Bateman
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Monica Berg
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Ji-Sun Park
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - S. Anisha Daley
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Nathan R. Zuniga Pina
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Yi-Jie J. Tseng
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - James D. Moody
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - John C. Price
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| |
Collapse
|
4
|
Indrakumar S, Kulakova A, Harris P, Peters GHJ. Dynamics of Human Serum Transferrin in Varying Physicochemical Conditions Explored by Using Molecular Dynamics Simulations. Mol Pharm 2022; 19:2795-2806. [PMID: 35776490 DOI: 10.1021/acs.molpharmaceut.2c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational stability of human serum transferrin (Tf) at varying pH values and salt and excipient concentrations were investigated using molecular dynamics (MD) simulations, and the results are compared with previously published small-angle X-ray scattering (SAXS) experiments. SAXS study showed that at pH 5, Tf is predominantly present in a partially open (PO) form, and the factions of PO differ based on the physicochemical condition and drift toward the closed form (HO) as the pH increases. Tf is a bilobal glycoprotein that is composed of homologous halves termed the N- and C-lobes. The current study shows that the protonation of Y188 and K206 at pH 5 is the primary conformational drive into PO, which shifts toward the closed (HO) conformer as the pH increases. Furthermore, at pH 6.5, PO is unfavorable due to negative charge-charge repulsion at the N/C-lobe interface linker region causing increased hinge distance when compared to HO, which has favorable attractive electrostatic interactions in this region. Subsequently, the effect of salt concentration was studied at 70 and 140 mM NaCl. At 70 mM NaCl and pH 5, chloride ions bind strongly in the N-lobe iron-binding site, whereas these interactions are weak at pH 6.5. With increasing salt concentration at pH 5, the regions surrounding the N-lobe iron-binding site are saturated, and as a consequence, sodium and chloride ions accumulate into the bulk. Additionally, protein-excipient interactions were investigated. At pH 5, the excipients interact in similar loop regions, E89-T93, and D416-D420, located in the N- and C-lobes of the HO conformer, respectively. It is anticipated that interactions of additives in these two loop regions cause conformational changes that lead to iron-coordinating residues in the N-lobe to drift away from iron and thus drive HO to PO conversion. Furthermore, at pH 6.5 and 140 mM histidine, these interactions are negligible leading to the stabilization of HO.
Collapse
Affiliation(s)
- Sowmya Indrakumar
- Technical University of Denmark, Department of Chemistry, 2800 Kgs. Lyngby, Denmark
| | - Alina Kulakova
- Technical University of Denmark, Department of Chemistry, 2800 Kgs. Lyngby, Denmark
| | - Pernille Harris
- Technical University of Denmark, Department of Chemistry, 2800 Kgs. Lyngby, Denmark
| | - Günther H J Peters
- Technical University of Denmark, Department of Chemistry, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|