1
|
Toumpe I, Choudhury S, Hatzimanikatis V, Miskovic L. The Dawn of High-Throughput and Genome-Scale Kinetic Modeling: Recent Advances and Future Directions. ACS Synth Biol 2025. [PMID: 40262025 DOI: 10.1021/acssynbio.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Researchers have invested much effort into developing kinetic models due to their ability to capture dynamic behaviors, transient states, and regulatory mechanisms of metabolism, providing a detailed and realistic representation of cellular processes. Historically, the requirements for detailed parametrization and significant computational resources created barriers to their development and adoption for high-throughput studies. However, recent advancements, including the integration of machine learning with mechanistic metabolic models, the development of novel kinetic parameter databases, and the use of tailor-made parametrization strategies, are reshaping the field of kinetic modeling. In this Review, we discuss these developments and offer future directions, highlighting the potential of these advances to drive progress in systems and synthetic biology, metabolic engineering, and medical research at an unprecedented scale and pace.
Collapse
Affiliation(s)
- Ilias Toumpe
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Subham Choudhury
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
2
|
Isewon I, Binaansim S, Adegoke F, Emmanuel J, Oyelade J. Machine learning methods for predicting essential metabolic genes from Plasmodium falciparum genome-scale metabolic network. PLoS One 2024; 19:e0315530. [PMID: 39715240 DOI: 10.1371/journal.pone.0315530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Essential genes are those whose presence is vital for a cell's survival and growth. Detecting these genes in disease-causing organisms is critical for various biological studies, including understanding microbe metabolism, engineering genetically modified microorganisms, and identifying targets for treatment. When essential genes are expressed, they give rise to essential proteins. Identifying these genes, especially in complex organisms like Plasmodium falciparum, which causes malaria, is challenging due to the cost and time associated with experimental methods. Thus, computational approaches have emerged. Early research in this area prioritised the study of less intricate organisms, inadvertently neglecting the complexities of metabolite transport in metabolic networks. To overcome this, a Network-based Machine Learning framework was proposed. It assessed various network properties in Plasmodium falciparum, using a Genome-Scale Metabolic Model (iAM_Pf480) from the BiGG database and essentiality data from the Ogee database. The proposed approach substantially improved gene essentiality predictions as it considered the weighted and directed nature of metabolic networks and utilised network-based features, achieving a high accuracy rate of 0.85 and an AuROC of 0.7. Furthermore, this study enhanced the understanding of metabolic networks and their role in determining gene essentiality in Plasmodium falciparum. Notably, our model identified 9 genes previously considered non-essential in the Ogee database but now predicted to be essential, with some of them potentially serving as drug targets for malaria treatment, thereby opening exciting research avenues.
Collapse
Affiliation(s)
- Itunuoluwa Isewon
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication, Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Stephen Binaansim
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication, Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Faith Adegoke
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication, Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Jerry Emmanuel
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication, Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Jelili Oyelade
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication, Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
3
|
Choudhury S, Narayanan B, Moret M, Hatzimanikatis V, Miskovic L. Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states. Nat Catal 2024; 7:1086-1098. [PMID: 39463726 PMCID: PMC11499278 DOI: 10.1038/s41929-024-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2024] [Indexed: 10/29/2024]
Abstract
Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in Escherichia coli. It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology.
Collapse
Affiliation(s)
- Subham Choudhury
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bharath Narayanan
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael Moret
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Noirungsee N, Changkhong S, Phinyo K, Suwannajak C, Tanakul N, Inwongwan S. Genome-scale metabolic modelling of extremophiles and its applications in astrobiological environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13231. [PMID: 38192220 PMCID: PMC10866088 DOI: 10.1111/1758-2229.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Metabolic modelling approaches have become the powerful tools in modern biology. These mathematical models are widely used to predict metabolic phenotypes of the organisms or communities of interest, and to identify metabolic targets in metabolic engineering. Apart from a broad range of industrial applications, the possibility of using metabolic modelling in the contexts of astrobiology are poorly explored. In this mini-review, we consolidated the concepts and related applications of applying metabolic modelling in studying organisms in space-related environments, specifically the extremophilic microbes. We recapitulated the current state of the art in metabolic modelling approaches and their advantages in the astrobiological context. Our review encompassed the applications of metabolic modelling in the theoretical investigation of the origin of life within prebiotic environments, as well as the compilation of existing uses of genome-scale metabolic models of extremophiles. Furthermore, we emphasize the current challenges associated with applying this technique in extreme environments, and conclude this review by discussing the potential implementation of metabolic models to explore theoretically optimal metabolic networks under various space conditions. Through this mini-review, our aim is to highlight the potential of metabolic modelling in advancing the study of astrobiology.
Collapse
Affiliation(s)
- Nuttapol Noirungsee
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Sakunthip Changkhong
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Kittiya Phinyo
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research group on Earth—Space Ecology (ESE), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Office of Research AdministrationChiang Mai UniversityChiang MaiThailand
| | | | - Nahathai Tanakul
- National Astronomical Research Institute of ThailandChiang MaiThailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
5
|
Narayanan B, Weilandt D, Masid M, Miskovic L, Hatzimanikatis V. Rational strain design with minimal phenotype perturbation. Nat Commun 2024; 15:723. [PMID: 38267425 PMCID: PMC10808392 DOI: 10.1038/s41467-024-44831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Devising genetic interventions for desired cellular phenotypes remains challenging regarding time and resources. Kinetic models can accelerate this task by simulating metabolic responses to genetic perturbations. However, exhaustive design evaluations with kinetic models are computationally impractical, especially when targeting multiple enzymes. Here, we introduce a framework for efficiently scouting the design space while respecting cellular physiological requirements. The framework employs mixed-integer linear programming and nonlinear simulations with large-scale nonlinear kinetic models to devise genetic interventions while accounting for the network effects of these perturbations. Importantly, it ensures the engineered strain's robustness by maintaining its phenotype close to that of the reference strain. The framework, applied to improve the anthranilate production in E. coli, devises designs for experimental implementation, including eight previously experimentally validated targets. We expect this framework to play a crucial role in future design-build-test-learn cycles, significantly expediting the strain design compared to exhaustive design enumeration.
Collapse
Affiliation(s)
- Bharath Narayanan
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Daniel Weilandt
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Maria Masid
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
6
|
Choudhury S, Moret M, Salvy P, Weilandt D, Hatzimanikatis V, Miskovic L. Reconstructing Kinetic Models for Dynamical Studies of Metabolism using Generative Adversarial Networks. NAT MACH INTELL 2022; 4:710-719. [PMID: 37790987 PMCID: PMC10543203 DOI: 10.1038/s42256-022-00519-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Kinetic models of metabolism relate metabolic fluxes, metabolite concentrations and enzyme levels through mechanistic relations, rendering them essential for understanding, predicting and optimizing the behaviour of living organisms. However, due to the lack of kinetic data, traditional kinetic modelling often yields only a few or no kinetic models with desirable dynamical properties, making the analysis unreliable and computationally inefficient. We present REKINDLE (Reconstruction of Kinetic Models using Deep Learning), a deep-learning-based framework for efficiently generating kinetic models with dynamic properties matching the ones observed in cells. We showcase REKINDLE's capabilities to navigate through the physiological states of metabolism using small numbers of data with significantly lower computational requirements. The results show that data-driven neural networks assimilate implicit kinetic knowledge and structure of metabolic networks and generate kinetic models with tailored properties and statistical diversity. We anticipate that our framework will advance our understanding of metabolism and accelerate future research in biotechnology and health.
Collapse
Affiliation(s)
- Subham Choudhury
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Moret
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Salvy
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Present Address: Cambrium GmBH, Berlin, Germany
| | - Daniel Weilandt
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Present Address: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Hurbain J, Thommen Q, Anquez F, Pfeuty B. Quantitative modeling of pentose phosphate pathway response to oxidative stress reveals a cooperative regulatory strategy. iScience 2022; 25:104681. [PMID: 35856027 PMCID: PMC9287814 DOI: 10.1016/j.isci.2022.104681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 01/22/2023] Open
Abstract
Living cells use signaling and regulatory mechanisms to adapt to environmental stresses. Adaptation to oxidative stress involves the regulation of many enzymes in both glycolysis and pentose phosphate pathways (PPP), so as to support PPP-driven NADPH recycling for antioxidant defense. The underlying regulatory logic is investigated by developing a kinetic modeling approach fueled with metabolomics and 13C-fluxomics datasets from human fibroblast cells. Bayesian parameter estimation and phenotypic analysis of models highlight complementary roles for several metabolite-enzyme regulations. Specifically, carbon flux rerouting into PPP involves a tight coordination between the upregulation of G6PD activity concomitant to a decreased NADPH/NADP+ ratio and the differential control of downward and upward glycolytic fluxes through the joint inhibition of PGI and GAPD enzymes. Such functional interplay between distinct regulatory feedbacks promotes efficient detoxification and homeostasis response over a broad range of stress level, but can also explain paradoxical pertubation phenotypes for instance reported for 6PGD modulation in mammalian cells.
Collapse
Affiliation(s)
- Julien Hurbain
- CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, University of Lille, 59000 Lille, France
| | - Quentin Thommen
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, 59000 Lille, France
| | - Francois Anquez
- CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, University of Lille, 59000 Lille, France
| | - Benjamin Pfeuty
- CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, University of Lille, 59000 Lille, France
| |
Collapse
|
8
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
9
|
Pathania R, Srivastava A, Srivastava S, Shukla P. Metabolic systems biology and multi-omics of cyanobacteria: Perspectives and future directions. BIORESOURCE TECHNOLOGY 2022; 343:126007. [PMID: 34634665 DOI: 10.1016/j.biortech.2021.126007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are oxygenic photoautotrophs whose metabolism contains key biochemical pathways to fix atmospheric CO2 and synthesize various metabolites. The development of bioengineering tools has enabled the manipulation of cyanobacterial chassis to produce various valuable bioproducts photosynthetically. However, effective utilization of cyanobacteria as photosynthetic cell factories needs a detailed understanding of their metabolism and its interaction with other cellular processes. Implementing systems and synthetic biology tools has generated a wealth of information on various metabolic pathways. However, to design effective engineering strategies for further improvement in growth, photosynthetic efficiency, and enhanced production of target biochemicals, in-depth knowledge of their carbon/nitrogen metabolism, pathway fluxe distribution, genetic regulation and integrative analyses are necessary. In this review, we discuss the recent advances in the development of genome-scale metabolic models (GSMMs), omics analyses (metabolomics, transcriptomics, proteomics, fluxomics), and integrative modeling approaches to showcase the current understanding of cyanobacterial metabolism.
Collapse
Affiliation(s)
- Ruchi Pathania
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi 110067, India; DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
10
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
11
|
Ramirez-Malule H, López-Agudelo VA, Gómez-Ríos D, Ochoa S, Ríos-Estepa R, Junne S, Neubauer P. TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus. Bioengineering (Basel) 2021; 8:103. [PMID: 34436106 PMCID: PMC8389198 DOI: 10.3390/bioengineering8080103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Streptomyces clavuligerus (S. clavuligerus) has been widely studied for its ability to produce clavulanic acid (CA), a potent inhibitor of β-lactamase enzymes. In this study, S. clavuligerus cultivated in 2D rocking bioreactor in fed-batch operation produced CA at comparable rates to those observed in stirred tank bioreactors. A reduced model of S. clavuligerus metabolism was constructed by using a bottom-up approach and validated using experimental data. The reduced model was implemented for in silico studies of the metabolic scenarios arisen during the cultivations. Constraint-based analysis confirmed the interrelations between succinate, oxaloacetate, malate, pyruvate, and acetate accumulations at high CA synthesis rates in submerged cultures of S. clavuligerus. Further analysis using shadow prices provided a first view of the metabolites positive and negatively associated with the scenarios of low and high CA production.
Collapse
Affiliation(s)
| | | | - David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Rigoberto Ríos-Estepa
- Escuela de Biociencias, Universidad Nacional de Colombia sede Medellín, Medellín 050010, Colombia;
| | - Stefan Junne
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| |
Collapse
|
12
|
|
13
|
Constraint-based metabolic control analysis for rational strain engineering. Metab Eng 2021; 66:191-203. [PMID: 33895366 DOI: 10.1016/j.ymben.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/10/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
The advancements in genome editing techniques over the past years have rekindled interest in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-established method for quantifying the effects of metabolic engineering interventions on flows in metabolic networks and metabolite concentrations, it does not consider the physiological limitations of the cellular environment and metabolic engineering design constraints. We report here a constraint-based framework, Network Response Analysis (NRA), for rational genetic strain design. NRA is cast as a Mixed-Integer Linear Programming problem that integrates MCA, Thermodynamically-based Flux Analysis (TFA), biologically relevant constraints, as well as genome editing restrictions into a comprehensive platform for identifying metabolic engineering targets. We show that the NRA formulation and its core constraints are equivalent to the ones of Flux Balance Analysis (FBA) and TFA, which allows it to be used for a wide range of optimization criteria and with various physiological constraints. We also show how the parametrization and introduction of biological constraints enhance the NRA formulation compared to the classical MCA approach, and we demonstrate its features and its ability to generate multiple alternative optimal strategies given several user-defined boundaries and objectives. In summary, NRA is a sophisticated alternative to classical MCA for rational metabolic engineering that accommodates the incorporation of physiological data at metabolic flux, metabolite concentration, and enzyme expression levels.
Collapse
|
14
|
Hameri T, Fengos G, Hatzimanikatis V. The effects of model complexity and size on metabolic flux distribution and control: case study in Escherichia coli. BMC Bioinformatics 2021; 22:134. [PMID: 33743594 PMCID: PMC7981984 DOI: 10.1186/s12859-021-04066-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Background Significant efforts have been made in building large-scale kinetic models of cellular metabolism in the past two decades. However, most kinetic models published to date, remain focused around central carbon pathways or are built around ad hoc reduced models without clear justification on their derivation and usage. Systematic algorithms exist for reducing genome-scale metabolic reconstructions to build thermodynamically feasible and consistently reduced stoichiometric models. However, it is important to study how network complexity affects conclusions derived from large-scale kinetic models built around consistently reduced models before we can apply them to study biological systems. Results We reduced the iJO1366 Escherichia Coli genome-scale metabolic reconstruction systematically to build three stoichiometric models of different size. Since the reduced models are expansions around the core subsystems for which the reduction was performed, the models are nested. We present a method for scaling up the flux profile and the concentration vector reference steady-states from the smallest model to the larger ones, whilst preserving maximum equivalency. Populations of kinetic models, preserving similarity in kinetic parameters, were built around the reference steady-states and their metabolic sensitivity coefficients (MSCs) were computed. The MSCs were sensitive to the model complexity. We proposed a metric for measuring the sensitivity of MSCs to these structural changes. Conclusions We proposed for the first time a workflow for scaling up the size of kinetic models while preserving equivalency between the kinetic models. Using this workflow, we demonstrate that model complexity in terms of networks size has significant impact on sensitivity characteristics of kinetic models. Therefore, it is essential to account for the effects of network complexity when constructing kinetic models. The presented metric for measuring MSC sensitivity to structural changes can guide modelers and experimentalists in improving model quality and guide synthetic biology and metabolic engineering. Our proposed workflow enables the testing of the suitability of a kinetic model for answering certain study-specific questions. We argue that the model-based metabolic design targets that are common across models of different size are of higher confidence, while those that are different could be the objective of investigations for model improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04066-y.
Collapse
Affiliation(s)
- Tuure Hameri
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Georgios Fengos
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
15
|
Kumar K, Venkatraman V, Bruheim P. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:64. [PMID: 33750414 PMCID: PMC7941957 DOI: 10.1186/s12934-021-01557-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Saccharomyces cerevisiae is a well-known popular model system for basic biological studies and serves as a host organism for the heterologous production of commercially interesting small molecules and proteins. The central metabolism is at the core to provide building blocks and energy to support growth and survival in normal situations as well as during exogenous stresses and forced heterologous protein production. Here, we present a comprehensive study of intracellular central metabolite pool profiling when growing S. cerevisiae on different carbon sources in batch cultivations and at different growth rates in nutrient-limited glucose chemostats. The latest versions of absolute quantitative mass spectrometry-based metabolite profiling methodology were applied to cover glycolytic and pentose phosphate pathway metabolites, tricarboxylic acid cycle (TCA), complete amino acid, and deoxy-/nucleoside phosphate pools. Results Glutamate, glutamine, alanine, and citrate were the four most abundant metabolites for most conditions tested. The amino acid is the dominant metabolite class even though a marked relative reduction compared to the other metabolite classes was observed for nitrogen and phosphate limited chemostats. Interestingly, glycolytic and pentose phosphate pathway (PPP) metabolites display the largest variation among the cultivation conditions while the nucleoside phosphate pools are more stable and vary within a closer concentration window. The overall trends for glucose and nitrogen-limited chemostats were increased metabolite pools with the increasing growth rate. Next, comparing the chosen chemostat reference growth rate (0.12 h−1, approximate one-fourth of maximal unlimited growth rate) illuminates an interesting pattern: almost all pools are lower in nitrogen and phosphate limited conditions compared to glucose limitation, except for the TCA metabolites citrate, isocitrate and α-ketoglutarate. Conclusions This study provides new knowledge-how the central metabolism is adapting to various cultivations conditions and growth rates which is essential for expanding our understanding of cellular metabolism and the development of improved phenotypes in metabolic engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01557-8.
Collapse
Affiliation(s)
- Kanhaiya Kumar
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Vishwesh Venkatraman
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
16
|
Foster CJ, Wang L, Dinh HV, Suthers PF, Maranas CD. Building kinetic models for metabolic engineering. Curr Opin Biotechnol 2020; 67:35-41. [PMID: 33360621 DOI: 10.1016/j.copbio.2020.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Kinetic formalisms of metabolism link metabolic fluxes to enzyme levels, metabolite concentrations and their allosteric regulatory interactions. Though they require the identification of physiologically relevant values for numerous parameters, kinetic formalisms uniquely establish a mechanistic link across heterogeneous omics datasets and provide an overarching vantage point to effectively inform metabolic engineering strategies. Advances in computational power, gene annotation coverage, and formalism standardization have led to significant progress over the past few years. However, careful interpretation of model predictions, limited metabolic flux datasets, and assessment of parameter sensitivity remain as challenges. In this review we highlight fundamental considerations which influence model quality and prediction, advances in methodologies, and success stories of deploying kinetic models to guide metabolic engineering.
Collapse
Affiliation(s)
- Charles J Foster
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, Univesity Park, PA, USA
| | - Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, Univesity Park, PA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
17
|
Bromig L, Kremling A, Marin-Sanguino A. Understanding biochemical design principles with ensembles of canonical non-linear models. PLoS One 2020; 15:e0230599. [PMID: 32353072 PMCID: PMC7192416 DOI: 10.1371/journal.pone.0230599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Systems biology applies concepts from engineering in order to understand biological networks. If such an understanding was complete, biologists would be able to design ad hoc biochemical components tailored for different purposes, which is the goal of synthetic biology. Needless to say that we are far away from creating biological subsystems as intricate and precise as those found in nature, but mathematical models and high throughput techniques have brought us a long way in this direction. One of the difficulties that still needs to be overcome is finding the right values for model parameters and dealing with uncertainty, which is proving to be an extremely difficult task. In this work, we take advantage of ensemble modeling techniques, where a large number of models with different parameter values are formulated and then tested according to some performance criteria. By finding features shared by successful models, the role of different components and the synergies between them can be better understood. We will address some of the difficulties often faced by ensemble modeling approaches, such as the need to sample a space whose size grows exponentially with the number of parameters, and establishing useful selection criteria. Some methods will be shown to reduce the predictions from many models into a set of understandable “design principles” that can guide us to improve or manufacture a biochemical network. Our proposed framework formulates models within standard formalisms in order to integrate information from different sources and minimize the dimension of the parameter space. Additionally, the mathematical properties of the formalism enable a partition of the parameter space into independent subspaces. Each of these subspaces can be paired with a set of criteria that depend exclusively on it, thus allowing a separate sampling/screening in spaces of lower dimension. By applying tests in a strict order where computationally cheaper tests are applied first to each subspace and applying computationally expensive tests to the remaining subset thereafter, the use of resources is optimized and a larger number of models can be examined. This can be compared to a complex database query where the order of the requests can make a huge difference in the processing time. The method will be illustrated by analyzing a classical model of a metabolic pathway with end-product inhibition. Even for such a simple model, the method provides novel insight.
Collapse
Affiliation(s)
- Lukas Bromig
- Specialty Division for Systems Biotechnology, Technische Universität München, Garching, Germany
| | - Andreas Kremling
- Specialty Division for Systems Biotechnology, Technische Universität München, Garching, Germany
| | - Alberto Marin-Sanguino
- Specialty Division for Systems Biotechnology, Technische Universität München, Garching, Germany
- * E-mail:
| |
Collapse
|
18
|
Tokic M, Hatzimanikatis V, Miskovic L. Large-scale kinetic metabolic models of Pseudomonas putida KT2440 for consistent design of metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:33. [PMID: 32140178 PMCID: PMC7048048 DOI: 10.1186/s13068-020-1665-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Pseudomonas putida is a promising candidate for the industrial production of biofuels and biochemicals because of its high tolerance to toxic compounds and its ability to grow on a wide variety of substrates. Engineering this organism for improved performances and predicting metabolic responses upon genetic perturbations requires reliable descriptions of its metabolism in the form of stoichiometric and kinetic models. RESULTS In this work, we developed kinetic models of P. putida to predict the metabolic phenotypes and design metabolic engineering interventions for the production of biochemicals. The developed kinetic models contain 775 reactions and 245 metabolites. Furthermore, we introduce here a novel set of constraints within thermodynamics-based flux analysis that allow for considering concentrations of metabolites that exist in several compartments as separate entities. We started by a gap-filling and thermodynamic curation of iJN1411, the genome-scale model of P. putida KT2440. We then systematically reduced the curated iJN1411 model, and we created three core stoichiometric models of different complexity that describe the central carbon metabolism of P. putida. Using the medium complexity core model as a scaffold, we generated populations of large-scale kinetic models for two studies. In the first study, the developed kinetic models successfully captured the experimentally observed metabolic responses to several single-gene knockouts of a wild-type strain of P. putida KT2440 growing on glucose. In the second study, we used the developed models to propose metabolic engineering interventions for improved robustness of this organism to the stress condition of increased ATP demand. CONCLUSIONS The study demonstrates the potential and predictive capabilities of the kinetic models that allow for rational design and optimization of recombinant P. putida strains for improved production of biofuels and biochemicals. The curated genome-scale model of P. putida together with the developed large-scale stoichiometric and kinetic models represents a significant resource for researchers in industry and academia.
Collapse
Affiliation(s)
- Milenko Tokic
- Laboratory of Computational Systems Biotechnology (LCSB), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biotechnology (LCSB), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Absolute Quantification of the Central Carbon Metabolome in Eight Commonly Applied Prokaryotic and Eukaryotic Model Systems. Metabolites 2020; 10:metabo10020074. [PMID: 32093075 PMCID: PMC7073941 DOI: 10.3390/metabo10020074] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Absolute quantification of intracellular metabolite pools is a prerequisite for modeling and in-depth biological interpretation of metabolomics data. It is the final step of an elaborate metabolomics workflow, with challenges associated with all steps—from sampling to quantifying the physicochemically diverse metabolite pool. Chromatographic separation combined with mass spectrometric (MS) detection is the superior platform for high coverage, selective, and sensitive detection of metabolites. Herein, we apply our quantitative MS-metabolomics workflow to measure and present the central carbon metabolome of a panel of commonly applied biological model systems. The workflow includes three chromatographic methods combined with isotope dilution tandem mass spectrometry to allow for absolute quantification of 68 metabolites of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and the amino acid and (deoxy) nucleoside pools. The biological model systems; Bacillus subtilis, Saccharomyces cerevisiae, two microalgal species, and four human cell lines were all cultured in commonly applied culture media and sampled in exponential growth phase. Both literature and databases are scarce with comprehensive metabolite datasets, and existing entries range over several orders of magnitude. The workflow and metabolite panel presented herein can be employed to expand the list of reference metabolomes, as encouraged by the metabolomics community, in a continued effort to develop and refine high-quality quantitative metabolomics workflows.
Collapse
|
20
|
Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ. Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol 2020; 64:101-109. [PMID: 31927061 DOI: 10.1016/j.copbio.2019.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
The genomic revolution ushered in an era of discovery and characterization of enzymes from novel organisms that fueled engineering of microbes to produce commodity and high-value compounds. Over the past decade advances in synthetic biology tools in recent years contributed to significant progress in metabolic engineering efforts to produce both biofuels and bioproducts resulting in several such related items being brought to market. These successes represent a burgeoning bio-economy; however, significant resources and time are still necessary to progress a system from proof-of-concept to market. In order to fully realize this potential, methods that examine biological systems in a comprehensive, systematic and high-throughput manner are essential. Recent success in synthetic biology has coincided with the development of systems biology and analytical approaches that kept pace and scaled with technology development. Here, we review a selection of systems biology methods and their use in synthetic biology approaches for microbial biotechnology platforms.
Collapse
Affiliation(s)
- Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
21
|
Hameri T, Boldi MO, Hatzimanikatis V. Statistical inference in ensemble modeling of cellular metabolism. PLoS Comput Biol 2019; 15:e1007536. [PMID: 31815929 PMCID: PMC6922442 DOI: 10.1371/journal.pcbi.1007536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/19/2019] [Accepted: 11/11/2019] [Indexed: 11/18/2022] Open
Abstract
Kinetic models of metabolism can be constructed to predict cellular regulation and devise metabolic engineering strategies, and various promising computational workflows have been developed in recent years for this. Due to the uncertainty in the kinetic parameter values required to build kinetic models, these workflows rely on ensemble modeling (EM) principles for sampling and building populations of models describing observed physiologies. Sensitivity coefficients from metabolic control analysis (MCA) of kinetic models can provide important insight about cellular control around a given physiological steady state. However, despite considering populations of kinetic models and their model outputs, current approaches do not provide adequate tools for statistical inference. To derive conclusions from model outputs, such as MCA sensitivity coefficients, it is necessary to rank/compare populations of variables with each other. Currently existing workflows consider confidence intervals (CIs) that are derived independently for each comparable variable. Hence, it is important to derive simultaneous CIs for the variables that we wish to rank/compare. Herein, we used an existing large-scale kinetic model of Escherichia Coli metabolism to present how univariate CIs can lead to incorrect conclusions, and we present a new workflow that applies three different multivariate statistical approaches. We use the Bonferroni and the exact normal methods to build symmetric CIs using the normality assumptions. We then suggest how bootstrapping can compute asymmetric CIs whilst relaxing this normality assumption. We conclude that the Bonferroni and the exact normal methods can provide simple and efficient ways for constructing reliable CIs, with the exact normal method favored over the Bonferroni when the compared variables present dependencies. Bootstrapping, despite its significantly higher computational cost, is recommended when comparing non-normal distributions of variables. Additionally, we show how the Bonferroni method can readily be used to estimate required sample numbers to attain a certain CI size.
Collapse
Affiliation(s)
- Tuure Hameri
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Marc-Olivier Boldi
- Department of Operations, Faculty of Business and Economics, Anthropole, University of Lausanne, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Abstract
Abstract
Living organisms in analogy with chemical factories use simple molecules such as sugars to produce a variety of compounds which are necessary for sustaining life and some of which are also commercially valuable. The metabolisms of simple (such as bacteria) and higher organisms (such as plants) alike can be exploited to convert low value inputs into high value outputs. Unlike conventional chemical factories, microbial production chassis are not necessarily tuned for a single product overproduction. Despite the same end goal, metabolic and industrial engineers rely on different techniques for achieving productivity goals. Metabolic engineers cannot affect reaction rates by manipulating pressure and temperature, instead they have at their disposal a range of enzymes and transcriptional and translational processes to optimize accordingly. In this review, we first highlight how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed in systems and control engineering. Specifically, how algorithmic concepts derived in operations research can help explain the structure and organization of metabolic networks. Finally, we consider the future directions and challenges faced by the field of metabolic network modeling and the possible contributions of concepts drawn from the classical fields of chemical and control engineering. The aim of the review is to offer a current perspective of metabolic engineering and all that it entails without requiring specialized knowledge of bioinformatics or systems biology.
Collapse
|
23
|
Miskovic L, Béal J, Moret M, Hatzimanikatis V. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties. PLoS Comput Biol 2019; 15:e1007242. [PMID: 31430276 PMCID: PMC6716680 DOI: 10.1371/journal.pcbi.1007242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/30/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the kinetic properties of enzymes. Currently, available methods for building kinetic models can cope indirectly with uncertainties by integrating data from different biological levels and origins into models. In this study, we use the recently proposed computational approach iSCHRUNK (in Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models), which combines Monte Carlo parameter sampling methods and machine learning techniques, in the context of Bayesian inference. Monte Carlo parameter sampling methods allow us to exploit synergies between different data sources and generate a population of kinetic models that are consistent with the available data and physicochemical laws. The machine learning allows us to data-mine the a priori generated kinetic parameters together with the integrated datasets and derive posterior distributions of kinetic parameters consistent with the observed physiology. In this work, we used iSCHRUNK to address a design question: can we identify which are the kinetic parameters and what are their values that give rise to a desired metabolic behavior? Such information is important for a wide variety of studies ranging from biotechnology to medicine. To illustrate the proposed methodology, we performed Metabolic Control Analysis, computed the flux control coefficients of the xylose uptake (XTR), and identified parameters that ensure a rate improvement of XTR in a glucose-xylose co-utilizing S. cerevisiae strain. Our results indicate that only three kinetic parameters need to be accurately characterized to describe the studied physiology, and ultimately to design and control the desired responses of the metabolism. This framework paves the way for a new generation of methods that will systematically integrate the wealth of available omics data and efficiently extract the information necessary for metabolic engineering and synthetic biology decisions. Kinetic models are the most promising tool for understanding the complex dynamic behavior of living cells. The primary goal of kinetic models is to capture the properties of the metabolic networks as a whole, and thus we need large-scale models for dependable in silico analyses of metabolism. However, uncertainty in kinetic parameters impedes the development of kinetic models, and uncertainty levels increase with the model size. Tools that will address the issues with parameter uncertainty and that will be able to reduce the uncertainty propagation through the system are therefore needed. In this work, we applied a method called iSCHRUNK that combines parameter sampling and machine learning techniques to characterize the uncertainties and uncover intricate relationships between the parameters of kinetic models and the responses of the metabolic network. The proposed method allowed us to identify a small number of parameters that determine the responses in the network regardless of the values of other parameters. As a consequence, in future studies of metabolism, it will be sufficient to explore a reduced kinetic space, and more comprehensive analyses of large-scale and genome-scale metabolic networks will be computationally tractable.
Collapse
Affiliation(s)
- Ljubisa Miskovic
- Laboratory of Computational Systems Biology (LCSB), EPFL, CH, Lausanne, Switzerland
| | - Jonas Béal
- Master's Program in Life Sciences and Technology, EPFL, CH, Lausanne, Switzerland
| | - Michael Moret
- Master's Program in Life Sciences and Technology, EPFL, CH, Lausanne, Switzerland
| | | |
Collapse
|
24
|
Ploch T, Zhao X, Hüser J, von Lieres E, Hannemann-Tamás R, Naumann U, Wiechert W, Mitsos A, Noack S. Multiscale dynamic modeling and simulation of a biorefinery. Biotechnol Bioeng 2019; 116:2561-2574. [PMID: 31237684 PMCID: PMC6771778 DOI: 10.1002/bit.27099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023]
Abstract
A biorefinery comprises a variety of process steps to synthesize products from sustainable natural resources. Dynamic plant‐wide simulation enhances the process understanding, leads to improved cost efficiency and enables model‐based operation and control. It is thereby important for an increased competitiveness to conventional processes. To this end, we developed a Modelica library with replaceable building blocks that allow dynamic modeling of an entire biorefinery. For the microbial conversion step, we built on the dynamic flux balance analysis (DFBA) approach to formulate process models for the simulation of cellular metabolism under changing environmental conditions. The resulting system of differential‐algebraic equations with embedded optimization criteria (DAEO) is solved by a tailor‐made toolbox. In summary, our modeling framework comprises three major pillars: A Modelica library of dynamic unit operations, an easy‐to‐use interface to formulate DFBA process models and a DAEO toolbox that allows simulation with standard environments based on the Modelica modeling language. A biorefinery model for dynamic simulation of the OrganoCat pretreatment process and microbial conversion of the resulting feedstock by Corynebacterium glutamicum serves as case study to demonstrate its practical relevance.
Collapse
Affiliation(s)
- Tobias Ploch
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany
| | - Xiao Zhao
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jonathan Hüser
- Software and Tools for Computational Engineering, RWTH Aachen University, Aachen, Germany
| | - Eric von Lieres
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Uwe Naumann
- Software and Tools for Computational Engineering, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Alexander Mitsos
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
25
|
Landon S, Rees-Garbutt J, Marucci L, Grierson C. Genome-driven cell engineering review: in vivo and in silico metabolic and genome engineering. Essays Biochem 2019; 63:267-284. [PMID: 31243142 PMCID: PMC6610458 DOI: 10.1042/ebc20180045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023]
Abstract
Producing 'designer cells' with specific functions is potentially feasible in the near future. Recent developments, including whole-cell models, genome design algorithms and gene editing tools, have advanced the possibility of combining biological research and mathematical modelling to further understand and better design cellular processes. In this review, we will explore computational and experimental approaches used for metabolic and genome design. We will highlight the relevance of modelling in this process, and challenges associated with the generation of quantitative predictions about cell behaviour as a whole: although many cellular processes are well understood at the subsystem level, it has proved a hugely complex task to integrate separate components together to model and study an entire cell. We explore these developments, highlighting where computational design algorithms compensate for missing cellular information and underlining where computational models can complement and reduce lab experimentation. We will examine issues and illuminate the next steps for genome engineering.
Collapse
Affiliation(s)
- Sophie Landon
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
| | - Joshua Rees-Garbutt
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, U.K
| | - Lucia Marucci
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
| | - Claire Grierson
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, U.K
| |
Collapse
|
26
|
Miskovic L, Tokic M, Savoglidis G, Hatzimanikatis V. Control Theory Concepts for Modeling Uncertainty in Enzyme Kinetics of Biochemical Networks. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ljubisa Miskovic
- Laboratory of Computational Systems Biology (LCSB), EPFL, CH-1015 Lausanne, Switzerland
| | - Milenko Tokic
- Laboratory of Computational Systems Biology (LCSB), EPFL, CH-1015 Lausanne, Switzerland
| | - Georgios Savoglidis
- Laboratory of Computational Systems Biology (LCSB), EPFL, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|