1
|
Batianis C, van Rosmalen RP, Moñino Fernández P, Labanaris K, Asin-Garcia E, Martin-Pascual M, Jeschek M, Weusthuis RA, Suarez-Diez M, Martins Dos Santos VAP. Computer-assisted multilevel optimization of malonyl-CoA availability in Pseudomonas putida. Metab Eng 2025; 90:165-177. [PMID: 40107409 DOI: 10.1016/j.ymben.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Malonyl-CoA is the major precursor for the biosynthesis of diverse industrially valuable products such as fatty acids/alcohols, flavonoids, and polyketides. However, its intracellular availability is limited in most microbial hosts, hampering the industrial production of such chemicals. To address this limitation, we present a multilevel optimization workflow using modern metabolic engineering technologies to systematically increase the malonyl-CoA levels in Pseudomonas putida. The workflow involves the identification of gene downregulations, chassis selection, and optimization of the acetyl-CoA carboxylase complex through ribosome binding site engineering. Computational tools and high-throughput screening with a malonyl-CoA biosensor enabled the rapid evaluation of numerous genetic targets. Combining the most beneficial targets led to a 5.8-fold enhancement in the production titer of the valuable polyketide phloroglucinol. This study demonstrates the effective integration of computational and genetic technologies for engineering P. putida, opening new avenues for the development of industrially relevant strains and the investigation of fundamental biological questions.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Rik P van Rosmalen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands
| | - Pedro Moñino Fernández
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Konstantinos Labanaris
- Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Markus Jeschek
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, CH-4058, Switzerland; Institute of Microbiology, Synthetic Microbiology Group, University of Regensburg, Regensburg D-93053, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands; LifeGlimmer GmbH, Berlin, 12163, Germany.
| |
Collapse
|
2
|
Nonaka D, Kishida M, Hirata Y, Mori A, Kondo A, Mori Y, Noda S, Tanaka T. Modular pathway engineering for enhanced production of para-aminobenzoic acid and 4-amino-phenylalanine in Escherichia coli via glucose/xylose co-utilization. Appl Environ Microbiol 2025:e0246824. [PMID: 40243317 DOI: 10.1128/aem.02468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/28/2025] [Indexed: 04/18/2025] Open
Abstract
The modularization of biosynthetic pathways is a promising approach for enhancing microbial chemical production. We have developed a co-utilization method with glucose and xylose substrates to divide metabolic pathways into distinct production and energy modules to enhance the biosynthesis of para-aminobenzoic acid (pABA) in Escherichia coli. Optimizing initial glucose/xylose concentrations and eliminating carbon leakage resulted in a pABA titer of 8.22 g/L (yield: 0.23 g/g glucose). This strategy was then applied to the biosynthesis of 4APhe, a compound synthesized from chorismate without pyruvate (PYR) release. Utilizing glucose and xylose as co-substrates resulted in the production of 4.90 g/L 4APhe. Although 4APhe production did not benefit from PYR-driven energy generation as pABA production did, high titer was still achieved. This study highlights the effectiveness of modular metabolic pathway division for enhancing the production of key aromatic compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups. IMPORTANCE Microbial biosynthesis of chemicals from renewable resources offers a sustainable alternative to fossil fuel-based production. However, inefficiencies due to substrate diversion into by-products and biomass hinder optimal yields. In this study, we employed a modular metabolic engineering approach, decoupling pathways for chemical production from cell growth. Using glucose and xylose as co-substrates, we achieved the enhancement of p-aminobenzoic acid production in Escherichia coli. Additionally, we demonstrated the versatility of this approach by applying it to the biosynthesis of 4-amino-phenylalanine production. This study highlights the potential of modular metabolic pathway division for increased production of target compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Shuhei Noda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
3
|
Jia Y, Zhou X, Liu Y, Liu X, Ren F, Liu H. Novel Insights Into Naringenin: A Multifaceted Exploration of Production, Synthesis, Health Effects, Nanodelivery Systems, and Molecular Simulation. Mol Nutr Food Res 2025:e70066. [PMID: 40223444 DOI: 10.1002/mnfr.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Naringenin, a flavonoid widely present in citrus fruits, has garnered considerable attention due to its diverse biological activities and health-promoting benefits. As research on naringenin advances, the application scope of naringenin has significantly expanded. This paper provides a systematic overview of the production and synthesis methods of naringenin, focusing especially on the application of green extraction techniques and the strategies for constructing microbial metabolic engineering. Naringenin not only achieves its diverse biological activities including antioxidant, antiinflammatory, and glucolipid metabolism regulation through multiple mechanisms but also modulates the balance of gut microbiota, thereby mediating synergistic health effects via the host-microbial metabolic axis. Given the low oral bioavailability of naringenin, various nanodelivery systems have been developed to improve its bioavailability. Meanwhile, molecular simulation techniques elucidate the binding conformation characteristics with receptors at the molecular level, providing novel insights into its mechanisms of action. In conclusion, this review seeks to offer a theoretical basis and future directions for further research and application of naringenin.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinjing Zhou
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | | | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Hongzhi Liu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Toya Y, Shimizu H. Coupling and uncoupling growth and product formation for producing chemicals. Curr Opin Biotechnol 2024; 87:103133. [PMID: 38640846 DOI: 10.1016/j.copbio.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024]
Abstract
Microbial fermentation employs two strategies: growth- and nongrowth-coupled productions. Stoichiometric metabolic models with flux balance analysis enable pathway engineering to couple target synthesis with growth, yielding numerous successful results. Growth-coupled engineering also contributes to improving bottleneck flux through subsequent adaptive evolution. However, because growth-coupled production inevitably shares resources between biomass and target syntheses, the cost-effective production of bulk chemicals mandates a nongrowth-coupled approach. In such processes, understanding how and when to transition the metabolic state from growth to production modes becomes crucial, as does maintaining cellular activity during the nongrowing state to achieve high productivity. In this paper, we review recent technologies for growth-coupled and nongrowth-coupled production, considering their advantages and disadvantages.
Collapse
Affiliation(s)
- Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Gotsmy M, Strobl F, Weiß F, Gruber P, Kraus B, Mairhofer J, Zanghellini J. Sulfate limitation increases specific plasmid DNA yield and productivity in E. coli fed-batch processes. Microb Cell Fact 2023; 22:242. [PMID: 38017439 PMCID: PMC10685491 DOI: 10.1186/s12934-023-02248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023] Open
Abstract
Plasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceutical production processes, cells need to grow in the defined medium in order to guarantee the highest standards of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, simple changes in the growth medium can significantly improve the yield and quality.
Collapse
Affiliation(s)
- Mathias Gotsmy
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria
- Doctorate School of Chemistry, University of Vienna, Vienna, 1090, Austria
| | | | | | - Petra Gruber
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | - Barbara Kraus
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | | | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
6
|
Yu Z, Li W, Ge C, Sun X, Wang J, Shen X, Yuan Q. Functional expansion of the natural inorganic phosphorus starvation response system in Escherichia coli. Biotechnol Adv 2023; 66:108154. [PMID: 37062526 DOI: 10.1016/j.biotechadv.2023.108154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.
Collapse
Affiliation(s)
- Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Salinas A, McGregor C, Irorere V, Arenas-López C, Bommareddy RR, Winzer K, Minton NP, Kovács K. Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid. Metab Eng 2022; 74:178-190. [DOI: 10.1016/j.ymben.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
10
|
Li H, Lyv Y, Zhou S, Yu S, Zhou J. Microbial cell factories for the production of flavonoids-barriers and opportunities. BIORESOURCE TECHNOLOGY 2022; 360:127538. [PMID: 35777639 DOI: 10.1016/j.biortech.2022.127538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Flavonoids are natural plant products with important nutritional value, health-promoting benefits, and therapeutic potential. The use of microbial cell factories to generate flavonoids is an appealing option. The microbial biosynthesis of flavonoids is compared to the classic plant extract approach in this review, and the pharmaceutical applications were presented. This paper summarize approaches for effective flavonoid biosynthesis from microorganisms, and discuss the challenges and prospects of microbial flavonoid biosynthesis. Finally, the barriers and strategies for industrial bio-production of flavonoids are highlighted. This review offers guidance on how to create robust microbial cell factories for producing flavonoids and other relevant chemicals.
Collapse
Affiliation(s)
- Hongbiao Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyv
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Toya Y, Hirono-Hara Y, Hirayama H, Kamata K, Tanaka R, Sano M, Kitamura S, Otsuka K, Abe-Yoshizumi R, Tsunoda SP, Kikukawa H, Kandori H, Shimizu H, Matsuda F, Ishii J, Hara KY. Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump systems. Metab Eng 2022; 72:227-236. [PMID: 35346842 DOI: 10.1016/j.ymben.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/06/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022]
Abstract
In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.
Collapse
Affiliation(s)
- Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoko Hirono-Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hidenobu Hirayama
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kentaro Kamata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Tanaka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikoto Sano
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sayaka Kitamura
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kensuke Otsuka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hiroshi Kikukawa
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
12
|
Abstract
Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA;
| |
Collapse
|
13
|
Wu J, Zhou L, Duan X, Peng H, Liu S, Zhuang Q, Pablo CM, Fan X, Ding S, Dong M, Zhou J. Applied evolution: Dual dynamic regulations-based approaches in engineering intracellular malonyl-CoA availability. Metab Eng 2021; 67:403-416. [PMID: 34411702 DOI: 10.1016/j.ymben.2021.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/19/2022]
Abstract
Malonyl-CoA is an important building block for microbial synthesis of numerous pharmaceutically interesting or fatty acid-derived compounds including polyketides, flavonoids, phenylpropanoids and fatty acids. However, the tightly regulated intracellular malonyl-CoA availability often impedes overall product formation. Here, in order to unleash this tightly cellular behavior, we present evolution: dual dynamic regulations-based approaches to write artificial robust and dynamic function into intricate cellular background. Firstly, a conserved core domain based evolutionary principles were incorporated into genome mining to explore the biosynthetic diversities of discrete acetyl-CoA carboxylase (ACC) families, as malonyl-CoA is solely derived from carboxylation of acetyl-CoA by ACC in most organisms. A comprehensive phylogenomic and further experimental analysis, which included genomes of 50 strains throughout representative species, was performed to recapitulate the evolutionary history and reveal that previously unnoticed ACC families from Salmonella enterica exhibited the highest activities among all the candidates. A set of orthogonal and bi-functional quorum-sensing (QS)-based regulation tools were further designed and connected with T7 RNA polymerase as genetic amplifier to achieve dual dynamic control in a high dynamic range, which allowed us to efficiently activate and repress different sets of genes dynamically and independently. These genetic circuits were then combined with ACC of S. enterica and CRISPRi system to reprogram central metabolism that rewired the tightly regulated malonyl-CoA pathway to a robust and autonomous behavior, leading to a 29-fold increase of malony-CoA availability. We applied this dual regulation tool to successfully synthesizing malonyl-CoA-derived compound (2S)-naringenin, and achieved the highest production (1073.8 mg/L) reported to date associate with dramatic decreases of by-product formation. Notably, the whole fermentation presents as an autonomous behavior, totally eliminating human supervision and inducer supplementation. Hence, the constructed evolution: dual dynamic regulations-based approaches pave the way to develop an economically viable and scalable procedure for microbial production of malonyl-CoA derived compounds.
Collapse
Affiliation(s)
- Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Lin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuguo Duan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hu Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shike Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Qianqian Zhuang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Cruz-Morales Pablo
- Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shijie Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
14
|
Wu M, Gong DC, Yang Q, Zhang MQ, Mei YZ, Dai CC. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte Phomopsis Liquidambaris. ACS Synth Biol 2021; 10:2030-2039. [PMID: 34251173 DOI: 10.1021/acssynbio.1c00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abundant gene clusters of natural products are observed in the endophytic fungus Phomopsis liquidambaris; however, most of them are silent. Herein, a plug-and-play DNA assembly tool has been applied for flavonoid synthesis in P. liquidambaris. A shuttle plasmid was constructed based on S. cerevisiae, E. coli, and P. liquidambaris with screening markers URA, Amp, and hygR, respectively. Each fragment or cassette was successively assembled by overlap extension PCR with at least 40-50 bp homologous arms in S. cerevisiae for generating a new vector. Seven native promoters were screened by the DNA assembly based on the fluorescence intensity of the mCherry reporter gene in P. liquidambaris, and two of them were new promoters. The key enzyme chalcone synthase was the limiting step of the pathway. The naringenin and kaempferol pathways were refactored and activated with the titers of naringenin and kaempferol of 121.53 mg/L and 75.38 mg/L in P. liquidambaris using fed-batch fermentation, respectively. This study will be efficient and helpful for the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Mei Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Da-Chun Gong
- China Key Laboratory of Light Industry Functional Yeast, Three Gorges University, Yichang, 443000, Hubei Province China
| | - Qian Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Meng-Qian Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
15
|
Kozaeva E, Volkova S, Matos MRA, Mezzina MP, Wulff T, Volke DC, Nielsen LK, Nikel PI. Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A-dependent bioproduction in rewired Pseudomonas putida. Metab Eng 2021; 67:373-386. [PMID: 34343699 DOI: 10.1016/j.ymben.2021.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023]
Abstract
Pseudomonas putida is evolutionarily endowed with features relevant for bioproduction, especially under harsh operating conditions. The rich metabolic versatility of this species, however, comes at the price of limited formation of acetyl-coenzyme A (CoA) from sugar substrates. Since acetyl-CoA is a key metabolic precursor for a number of added-value products, in this work we deployed an in silico-guided rewiring program of central carbon metabolism for upgrading P. putida as a host for acetyl-CoA-dependent bioproduction. An updated kinetic model, integrating fluxomics and metabolomics datasets in addition to manually-curated information of enzyme mechanisms, identified targets that would lead to increased acetyl-CoA levels. Based on these predictions, a set of plasmids based on clustered regularly interspaced short palindromic repeats (CRISPR) and dead CRISPR-associated protein 9 (dCas9) was constructed to silence genes by CRISPR interference (CRISPRi). Dynamic reduction of gene expression of two key targets (gltA, encoding citrate synthase, and the essential accA gene, encoding subunit A of the acetyl-CoA carboxylase complex) mediated an 8-fold increase in the acetyl-CoA content of rewired P. putida. Poly(3-hydroxybutyrate) (PHB) was adopted as a proxy of acetyl-CoA availability, and two synthetic pathways were engineered for biopolymer accumulation. By including cell morphology as an extra target for the CRISPRi approach, fully rewired P. putida strains programmed for PHB accumulation had a 5-fold increase in PHB titers in bioreactor cultures using glucose. Thus, the strategy described herein allowed for rationally redirecting metabolic fluxes in P. putida from central metabolism towards product biosynthesis-especially relevant when deletion of essential pathways is not an option.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Svetlana Volkova
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marta R A Matos
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mariela P Mezzina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
16
|
Alsiyabi A, Chowdhury NB, Long D, Saha R. Enhancing in silico strain design predictions through next generation metabolic modeling approaches. Biotechnol Adv 2021; 54:107806. [PMID: 34298108 DOI: 10.1016/j.biotechadv.2021.107806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The reconstruction and analysis of metabolic models has garnered increasing attention due to the multitude of applications in which these have proven to be practical. The growing number of generated metabolic models has been accompanied by an exponentially expanding arsenal of tools used to analyze them. In this work, we discussed the biological relevance of a number of promising modeling frameworks, focusing on the questions and hypotheses each method is equipped to address. To this end, we critically analyzed the steady-state modeling approaches focusing on resource allocation and incorporation of thermodynamic considerations which produce promising results and aid in the generation and experimental validation of numerous predictions. For smaller networks involving more complex regulation, we addressed kinetic modeling techniques which show encouraging results in addressing questions outside the scope of steady-state modeling. Finally, we discussed the potential application of the discussed frameworks within the field of strain design. Adoption of such methodologies is believed to significantly enhance the accuracy of in silico predictions and hence decrease the number of design-build-test cycles required.
Collapse
Affiliation(s)
- Adil Alsiyabi
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, United States of America
| | - Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, United States of America
| | - Dianna Long
- Complex Biosystems, University of Nebraska-Lincoln, United States of America
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, United States of America; Complex Biosystems, University of Nebraska-Lincoln, United States of America.
| |
Collapse
|
17
|
Ji D, Li J, Xu F, Ren Y, Wang Y. Improve the Biosynthesis of Baicalein and Scutellarein via Manufacturing Self-Assembly Enzyme Reactor In Vivo. ACS Synth Biol 2021; 10:1087-1094. [PMID: 33880917 DOI: 10.1021/acssynbio.0c00606] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Baicalein and scutellarein are bioactive flavonoids isolated from the traditional Chinese medicine Scutellaria baicalensis Georgi; however, there is a lack of effective strategies for producing baicalein and scutellarein. In this study, we developed a sequential self-assembly enzyme reactor involving two enzymes in the baicalein pathway with a pair of protein-peptide interactions in E. coli. These domains enabled us to optimize the stoichiometry of two baicalein biosynthetic enzymes recruited to be an enzymes complex. This strategy reduces the accumulation of intermediates and removes the pathway bottleneck. With this strategy, we successfully promoted the titer of baicalein by 6.6-fold (from 21.6 to 143.5 mg/L) and that of scutellarein by 1.4-fold (from 84.3 to 120.4 mg/L) in a flask fermentation, respectively. Furthermore, we first achieved the de novo biosynthesis of baicalein directly from glucose, and the strain was capable of producing 214.1 mg/L baicalein by fed-batch fermentation. This work provides novel insights for future optimization and large-scale fermentation of baicalein and scutellarein.
Collapse
Affiliation(s)
- Dongni Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fanglin Xu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Key Laboratory of Plant Stress Biology, He’nan University, Kaifeng, 475004, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hu’nan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
18
|
Ohtsuka H, Kobayashi M, Shimasaki T, Sato T, Akanuma G, Kitaura Y, Otsubo Y, Yamashita A, Aiba H. Magnesium depletion extends fission yeast lifespan via general amino acid control activation. Microbiologyopen 2021; 10:e1176. [PMID: 33970532 PMCID: PMC8088111 DOI: 10.1002/mbo3.1176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Nutrients including glucose, nitrogen, sulfur, zinc, and iron are involved in the regulation of chronological lifespan (CLS) of yeast, which serves as a model of the lifespan of differentiated cells of higher organisms. Herein, we show that magnesium (Mg2+) depletion extends CLS of the fission yeast Schizosaccharomyces pombe through a mechanism involving the Ecl1 gene family. We discovered that ecl1+ expression, which extends CLS, responds to Mg2+ depletion. Therefore, we investigated the underlying intracellular responses. In amino acid auxotrophic strains, Mg2+ depletion robustly induces ecl1+ expression through the activation of the general amino acid control (GAAC) pathway—the equivalent of the amino acid response of mammals. Polysome analysis indicated that the expression of Ecl1 family genes was required for regulating ribosome amount when cells were starved, suggesting that Ecl1 family gene products control the abundance of ribosomes, which contributes to longevity through the activation of the evolutionarily conserved GAAC pathway. The present study extends our understanding of the cellular response to Mg2+ depletion and its influence on the mechanism controlling longevity.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Teppei Sato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Genki Akanuma
- Department of Life Science, College of Sciences, Rikkyo University, Tokyo, Japan.,Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,National Institute for Fusion Science, Toki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Jiang XR, Yan X, Yu LP, Liu XY, Chen GQ. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat Commun 2021; 12:1513. [PMID: 33686068 PMCID: PMC7940609 DOI: 10.1038/s41467-021-21632-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
3-Hydroxypropionic acid (3HP), an important three carbon (C3) chemical, is designated as one of the top platform chemicals with an urgent need for improved industrial production. Halomonas bluephagenesis shows the potential as a chassis for competitive bioproduction of various chemicals due to its ability to grow under an open, unsterile and continuous process. Here, we report the strategy for producing 3HP and its copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) by the development of H. bluephagenesis. The transcriptome analysis reveals its 3HP degradation and synthesis pathways involving endogenous synthetic enzymes from 1,3-propanediol. Combing the optimized expression of aldehyde dehydrogenase (AldDHb), an engineered H. bluephagenesis strain of whose 3HP degradation pathway is deleted and that overexpresses alcohol dehydrogenases (AdhP) on its genome under a balanced redox state, is constructed with an enhanced 1.3-propanediol-dependent 3HP biosynthetic pathway to produce 154 g L-1 of 3HP with a yield and productivity of 0.93 g g-1 1,3-propanediol and 2.4 g L-1 h-1, respectively. Moreover, the strain could also accumulate 60% poly(3-hydroxybutyrate-co-32-45% 3-hydroxypropionate) in the dry cell mass, demonstrating to be a suitable chassis for hyperproduction of 3HP and P3HB3HP.
Collapse
Affiliation(s)
- Xiao-Ran Jiang
- Department of Microbiology, Army Medical University, Chongqing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin-Ping Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Yang Q, Wu M, Zhu YL, Yang YQ, Mei YZ, Dai CC. The disruption of the MAPKK gene triggering the synthesis of flavonoids in endophytic fungus Phomopsis liquidambaris. Biotechnol Lett 2020; 43:119-132. [PMID: 33128663 DOI: 10.1007/s10529-020-03042-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Flavonoids, which are mainly extracted from plants, are important antioxidants and play an important role in human diseases. However, the growing market demand is limited by low productivity and complex production processes. Herein, the flavonoids biosynthesis pathway of the endophytic fungus Phomopsis liquidambaris was revealed. The mitogen-activated protein kinase kinase (MAPKK) of the strain was disrupted using a newly constructed CRISPR-Cas9 system mediated by two gRNAs which was conducive to cause plasmid loss. The disruption of the MAPKK gene triggered the biosynthesis of flavonoids against stress and resulted in the precipitation of flavonoids from fermentation broth. Naringenin, kaempferol and quercetin were detected in fed-batch fermentation with yields of 5.65 mg/L, 1.96 mg/L and 2.37 mg/L from P. liquidambaris for dry cell weigh using the mixture of glucose and xylose and corn steep powder as carbon source and nitrogen source for 72 h, respectively. The biosynthesis of flavonoids was triggered by disruption of MAPKK gene in P. liquidambaris and the mutant could utilize xylose.
Collapse
Affiliation(s)
- Qian Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Mei Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ya-Li Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ya-Qiong Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
21
|
Schramm T, Lempp M, Beuter D, Sierra SG, Glatter T, Link H. High-throughput enrichment of temperature-sensitive argininosuccinate synthetase for two-stage citrulline production in E. coli. Metab Eng 2020; 60:14-24. [PMID: 32179161 PMCID: PMC7225747 DOI: 10.1016/j.ymben.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022]
Abstract
Controlling metabolism of engineered microbes is important to modulate cell growth and production during a bioprocess. For example, external parameters such as light, chemical inducers, or temperature can act on metabolism of production strains by changing the abundance or activity of enzymes. Here, we created temperature-sensitive variants of an essential enzyme in arginine biosynthesis of Escherichia coli (argininosuccinate synthetase, ArgG) and used them to dynamically control citrulline overproduction and growth of E. coli. We show a method for high-throughput enrichment of temperature-sensitive ArgG variants with a fluorescent TIMER protein and flow cytometry. With 90 of the thus derived ArgG variants, we complemented an ArgG deletion strain showing that 90% of the strains exhibit temperature-sensitive growth and 69% of the strains are auxotrophic for arginine at 42 °C and prototrophic at 30 °C. The best temperature-sensitive ArgG variant enabled precise and tunable control of cell growth by temperature changes. Expressing this variant in a feedback-dysregulated E. coli strain allowed us to realize a two-stage bioprocess: a 33 °C growth-phase for biomass accumulation and a 39 °C stationary-phase for citrulline production. With this two-stage strategy, we produced 3 g/L citrulline during 45 h cultivation in a 1-L bioreactor. These results show that temperature-sensitive enzymes can be created en masse and that they may function as metabolic valves in engineered bacteria. Method to enrich temperature-sensitive enzymes en masse. Temperature-sensitive enzymes function as metabolic valve. Temperature controlled two-stage production of citrulline.
Collapse
Affiliation(s)
- Thorben Schramm
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Martin Lempp
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Dominik Beuter
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Silvia González Sierra
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany.
| |
Collapse
|
22
|
Sui X, Zhao M, Liu Y, Wang J, Li G, Zhang X, Deng Y. Enhancing glutaric acid production in Escherichia coli by uptake of malonic acid. J Ind Microbiol Biotechnol 2020; 47:311-318. [PMID: 32140931 DOI: 10.1007/s10295-020-02268-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Glutaric acid is an important organic acid applied widely in different fields. Most previous researches have focused on the production of glutaric acid in various strains using the 5-aminovaleric acid (AMV) or pentenoic acid synthesis pathways. We previously utilized a five-step reversed adipic acid degradation pathway (RADP) in Escherichia coli BL21 (DE3) to construct strain Bgl146. Herein, we found that malonyl-CoA was strictly limited in this strain, and increasing its abundance could improve glutaric acid production. We, therefore, constructed a malonic acid uptake pathway in E. coli using matB (malonic acid synthetase) and matC (malonic acid carrier protein) from Clover rhizobia. The titer of glutaric acid was improved by 2.1-fold and 1.45-fold, respectively, reaching 0.56 g/L and 4.35 g/L in shake flask and batch fermentation following addition of malonic acid. Finally, the highest titer of glutaric acid was 6.3 g/L in fed-batch fermentation at optimized fermentation conditions.
Collapse
Affiliation(s)
- Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Mei Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing, 100048, China
- The Open Project Program of China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing, 100048, China
- The Open Project Program of China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
23
|
Medveďová A, Györiová R, Lehotová V, Valík Ľ. Co-Cultivation Growth of Escherichia coli and Staphylococcus aureus as Two Common Dairy Contaminants. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/116395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|