1
|
Song F, Zhang H, Qin Z, Zhou J. Intelligent biomanufacturing of water-soluble vitamins. Trends Biotechnol 2025:S0167-7799(25)00134-9. [PMID: 40335344 DOI: 10.1016/j.tibtech.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025]
Abstract
Given the crucial role of water-soluble vitamins in the human body and the rising demand for natural sources, their biosynthesis has gained the attention of researchers. This review offers a comprehensive look at recent progress in water-soluble vitamin biosynthesis, emphasizing synthetic biotechnology for green biomanufacturing. Specifically, it encompasses the optimization of biological components, pathways, and systems, as well as energy metabolism regulation, stress-tolerance enhancement, high-throughput screening, and the upscaling of production processes. It also envisages intelligent biomanufacturing platforms, highlighting the role of systems biology and artificial intelligence (AI), and proposes future research directions, such as integrating AI-driven metabolic models, enzyme engineering, and cell-free systems, to address limitations in the efficiency, toxicity, and scalability of water-soluble vitamin production.
Collapse
Affiliation(s)
- Fuqiang Song
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Heng Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhijie Qin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Li Z, Wang X, Hu G, Li X, Song W, Wei W, Liu L, Gao C. Engineering metabolic flux for the microbial synthesis of aromatic compounds. Metab Eng 2025; 88:94-112. [PMID: 39724940 DOI: 10.1016/j.ymben.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Microbial cell factories have emerged as a sustainable alternative to traditional chemical synthesis and plant extraction methods for producing aromatic compounds. However, achieving economically viable production of these compounds in microbial systems remains a significant challenge. This review summarizes the latest advancements in metabolic flux regulation during the microbial production of aromatic compounds, providing an overview of its applications and practical outcomes. Various strategies aimed at improving the utilization of extracellular substrates, enhancing the efficiency of synthetic pathways for target products, and rewiring intracellular metabolic networks to boost the titer, yield, and productivity of aromatic compounds are discussed. Additionally, the persistent challenges in this field and potential solutions are highlighted.
Collapse
Affiliation(s)
- Zhendong Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xianghe Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Niu K, Zheng R, Zhang M, Chen MQ, Kong YM, Liu ZQ, Zheng YG. Adjustment of the main biosynthesis modules to enhance the production of l-homoserine in Escherichia coli W3110. Biotechnol Bioeng 2025; 122:223-232. [PMID: 39425492 DOI: 10.1002/bit.28861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
l-homoserine is an important platform compound of many valuable products. Construction of microbial cell factory for l-homoserine production from glucose has attracted a great deal of attention. In this study, l-homoserine biosynthesis pathway was divided into three modules, the glucose uptake and upstream pathway, the downstream pathway, and the energy supply module. Metabolomics of the chassis strain HS indicated that the supply of ATP was inadequate, therefore, the energy supply module was firstly modified. By balancing the ATP supply module, the l-homoserine production increased by 66% to 12.55 g/L. Further, the results indicated that the upstream pathway was blocked, and increasing the culture temperature to 37°C could solve this problem and the l-homoserine production reached 21.38 g/L. Then, the downstream synthesis pathways were further strengthened to balance the fluxes, and the l-homoserine production reached the highest reported level of 32.55 g/L in shake flasks. Finally, fed-batch fermentation in a 5-L bioreactor was conducted, and l-homoserine production could reach to 119.96 g/L after 92 h cultivation, with the yield of 0.41 g/g glucose and productivity of 1.31 g/L/h. The study provides a well research foundation for l-homoserine production by microbial fermentation with the capacity for industrial application.
Collapse
Affiliation(s)
- Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rui Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Miao Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mao-Qin Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yi-Ming Kong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Yang Z, Li B, Bu R, Wang Z, Xin Z, Li Z, Zhang L, Wang W. A highly efficient method for genomic deletion across diverse lengths in thermophilic Parageobacillus thermoglucosidasius. Synth Syst Biotechnol 2024; 9:658-666. [PMID: 38817825 PMCID: PMC11137367 DOI: 10.1016/j.synbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Parageobacillus thermoglucosidasius is emerging as a highly promising thermophilic organism for metabolic engineering. The utilization of CRISPR-Cas technologies has facilitated programmable genetic manipulation in P. thermoglucosidasius. However, the absence of thermostable NHEJ enzymes limited the capability of the endogenous type I CRISPR-Cas system to generate a variety of extensive genomic deletions. Here, two thermophilic NHEJ enzymes were identified and combined with the endogenous type I CRISPR-Cas system to develop a genetic manipulation tool that can achieve long-range genomic deletion across various lengths. By optimizing this tool-through adjusting the expression level of NHEJ enzymes and leveraging our discovery of a negative correlation between GC content of the guide RNA (gRNA) and deletion efficacy-we streamlined a comprehensive gRNA selection manual for whole-genome editing, achieving a 100 % success rate in randomly selecting gRNAs. Notably, using just one gRNA, we achieved genomic deletions spanning diverse length, exceeding 200 kilobases. This tool will facilitate the genomic manipulation of P. thermoglucosidasius for both fundamental research and applied engineering studies, further unlocking its potential as a thermophilic cell factory.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Bixiao Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruihong Bu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
Zhao Z, You J, Shi X, Zhu R, Yang F, Xu M, Shao M, Zhang R, Zhao Y, Rao Z. Engineering Escherichia coli for l-Threonine Hyperproduction Based on Multidimensional Optimization Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356799 DOI: 10.1021/acs.jafc.4c07607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Exploring effective remodeling strategies to further improve the productivity of high-yield strains is the goal of biomanufacturing. However, the lack of insight into host-specific metabolic networks prevents timely identification of useful engineering targets. Here, multidimensional engineering strategies were implemented to optimize the global metabolic network for improving l-threonine production. First, the metabolic bottleneck for l-threonine synthesis was eliminated by synergistic utilization of NADH and an enhanced ATP supply. Carbon fluxes were redistributed into the TCA cycle by rationally regulating the GltA activity. Subsequently, the stress global response regulator UspA was identified to enhance l-threonine production by a transcriptomic analysis. Then, l-threonine productivity was improved by enhancing the host's stress resistance and releasing the inhibitory reaction of glucose utilization. Eventually, the l-threonine yield of THRH16 reached 170.3 g/L and 3.78 g/L/h in a 5 L bioreactor, which is the highest production index reported. This study provides rational guidance for increasing the productivity of other chemicals.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Xuanping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Rongshuai Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Fengyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| |
Collapse
|
6
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Huang H, Yu W, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial Engineering of Escherichia coli for Enhancing 3-Fucosyllactose Production. ACS Synth Biol 2024; 13:1866-1878. [PMID: 38836566 DOI: 10.1021/acssynbio.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.
Collapse
Affiliation(s)
- Huiyuan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Liao Y, Lao C, Wu J, Yuan L, Xu Y, Jin W, Sun J, Zhang Q, Chen X, Yao J. High-Yield Synthesis of Lacto- N-Neotetraose from Glycerol and Glucose in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5325-5338. [PMID: 38275134 DOI: 10.1021/acs.jafc.3c08239] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Lacto-N-neotetraose (LNnT) is a neutral human milk oligosaccharide with important biological functions. However, the low LNnT productivity and the incomplete conversion of the intermediate lacto-N-tetraose II (LNT II) currently limited the sustainable biosynthesis of LNnT. First, the LNnT biosynthetic module was integrated in Escherichia coli. Next, the LNnT export system was optimized to alleviate the inhibition of intracellular LNnT synthesis. Furthermore, by utilizing rate-limiting enzyme diagnosis, the expressions of LNnT synthesis pathway genes were finely regulated to further enhance the production yield of LNnT. Subsequently, a strategy of cofermentation using a glucose/glycerol (4:6, g/g) mixed feed was employed to regulate carbon flux distribution. Finally, by overexpressing key transferases, LNnT and LNT II titers reached 112.47 and 7.42 g/L, respectively, in a 5 L fermenter, and 107.4 and 2.08 g/L, respectively, in a 1000 L fermenter. These are the highest reported titers of LNnT to date, indicating its significant potential for industrial production.
Collapse
Affiliation(s)
- Yingxue Liao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| | - Caiwen Lao
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yanyi Xu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| | - Weijian Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| | - Jian Sun
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Qiang Zhang
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Xu P, Lin NQ, Zhang ZQ, Liu JZ. Strategies to increase the robustness of microbial cell factories. ADVANCED BIOTECHNOLOGY 2024; 2:9. [PMID: 39883204 PMCID: PMC11740849 DOI: 10.1007/s44307-024-00018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 01/31/2025]
Abstract
Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer. Therefore, strain robustness is essential to ensure reliable and sustainable production efficiency. In this review, the current strategies to improve host robustness were summarized, including knowledge-based engineering approaches, such as transcription factors, membrane/transporters and stress proteins, and the traditional adaptive laboratory evolution based on natural selection. Computation-assisted (e.g. GEMs, deep learning and machine learning) design of robust industrial hosts was also introduced. Furthermore, the challenges and future perspectives on engineering microbial host robustness are proposed to promote the development of green, efficient and sustainable biomanufacturers.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nuo-Qiao Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhi-Qian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou, 510399, China
| | - Jian-Zhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Joint Research Center of Engineering Biology Technology of Sun Yat-Sen University and Tidetron Bioworks, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Kaplan NA, Islam KN, Kanis FC, Verderber JR, Wang X, Jones JA, Koffas MAG. Simultaneous glucose and xylose utilization by an Escherichia coli catabolite repression mutant. Appl Environ Microbiol 2024; 90:e0216923. [PMID: 38289128 PMCID: PMC10880614 DOI: 10.1128/aem.02169-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024] Open
Abstract
As advances are made toward the industrial feasibility of mass-producing biofuels and commodity chemicals with sugar-fermenting microbes, high feedstock costs continue to inhibit commercial application. Hydrolyzed lignocellulosic biomass represents an ideal feedstock for these purposes as it is cheap and prevalent. However, many microbes, including Escherichia coli, struggle to efficiently utilize this mixture of hexose and pentose sugars due to the regulation of the carbon catabolite repression (CCR) system. CCR causes a sequential utilization of sugars, rather than simultaneous utilization, resulting in reduced carbon yield and complex process implications in fed-batch fermentation. A mutant of the gene encoding the cyclic AMP receptor protein, crp*, has been shown to disable CCR and improve the co-utilization of mixed sugar substrates. Here, we present the strain construction and characterization of a site-specific crp* chromosomal mutant in E. coli BL21 star (DE3). The crp* mutant strain demonstrates simultaneous consumption of glucose and xylose, suggesting a deregulated CCR system. The proteomics further showed that glucose was routed to the C5 carbon utilization pathways to support both de novo nucleotide synthesis and energy production in the crp* mutant strain. Metabolite analyses further show that overflow metabolism contributes to the slower growth in the crp* mutant. This highly characterized strain can be particularly beneficial for chemical production by simultaneously utilizing both C5 and C6 substrates from lignocellulosic biomass.IMPORTANCEAs the need for renewable biofuel and biochemical production processes continues to grow, there is an associated need for microbial technology capable of utilizing cheap, widely available, and renewable carbon substrates. This work details the construction and characterization of the first B-lineage Escherichia coli strain with mutated cyclic AMP receptor protein, Crp*, which deregulates the carbon catabolite repression (CCR) system and enables the co-utilization of multiple sugar sources in the growth medium. In this study, we focus our analysis on glucose and xylose utilization as these two sugars are the primary components in lignocellulosic biomass hydrolysate, a promising renewable carbon feedstock for industrial bioprocesses. This strain is valuable to the field as it enables the use of mixed sugar sources in traditional fed-batch based approaches, whereas the wild-type carbon catabolite repression system leads to biphasic growth and possible buildup of non-preferential sugars, reducing process efficiency at scale.
Collapse
Affiliation(s)
- Nicholas A. Kaplan
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Khondokar Nowshin Islam
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Fiona C. Kanis
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Jack R. Verderber
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Xin Wang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - J. Andrew Jones
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Mattheos A. G. Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|