1
|
Diao W, Zhang W, Zhang X, Du S, Zheng C, Huang X, Lu X. The Isolation, Structural Characterization, and Biosynthetic Pathway of Unguisin from the Marine-Derived Fungus Aspergillus candidus. Mar Drugs 2025; 23:219. [PMID: 40422808 DOI: 10.3390/md23050219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Unguisins, a class of structurally complex cyclic peptides featuring a γ-aminobutyric acid residue embedded in the skeleton, exhibit diverse biological activities. Here, a new unguisin K, along with three known congeners, was isolated from the marine-derived fungus Aspergillus candidus MEFC1001. The biosynthetic pathway was elucidated through gene disruption coupled with in vitro enzymatic characterization. The ugs biosynthetic gene cluster (BGC) containing ugsA and ugsB, in conjunction with an extra-clustered gene ugsC, collaborates to synthesize these unguisins. The alanine racemase (AR) UgsC catalyzes the isomerization of Ala and provides d-Ala as the starter unit for the non-ribosomal peptide synthetase (NRPS). The unique localization of ugsC outside the ugs BGC is different from previously reported unguisin-producing systems where AR genes reside within BGCs. The methyltransferase UgsB mediates a key pre-modification step by methylating phenylpyruvic acid to yield β-methylphenylpyruvate, which is subsequently incorporated as β-methylphenylalanine during NRPS assembly. This represents the first experimental evidence of the β-carbon methylation of Phe residue occurring at the precursor level rather than through post-assembly modification. The NRPS UgsA recruits a variety of amino acids for assembly and cyclization to form mature unguisins. Additionally, genome mining utilizing UgsA as a query identified homologous NRPSs in diverse fungal species, highlighting the potential for unguisin production in fungi. This study enriches the biosynthetic diversity of cyclic peptides and provides guidance for exploring unguisin-like natural products derived from fungi.
Collapse
Affiliation(s)
- Wenjiao Diao
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaoxi Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Siyu Du
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Liu Y, Wang B, Zhang X, Men P, Gu M, Zhou Y, Hu W, Wang Z, Wang M, Huang X, Lu X. Improving the production of micafungin precursor FR901379 in Coleophoma empetri using heavy-ion irradiation and its mechanism analysis. Mycology 2024; 16:941-955. [PMID: 40415921 PMCID: PMC12096658 DOI: 10.1080/21501203.2024.2426484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 05/27/2025] Open
Abstract
Micafungin is a semisynthetic echinocandin antifungal agent derived from fungal natural product FR901379 produced by Coleophoma empetri, facing challenges in biomanufacturing due to poor chassis performance and unclear high-yield mechanisms. In this study, the mutagenic effects of heavy-ion beam and how fungi repaired damage show that compared to the wild-type strain, nonhomologous end-joining pathway deficient mutants were more sensitive to heavy ion radiation, resulting in higher lethality rates and more mutations from the same radiation dose. Moreover, mutants obtained through two rounds of heavy-ion irradiation mutagenesis produced 1.1 g/L of FR901379, representing a remarkable increase of 253.7%. Compared to the parent strain, the mutants displayed noticeable differences in morphology and fermentation status. Comparative genomic analysis revealed mutations in several genes critical for morphological differentiation, which may have enhanced the production of FR901379 in the excellent mutants. This study has implications for the application of heavy-ion irradiation to filamentous fungi breeding. Additionally, the mutants with high FR901379 titre not only improve the production efficiency of micafungin but also provide a better chassis and theoretical guidance for subsequent metabolic engineering.
Collapse
Affiliation(s)
- Yongjuan Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Beibei Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xiaoxi Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Meng Gu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, China
| | - Wei Hu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics Chinese Academy of Sciences, Lanzhou, China
| | - Zhuanzi Wang
- Institute of Modern Physics Chinese Academy of Sciences, Lanzhou, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Wang M, Li WW, Cao Z, Sun J, Xiong J, Tao SQ, Lv T, Gao K, Luo S, Dong SH. Genome mining of sulfonated lanthipeptides reveals unique cyclic peptide sulfotransferases. Acta Pharm Sin B 2024; 14:2773-2785. [PMID: 38828142 PMCID: PMC11143521 DOI: 10.1016/j.apsb.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 06/05/2024] Open
Abstract
Although sulfonation plays crucial roles in various biological processes and is frequently utilized in medicinal chemistry to improve water solubility and chemical diversity of drug leads, it is rare and underexplored in ribosomally synthesized and post-translationally modified peptides (RiPPs). Biosynthesis of RiPPs typically entails modification of hydrophilic residues, which substantially increases their chemical stability and bioactivity, albeit at the expense of reducing water solubility. To explore sulfonated RiPPs that may have improved solubility, we conducted co-occurrence analysis of RiPP class-defining enzymes and sulfotransferase (ST), and discovered two distinctive biosynthetic gene clusters (BGCs) encoding both lanthipeptide synthetase (LanM) and ST. Upon expressing these BGCs, we characterized the structures of novel sulfonated lanthipeptides and determined the catalytic details of LanM and ST. We demonstrate that SslST-catalyzed sulfonation is leader-independent but relies on the presence of A ring formed by LanM. Both LanM and ST are promiscuous towards residues in the A ring, but ST displays strict regioselectivity toward Tyr5. The recognition of cyclic peptide by ST was further discussed. Bioactivity evaluation underscores the significance of the ST-catalyzed sulfonation. This study sets up the starting point to engineering the novel lanthipeptide STs as biocatalysts for hydrophobic lanthipeptides improvement.
Collapse
Affiliation(s)
| | | | - Zhe Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Si-Qin Tao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Yang L, Zhang Q, Yu D, Zhu W, Wang Y. Synergistic Inhibitions of Gram-Negative Bacteria by Combination Treatment with Ciprofloxacin and a Novel Glucolipid. Chem Biodivers 2024; 21:e202400578. [PMID: 38634186 DOI: 10.1002/cbdv.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Psychrophilic fungus Pseudogymnoascus sp. OUCMDZ-4032 derived from Antarctica was cultivated under 16 °C to produce a new glucolipid compound (1). Its structure was elucidated by analysis of detailed spectroscopic data, acid hydrolysis and 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization, and 13C NMR quantum chemical calculations. Though compound 1 did not show inhibitory activity against bacteria, it can reduce the minimum inhibitory concentration (MIC) of ciprofloxacin against Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli, and Salmonella paratyphi by 1024, 256 and 256-fold. Compound 1 showed potential as a synergistically inhibiting adjuvant in co-administration with antibiotic to enhance antibacterial activities.
Collapse
Affiliation(s)
- Liyuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qingqing Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Deng Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
5
|
Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol 2024; 17:e14359. [PMID: 37885073 PMCID: PMC10832530 DOI: 10.1111/1751-7915.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Invasive fungal infections have increased remarkably, which have become unprecedented concern to human health. However, the effectiveness of current antifungal drugs is limited due to drug resistance and toxic side-effects. It is urgently required to establish the effective biosynthetic strategy for developing novel and safe antifungal molecules economically. Echinocandins become a promising option as a mainstay family of antifungals, due to specifically targeting the fungal specific cell wall. To date, three kinds of echinocandins for caspofungin, anidulafungin, and micafungin, which derived from pneumocandin B0 , echinocandin B, and FR901379, are commercially available in clinic and have shown potential in managing invasive fungal infections in a cost-effective manner. However, current echinocandins-derived precursors all are produced by environmental fungal isolates with long fermentation cycle and low yields, which challenge the production efficacy of these precursors in industry. Therefore, understanding their biosynthetic machinery is of great importance for improving antifungal titres and creating new echinocandins-derived products. With the development of genome-wide sequencing and establishment of gene-editing technology, there are a growing number of reports on echinocandins-derived products and their biosynthetic gene clusters. This review briefly summarizes the discovery and development history of echinocandins, compares their structural characteristics and biosynthetic processes, and sums up existed strategies for improving their production. Moreover, the genomic analysis of related biosynthetic gene clusters of echinocandins is discussed, highlighting the similarities and differences among the clusters. Last, the biosynthetic processes of echinocandins are compared, focusing on the activation and attachment of side-chains and the formation of the hexapeptide core. This review aims to provide insights into the development and production of new echinocandin drugs by modifying the structure of echinocandin-derived precursors and/or optimizing the fermentation processes; and achieve a new microbial chassis for efficient production of echinocandins in heterologous hosts.
Collapse
Affiliation(s)
- Kaili Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Pan Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xinxin Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
6
|
Xu R, Zhang W, Xi X, Chen J, Wang Y, Du G, Li J, Chen J, Kang Z. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds. Nat Commun 2023; 14:7297. [PMID: 37949843 PMCID: PMC10638397 DOI: 10.1038/s41467-023-43195-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sulfonation as one of the most important modification reactions in nature is essential for many biological macromolecules to function. Development of green sulfonate group donor regeneration systems to efficiently sulfonate compounds of interest is always attractive. Here, we design and engineer two different sulfonate group donor regeneration systems to boost the biosynthesis of sulfated compounds. First, we assemble three modules to construct a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) regeneration system and demonstrate its applicability for living cells. After discovering adenosine 5'-phosphosulfate (APS) as another active sulfonate group donor, we engineer a more simplified APS regeneration system that couples specific sulfotransferase. Next, we develop a rapid indicating system for characterizing the activity of APS-mediated sulfotransferase to rapidly screen sulfotransferase variants with increased activity towards APS. Eventually, the active sulfonate group equivalent values of the APS regeneration systems towards trehalose and p-coumaric acid reach 3.26 and 4.03, respectively. The present PAPS and APS regeneration systems are environmentally friendly and applicable for scaling up the biomanufacturing of sulfated products.
Collapse
Affiliation(s)
- Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Wang L, Lu H, Jiang Y. Natural Polyketides Act as Promising Antifungal Agents. Biomolecules 2023; 13:1572. [PMID: 38002254 PMCID: PMC10669366 DOI: 10.3390/biom13111572] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Invasive fungal infections present a significant risk to human health. The current arsenal of antifungal drugs is hindered by drug resistance, limited antifungal range, inadequate safety profiles, and low oral bioavailability. Consequently, there is an urgent imperative to develop novel antifungal medications for clinical application. This comprehensive review provides a summary of the antifungal properties and mechanisms exhibited by natural polyketides, encompassing macrolide polyethers, polyether polyketides, xanthone polyketides, linear polyketides, hybrid polyketide non-ribosomal peptides, and pyridine derivatives. Investigating natural polyketide compounds and their derivatives has demonstrated their remarkable efficacy and promising clinical application as antifungal agents.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| |
Collapse
|
8
|
Men P, Zhou Y, Xie L, Zhang X, Zhang W, Huang X, Lu X. Improving the production of the micafungin precursor FR901379 in an industrial production strain. Microb Cell Fact 2023; 22:44. [PMID: 36879280 PMCID: PMC9987125 DOI: 10.1186/s12934-023-02050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Micafungin is an echinocandin-type antifungal agent used for the clinical treatment of invasive fungal infections. It is semisynthesized from the sulfonated lipohexapeptide FR901379, a nonribosomal peptide produced by the filamentous fungus Coleophoma empetri. However, the low fermentation efficiency of FR901379 increases the cost of micafungin production and hinders its widespread clinical application. RESULTS Here, a highly efficient FR901379-producing strain was constructed via systems metabolic engineering in C. empetri MEFC09. First, the biosynthesis pathway of FR901379 was optimized by overexpressing the rate-limiting enzymes cytochrome P450 McfF and McfH, which successfully eliminated the accumulation of unwanted byproducts and increased the production of FR901379. Then, the functions of putative self-resistance genes encoding β-1,3-glucan synthase were evaluated in vivo. The deletion of CEfks1 affected growth and resulted in more spherical cells. Additionally, the transcriptional activator McfJ for the regulation of FR901379 biosynthesis was identified and applied in metabolic engineering. Overexpressing mcfJ markedly increased the production of FR901379 from 0.3 g/L to 1.3 g/L. Finally, the engineered strain coexpressing mcfJ, mcfF, and mcfH was constructed for additive effects, and the FR901379 titer reached 4.0 g/L under fed-batch conditions in a 5 L bioreactor. CONCLUSIONS This study represents a significant improvement for the production of FR901379 and provides guidance for the establishment of efficient fungal cell factories for other echinocandins.
Collapse
Affiliation(s)
- Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| | - Li Xie
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330096, China
| | - Xuan Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|