1
|
Sogl G, Pilling S, Fischer LJ, Ludwig J, Mihretu N, Bashtrykov P, Jeltsch A. Systematic analysis of specificities and flanking sequence preferences of bacterial DNA-(cytosine C5)-methyltransferases reveals mechanisms of enzyme- and sequence-specific DNA readout. Nucleic Acids Res 2025; 53:gkaf126. [PMID: 40037710 PMCID: PMC11879396 DOI: 10.1093/nar/gkaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
DNA-(cytosine C5)-methyltransferases (MTases) represent a large group of evolutionary related enzymes with specific DNA interaction. We systematically investigated the specificity and flanking sequence preferences of six bacterial enzymes of this class and many MTase mutants. We observed high (>1000-fold) target sequence specificity reflecting strong evolutionary pressure against unspecific DNA methylation. Strong flanking sequence preferences (∼100-fold) were observed which changed for methylation of near-cognate sites suggesting that the DNA structures in the transition states of the methylation of these sites differ. Mutation of amino acids involved in DNA contacts led to local changes of specificity and flanking sequence preferences, but also global effects indicating that larger conformational changes occur upon transition state formation. Based on these findings, we conclude that the transition state of the DNA methylation reaction precedes the covalent enzyme-DNA complex conformations with flipped target base that are resolved in structural studies. Moreover, our data suggest that alternative catalytically active conformations exist whose occupancy is modulated by enzyme-DNA contacts. Sequence dependent DNA shape analyses suggest that MTase flanking sequence preferences are caused by flanking sequence dependent modulation of the DNA conformation. Likely, many of these findings are transferable to other DNA MTases and DNA interacting proteins.
Collapse
Affiliation(s)
- Greta Sogl
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sabrina Pilling
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lukas F J Fischer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Jan Ludwig
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nahom Mihretu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Chen H, Yan C, Dhasarathy A, Kladde M, Bai L. Investigating pioneer factor activity and its coordination with chromatin remodelers using integrated synthetic oligo assay. STAR Protoc 2023; 4:102279. [PMID: 37289591 PMCID: PMC10323128 DOI: 10.1016/j.xpro.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
Chromatin accessibility is regulated by pioneer factors (PFs) and chromatin remodelers (CRs). Here, we present a protocol, based on integrated synthetic oligonucleotide libraries in yeast, to systematically interrogate the nucleosome-displacing activities of PFs and their coordination with CRs. We describe steps for designing oligonucleotide sequences, constructing yeast libraries, measuring nucleosome configurations, and data analyses. This approach potentially can be adapted for use in higher eukaryotes to investigate the activities of many types of chromatin-associated factors. For complete details on the use and execution of this protocol, please refer to Yan et al.,1 and Chen et al.2.
Collapse
Affiliation(s)
- Hengye Chen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Chao Yan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58201, USA
| | - Michael Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Partitioned usage of chromatin remodelers by nucleosome-displacing factors. Cell Rep 2022; 40:111250. [PMID: 36001970 PMCID: PMC9422437 DOI: 10.1016/j.celrep.2022.111250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Nucleosome-displacing-factors (NDFs) in yeast, similar to pioneer factors in higher eukaryotes, can open closed chromatin and generate nucleosome-depleted regions (NDRs). NDRs in yeast are also affected by ATP-dependent chromatin remodelers (CRs). However, how NDFs and CRs coordinate in nucleosome invasion and NDR formation is still unclear. Here, we design a high-throughput method to systematically study the interplay between NDFs and CRs. By combining an integrated synthetic oligonucleotide library with DNA methyltransferase-based, single-molecule nucleosome mapping, we measure the impact of CRs on NDRs generated by individual NDFs. We find that CRs are dispensable for nucleosome invasion by NDFs, and they function downstream of NDF binding to modulate the NDR length. A few CRs show high specificity toward certain NDFs; however, in most cases, CRs are recruited in a factor-nonspecific and NDR length-dependent manner. Overall, our study provides a framework to investigate how NDFs and CRs cooperate to regulate chromatin opening. Chromatin accessibility in yeast is regulated by nucleosome-displacing-factors (NDFs) and chromatin remodelers (CRs). Chen et al. show that NDFs first invade into nucleosomes and then recruit CRs to modulate the NDR length. NDF-specific and NDR length-dependent recruitment of CRs allow partitioned usage of CRs by NDFs.
Collapse
|
5
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Rao S, Ahmad K, Ramachandran S. Cooperative binding between distant transcription factors is a hallmark of active enhancers. Mol Cell 2021; 81:1651-1665.e4. [PMID: 33705711 DOI: 10.1016/j.molcel.2021.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Enhancers harbor binding motifs that recruit transcription factors (TFs) for gene activation. While cooperative binding of TFs at enhancers is known to be critical for transcriptional activation of a handful of developmental enhancers, the extent of TF cooperativity genome-wide is unknown. Here, we couple high-resolution nuclease footprinting with single-molecule methylation profiling to characterize TF cooperativity at active enhancers in the Drosophila genome. Enrichment of short micrococcal nuclease (MNase)-protected DNA segments indicates that the majority of enhancers harbor two or more TF-binding sites, and we uncover protected fragments that correspond to co-bound sites in thousands of enhancers. From the analysis of co-binding, we find that cooperativity dominates TF binding in vivo at the majority of active enhancers. Cooperativity is highest between sites spaced 50 bp apart, indicating that cooperativity occurs without apparent protein-protein interactions. Our findings suggest nucleosomes promoting cooperativity because co-binding may effectively clear nucleosomes and promote enhancer function.
Collapse
Affiliation(s)
- Satyanarayan Rao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, Greenleaf WJ, Furlong EEM, Zhao K, Schmitz RJ, Bock C, Aerts S. Chromatin accessibility profiling methods. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10. [PMID: 38410680 PMCID: PMC10895463 DOI: 10.1038/s43586-020-00008-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Du M, Kodner S, Bai L. Enhancement of LacI binding in vivo. Nucleic Acids Res 2019; 47:9609-9618. [PMID: 31396617 PMCID: PMC6765135 DOI: 10.1093/nar/gkz698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) bind to specific sequences in DNA to regulate transcription. Despite extensive measurements of TFs’ dissociation constant (Kd) in vitro, their apparent Kdin vivo are usually unknown. LacI, a bacterial TF, is often used to artificially recruit proteins onto eukaryotic genomes. As LacI binds tightly to its recognition site (LacO) in vitro with a Kd about 10 picomolar (pM), it is often assumed that LacI also has high affinity to LacO in vivo. In this work, we measured LacI binding in living yeast cells using a fluorescent repressor operator system and found an apparent Kd of ∼0.6 μM, four orders of magnitude higher than that in vitro. By genetically altering (i) GFP-LacI structure, (ii) GFP-LacI stability, (iii) chromosome accessibility and (iv) LacO sequence, we reduced the apparent Kd to <10 nM. It turns out that the GFP tagging location and the fusion protein stability have a large effect on LacI binding, but surprisingly, chromosome accessibility only plays a mild role. These findings contribute to our quantitative understanding of the features that affect the apparent Kd of TF in cells. They also provide guidance for future design of more specific chromosomal recruitment through high-affinity TFs.
Collapse
Affiliation(s)
- Manyu Du
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seth Kodner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Oberbeckmann E, Wolff M, Krietenstein N, Heron M, Ellins JL, Schmid A, Krebs S, Blum H, Gerland U, Korber P. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res 2019; 29:1996-2009. [PMID: 31694866 PMCID: PMC6886505 DOI: 10.1101/gr.253419.119] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022]
Abstract
Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation because nucleosomes modulate DNA access by their positioning along the genome. A cell-population nucleosome map requires two observables: nucleosome positions along the DNA ("Where?") and nucleosome occupancies across the population ("In how many cells?"). All available genome-wide nucleosome mapping techniques are yield methods because they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or nonnucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions, but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby cross-validating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9-bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (±SD). Depending on nucleosome position calling procedures, there are 57,000 to 60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but correlate with increased presence of the nucleosome-evicting chromatin structure remodeling (RSC) complex, and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Michael Wolff
- Physik Department, Technische Universität München, 85748 Garching, Germany
| | - Nils Krietenstein
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Mark Heron
- Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jessica L Ellins
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefan Krebs
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Gerland
- Physik Department, Technische Universität München, 85748 Garching, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Integrated DNA methylation and chromatin structural analysis at single-molecule resolution. Methods Mol Biol 2015; 1288:123-41. [PMID: 25827879 DOI: 10.1007/978-1-4939-2474-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Chromatin limits the accessibility of DNA to trans-acting factors in transcription, replication, and repair. Although transcriptional variation between cells in a population may contribute to survival and disease, most assays of chromatin structure recover only population averages. We have developed DNA methyltransferases (MTases) as probing agents of DNA accessibility in chromatin, either expressed in vivo in budding yeast or as recombinant enzymatic probes of nuclei isolated from mammalian cells. In this chapter, we focus on the use of recombinant MTase (M) M.CviPI to probe chromatin accessibility in nuclei isolated from mammalian cell lines and animal tissue. This technique, named methylation accessibility protocol for individual templates (MAPit), reports protein-DNA interactions at single-molecule resolution. The single-molecule readout allows identification of chromatin subpopulations and rare epigenetic variants within a cell population. Furthermore, the use of M.CviPI in mammalian systems gives a comprehensive view of both chromatin structure and endogenous DNA methylation in a single assay.
Collapse
|
12
|
Abstract
The widespread adoption of short-read DNA sequencing as a digital epigenomic readout platform has motivated the development of genome-wide tools that achieve base-pair resolution. New methods for footprinting and affinity purification of nucleosomes, RNA polymerases, chromatin remodellers and transcription factors have increased the resolution of epigenomic profiling by two orders of magnitude, leading to new insights into how the chromatin landscape affects gene regulation. These digital epigenomic tools have also been applied to directly profile both turnover kinetics and transcription in situ. In this Review, we describe how these new genome-wide tools allow interrogation of diverse aspects of the epigenome.
Collapse
|
13
|
Taberlay PC, Statham AL, Kelly TK, Clark SJ, Jones PA. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Res 2014; 24:1421-32. [PMID: 24916973 PMCID: PMC4158760 DOI: 10.1101/gr.163485.113] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is well established that cancer-associated epigenetic repression occurs concomitant with CpG island hypermethylation and loss of nucleosomes at promoters, but the role of nucleosome occupancy and epigenetic reprogramming at distal regulatory elements in cancer is still poorly understood. Here, we evaluate the scope of global epigenetic alterations at enhancers and insulator elements in prostate and breast cancer cells using simultaneous genome-wide mapping of DNA methylation and nucleosome occupancy (NOMe-seq). We find that the genomic location of nucleosome-depleted regions (NDRs) is mostly cell type specific and preferentially found at enhancers in normal cells. In cancer cells, however, we observe a global reconfiguration of NDRs at distal regulatory elements coupled with a substantial reorganization of the cancer methylome. Aberrant acquisition of nucleosomes at enhancer-associated NDRs is associated with hypermethylation and epigenetic silencing marks, and conversely, loss of nucleosomes with demethylation and epigenetic activation. Remarkably, we show that nucleosomes remain strongly organized and phased at many facultative distal regulatory elements, even in the absence of a NDR as an anchor. Finally, we find that key transcription factor (TF) binding sites also show extensive peripheral nucleosome phasing, suggesting the potential for TFs to organize NDRs genome-wide and contribute to deregulation of cancer epigenomes. Together, our findings suggest that “decommissioning” of NDRs and TFs at distal regulatory elements in cancer cells is accompanied by DNA hypermethylation susceptibility of enhancers and insulator elements, which in turn may contribute to an altered genome-wide architecture and epigenetic deregulation in malignancy.
Collapse
Affiliation(s)
- Phillippa C Taberlay
- Epigenetics Research, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; Departments of Biochemistry and Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Aaron L Statham
- Epigenetics Research, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Theresa K Kelly
- Departments of Biochemistry and Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA; Active Motif, Inc., Carlsbad, California 92008, USA
| | - Susan J Clark
- Epigenetics Research, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, New South Wales 2010, Australia;
| | - Peter A Jones
- Departments of Biochemistry and Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA; Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
14
|
Portella G, Battistini F, Orozco M. Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations. PLoS Comput Biol 2013; 9:e1003354. [PMID: 24278005 PMCID: PMC3836855 DOI: 10.1371/journal.pcbi.1003354] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/05/2013] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.
Collapse
Affiliation(s)
- Guillem Portella
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
James SR, Cedeno CD, Sharma A, Zhang W, Mohler JL, Odunsi K, Wilson EM, Karpf AR. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 2013; 8:849-63. [PMID: 23839233 DOI: 10.4161/epi.25500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MAGEA11 is a cancer germline (CG) antigen and androgen receptor co-activator. Its expression in cancers other than prostate, and its mechanism of activation, has not been reported. In silico analyses reveal that MAGEA11 is frequently expressed in human cancers, is increased during tumor progression, and correlates with poor prognosis and survival. In prostate and epithelial ovarian cancers (EOC), MAGEA11 expression was associated with promoter and global DNA hypomethylation, and with activation of other CG genes. Pharmacological or genetic inhibition of DNA methyltransferases (DNMTs) and/or histone deacetylases (HDACs) activated MAGEA11 in a cell line specific manner. MAGEA11 promoter activity was directly repressed by DNA methylation, and partially depended on Sp1, as pharmacological or genetic targeting of Sp1 reduced MAGEA11 promoter activity and endogenous gene expression. Importantly, DNA methylation regulated nucleosome occupancy specifically at the -1 positioned nucleosome of MAGEA11. Methylation of a single Ets site near the transcriptional start site (TSS) correlated with -1 nucleosome occupancy and, by itself, strongly repressed MAGEA11 promoter activity. Thus, DNA methylation regulates nucleosome occupancy at MAGEA11, and this appears to function cooperatively with sequence-specific transcription factors to regulate gene expression. MAGEA11 regulation is highly instructive for understanding mechanisms regulating CG antigen genes in human cancer.
Collapse
Affiliation(s)
- Smitha R James
- Department of Pharmacology and Therapeutics; Roswell Park Cancer Institute; Buffalo, NY USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 2012; 22:2497-506. [PMID: 22960375 PMCID: PMC3514679 DOI: 10.1101/gr.143008.112] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA methylation and nucleosome positioning work together to generate chromatin structures that regulate gene expression. Nucleosomes are typically mapped using nuclease digestion requiring significant amounts of material and varying enzyme concentrations. We have developed a method (NOMe-seq) that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to generate a high resolution footprint of nucleosome positioning genome-wide using less than 1 million cells while retaining endogenous DNA methylation information from the same DNA strand. Using a novel bioinformatics pipeline, we show a striking anti-correlation between nucleosome occupancy and DNA methylation at CTCF regions that is not present at promoters. We further show that the extent of nucleosome depletion at promoters is directly correlated to expression level and can accommodate multiple nucleosomes and provide genome-wide evidence that expressed non-CpG island promoters are nucleosome-depleted. Importantly, NOMe-seq obtains DNA methylation and nucleosome positioning information from the same DNA molecule, giving the first genome-wide DNA methylation and nucleosome positioning correlation at the single molecule, and thus, single cell level, that can be used to monitor disease progression and response to therapy.
Collapse
Affiliation(s)
- Theresa K Kelly
- Department of Urology, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
17
|
Darst RP, Pardo CE, Pondugula S, Gangaraju VK, Nabilsi NH, Bartholomew B, Kladde MP. Simultaneous single-molecule detection of endogenous C-5 DNA methylation and chromatin accessibility using MAPit. Methods Mol Biol 2012; 833:125-41. [PMID: 22183592 DOI: 10.1007/978-1-61779-477-3_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bisulfite genomic sequencing provides a single-molecule view of cytosine methylation states. After deamination, each cloned molecule contains a record of methylation within its sequence. The full power of this technique is harnessed by treating nuclei with an exogenous DNMT prior to DNA extraction. This exogenous methylation marks regions of accessibility and footprints nucleosomes, as well as other DNA-binding proteins. Thus, each cloned molecule records not only the endogenous methylation present (at CG sites, in mammals), but also the exogenous (GC, when using the Chlorella virus protein M.CviPI). We term this technique MAPit, methylation accessibility protocol for individual templates.
Collapse
Affiliation(s)
- Russell P Darst
- Department of Biochemistry and Molecular Biology, University of Florida and Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Pardo CE, Darst RP, Nabilsi NH, Delmas AL, Kladde MP. Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit. ACTA ACUST UNITED AC 2011; Chapter 21:Unit 21.22. [PMID: 21732317 DOI: 10.1002/0471142727.mb2122s95] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sites of protein binding to DNA are inferred from footprints or spans of protection against a probing reagent. In most protocols, sites of accessibility to a probe are detected by mapping breaks in DNA strands. As discussed in this unit, such methods obscure molecular heterogeneity by averaging cuts at a given site over all DNA strands in a sample population. The DNA methyltransferase accessibility protocol for individual templates (MAPit), an alternative method described in this unit, localizes protein-DNA interactions by probing with cytosine-modifying DNA methyltransferases followed by bisulfite sequencing. Sequencing individual DNA products after amplification of bisulfite-converted sequences permits assignment of the methylation status of every enzyme target site along a single DNA strand. Use of the GC-methylating enzyme M.CviPI allows simultaneous mapping of chromatin accessibility and endogenous CpG methylation. MAPit is therefore the only footprinting method that can detect subpopulations of molecules with distinct patterns of protein binding or chromatin architecture and correlate them directly with the occurrence of endogenous methylation. Additional advantages of MAPit methylation footprinting as well as considerations for experimental design and potential sources of error are discussed.
Collapse
Affiliation(s)
- Carolina E Pardo
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
19
|
Pardo CE, Carr IM, Hoffman CJ, Darst RP, Markham AF, Bonthron DT, Kladde MP. MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects. Nucleic Acids Res 2010; 39:e5. [PMID: 20959287 PMCID: PMC3017589 DOI: 10.1093/nar/gkq716] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bisulfite sequencing is a widely-used technique for examining cytosine DNA methylation at nucleotide resolution along single DNA strands. Probing with cytosine DNA methyltransferases followed by bisulfite sequencing (MAPit) is an effective technique for mapping protein-DNA interactions. Here, MAPit methylation footprinting with M.CviPI, a GC methyltransferase we previously cloned and characterized, was used to probe hMLH1 chromatin in HCT116 and RKO colorectal cancer cells. Because M.CviPI-probed samples contain both CG and GC methylation, we developed a versatile, visually-intuitive program, called MethylViewer, for evaluating the bisulfite sequencing results. Uniquely, MethylViewer can simultaneously query cytosine methylation status in bisulfite-converted sequences at as many as four different user-defined motifs, e.g. CG, GC, etc., including motifs with degenerate bases. Data can also be exported for statistical analysis and as publication-quality images. Analysis of hMLH1 MAPit data with MethylViewer showed that endogenous CG methylation and accessible GC sites were both mapped on single molecules at high resolution. Disruption of positioned nucleosomes on single molecules of the PHO5 promoter was detected in budding yeast using M.CviPII, increasing the number of enzymes available for probing protein-DNA interactions. MethylViewer provides an integrated solution for primer design and rapid, accurate and detailed analysis of bisulfite sequencing or MAPit datasets from virtually any biological or biochemical system.
Collapse
Affiliation(s)
- Carolina E Pardo
- Department of Biochemistry and Molecular Biology, University of Florida Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, Gainesville, FL 32610-3633, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Sha K, Gu SG, Pantalena-Filho LC, Goh A, Fleenor J, Blanchard D, Krishna C, Fire A. Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans. BMC Genomics 2010; 11:465. [PMID: 20691096 PMCID: PMC3091661 DOI: 10.1186/1471-2164-11-465] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/06/2010] [Indexed: 12/21/2022] Open
Abstract
Background Tissue differentiation is accompanied by genome-wide changes in the underlying chromatin structure and dynamics, or epigenome. By controlling when, where, and what regulatory factors have access to the underlying genomic DNA, the epigenome influences the cell's transcriptome and ultimately its function. Existing genomic methods for analyzing cell-type-specific changes in chromatin generally involve two elements: (i) a source for purified cells (or nuclei) of distinct types, and (ii) a specific treatment that partitions or degrades chromatin by activity or structural features. For many cell types of great interest, such assays are limited by our inability to isolate the relevant cell populations in an organism or complex tissue containing an intertwined mixture of other cells. This limitation has confined available knowledge of chromatin dynamics to a narrow range of biological systems (cell types that can be sorted/separated/dissected in large numbers and tissue culture models) or to amalgamations of diverse cell types (tissue chunks, whole organisms). Results Transgene-driven expression of DNA/chromatin modifying enzymes provides one opportunity to query chromatin structures in expression-defined cell subsets. In this work we combine in vivo expression of a bacterial DNA adenine methyltransferase (DAM) with high throughput sequencing to sample tissue-specific chromatin accessibility on a genome-wide scale. We have applied the method (DALEC: Direct Asymmetric Ligation End Capture) towards mapping a cell-type-specific view of genome accessibility as a function of differentiated state. Taking advantage of C. elegans strains expressing the DAM enzyme in diverse tissues (body wall muscle, gut, and hypodermis), our efforts yield a genome-wide dataset measuring chromatin accessibility at each of 538,000 DAM target sites in the C. elegans (diploid) genome. Conclusions Validating the DALEC mapping results, we observe a strong association between observed coverage by nucleosomes and low DAM accessibility. Strikingly, we observed no extended regions of inaccessible chromatin for any of the tissues examined. These results are consistent with "local choreography" models in which differential gene expression is driven by intricate local rearrangements of chromatin structure rather than gross impenetrability of large chromosomal regions.
Collapse
Affiliation(s)
- Ky Sha
- Depts, of Pathology and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Palo Alto CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Darii MV, Cherepanova NA, Subach OM, Kirsanova OV, Raskó T, Ślaska-Kiss K, Kiss A, Deville-Bonne D, Reboud-Ravaux M, Gromova ES. Mutational analysis of the CG recognizing DNA methyltransferase SssI: Insight into enzyme–DNA interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1654-62. [DOI: 10.1016/j.bbapap.2009.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/09/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|
22
|
Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res 2009; 37:6701-15. [PMID: 19740762 PMCID: PMC2777446 DOI: 10.1093/nar/gkp727] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To characterize the organization of mtDNA–protein complexes (known as nucleoids) in vivo, we have probed the mtDNA surface exposure using site-specific DNA methyltransferases targeted to the mitochondria. We have observed that DNA methyltransferases have different accessibility to different sites on the mtDNA based on the levels of protein occupancy. We focused our studies on selected regions of mtDNA that are believed to be major regulatory regions involved in transcription and replication. The transcription termination region (TERM) within the tRNALeu(UUR) gene was consistently and strongly protected from methylation, suggesting frequent and high affinity binding of mitochondrial transcription termination factor 1 (mTERF1) to the site. Protection from methylation was also observed in other regions of the mtDNA, including the light and heavy strand promoters (LSP, HSP) and the origin of replication of the light strand (OL). Manipulations aiming at increasing or decreasing the levels of the mitochondrial transcription factor A (TFAM) led to decreased in vivo methylation, whereas manipulations that stimulated mtDNA replication led to increased methylation. We also analyzed the effect of ATAD3 and oxidative stress in mtDNA exposure. Our data provide a map of human mtDNA accessibility and demonstrate that nucleoids are dynamically associated with proteins.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
23
|
Lantermann A, Strålfors A, Fagerström-Billai F, Korber P, Ekwall K. Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe. Methods 2009; 48:218-25. [PMID: 19233281 DOI: 10.1016/j.ymeth.2009.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/03/2009] [Accepted: 02/06/2009] [Indexed: 11/27/2022] Open
Abstract
The majority of nuclear eukaryotic DNA is packaged into nucleosome cores where DNA is wrapped tightly around histone protein octamers. Such histone bound nucleosomal DNA is less accessible than the short linker DNA between nucleosome cores or the DNA in extended nucleosome free regions. Therefore, the positions of nucleosomes relative to a DNA sequence feature, like a transactivator binding site, a transcriptional start site or an origin of replication, can have profound effects on nuclear processes like transcription, replication, recombination and repair. Now that many DNA related processes are studied in a genome-wide manner, it is increasingly important to map the basic organization of their chromosomal DNA substrate, i.e., the positions of nucleosomes, on a genome-wide scale as well. To this end, the protection of nucleosomal DNA from digestion with micrococcal nuclease (MNase) is used as an assay for the presence of a nucleosome. The MNase protected DNA fragments, so called mononucleosomal DNA, can be mapped genome-wide by hybridization to microarrays. This method has been established for Saccharomyces cerevisiae, and we present here the adaptation of the method for Schizosaccharomyces pombe. As an independent method to validate genome-wide data for individual loci, we also include a protocol for the determination of locus specific nucleosome positioning by indirect end labeling.
Collapse
Affiliation(s)
- Alexandra Lantermann
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
24
|
DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 2009; 523:41-65. [PMID: 19381922 DOI: 10.1007/978-1-59745-190-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Non-invasive methods for mapping chromatin structure are necessary for creating an accurate view of genome function and dynamics in vivo. Ectopic induction of cytosine-5 DNA methyltransferases (C5 MTases) in Saccharomyces cerevisiae is a powerful technique for probing chromatin structure with minimal disruption to yeast physiology. Accessibility of MTases to their cognate sites is impaired based on the strength and span of the protein-DNA interaction to be probed. Methylated cytosines that resist chemical deamination are detected positively by the PCR-based technique of bisulfite genomic sequencing. PCR amplicons can be sequenced directly yielding an average m(5)C frequency or accessibility of each target site within the population, a technique termed methyltransferase accessibility protocol (MAP). More recently, the sequencing of cloned molecules in MAP for individual templates (MAPit) enables assignment of the methylation status of each target site along a continuous DNA strand from a single cell. The unique capability to score methylation at multiple sites in single molecules permits detection of inherent structural variability in chromatin. Here, MAPit analysis of the repressed and induced PHO5 promoter of budding yeast, using a C5 MTase with dinucleotide recognition specificity, reveals considerable cell-to-cell heterogeneity in chromatin structure. Substantial variation is observed in the extent to which the MTase gains entry to each of the nucleosomes positioned at PHO5, suggesting differences in their intrinsic thermodynamic stability in vivo. MAPit should be readily adaptable to the analysis of chromatin structure and non-histone protein-DNA interactions in a variety of model systems.
Collapse
|
25
|
Jeltsch A, Jurkowska RZ, Jurkowski TP, Liebert K, Rathert P, Schlickenrieder M. Application of DNA methyltransferases in targeted DNA methylation. Appl Microbiol Biotechnol 2007; 75:1233-40. [PMID: 17431611 DOI: 10.1007/s00253-007-0966-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 12/31/2022]
Abstract
DNA methylation is an essential epigenetic modification. In bacteria, it is involved in gene regulation, DNA repair, and control of cell cycle. In eukaryotes, it acts in concert with other epigenetic modifications to regulate gene expression and chromatin structure. In addition to these biological roles, DNA methyltransferases have several interesting applications in biotechnology, which are the main focus of this review, namely, (1) in vivo footprinting: as several bacterial DNA methyltransferases cannot methylate DNA bound to histone proteins, the pattern of DNA methylation after expression of DNA methyltransferases in the cell allows determining nucleosome positioning; (2) mapping the binding specificity of DNA binding proteins: after fusion of a DNA methyltransferase to a DNA-binding protein and expression of the fusion protein in a cell, the DNA methylation pattern reflects the DNA-binding specificity of the DNA-binding protein; and (3) targeted gene silencing: after fusion of a DNA methyltransferase to a suitable DNA-binding domain, DNA methylation can be directed to promoter regions of target genes. Thereby, gene expression can be switched off specifically, efficiently, and stably, which has a number of potential medical applications.
Collapse
Affiliation(s)
- Albert Jeltsch
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Kilgore JA, Hoose SA, Gustafson TL, Porter W, Kladde MP. Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 2007; 41:320-32. [PMID: 17309843 PMCID: PMC2923433 DOI: 10.1016/j.ymeth.2006.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022] Open
Abstract
Probing chromatin structure with DNA methyltransferases offers advantages over more commonly used nuclease-based and chromatin immunoprecipitation methods for detection of nucleosomes and non-histone protein-DNA interactions. Here, we describe two related methods in which the readout of MTase accessibility is obtained by assaying 5-methylcytosine in DNA through the PCR-based technique of bisulfite genomic sequencing. The methyltransferase accessibility protocol (MAP) determines the relative frequency at which the enzyme accesses each of its target sites over an entire population of PCR amplified product. While MAP yields much quantitative information about relative accessibility of a region of chromatin, a complementary single-molecule view of methyltransferase accessibility, termed MAP for individual templates (MAP-IT), is provided by analysis of cloned PCR products. Absolute rather than relative methylation frequencies in a region are obtained by summing the methylation status at each site over a cohort of clones. Moreover, as the integrity of individual molecules is maintained in MAP-IT, unique information about the distribution of multiple footprints along continuous regions is gleaned. In principle, the population MAP and single-molecule MAP-IT strategies can be used to analyze chromatin structure in a variety of model systems. Here, we describe the application of MAP in living Saccharomyces cerevisiae cells and MAP-IT in the analysis of a mammalian tumor suppressor gene in nuclei. This application of MAP-IT provides the first means to simultaneously determine CpG methylation of mammalian genes and their overlying chromatin structure in the same single DNA molecule.
Collapse
Affiliation(s)
- Jessica A. Kilgore
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Scott A. Hoose
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Tanya L. Gustafson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Weston Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Michael P. Kladde
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| |
Collapse
|
27
|
Jessen WJ, Hoose SA, Kilgore JA, Kladde MP. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 2006; 13:256-63. [PMID: 16491089 DOI: 10.1038/nsmb1062] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 12/29/2005] [Indexed: 01/08/2023]
Abstract
Transcriptional activation is often associated with chromatin remodeling. However, little is known about the dynamics of remodeling of nucleosome arrays in vivo. Upon induction of Saccharomyces cerevisiae PHO5, a novel kinetic assay of DNA methyltransferase accessibility showed that nucleosomes adjacent to the histone-free upstream activating sequence (UASp1) are disrupted earlier and at higher frequency in the cell population than are those more distal. Individually cloned molecules, each representing the chromatin state of a full promoter from a single cell, revealed multiple promoter classes with either no remodeling or variable numbers of disrupted nucleosomes. Individual promoters in the remodeled fraction were highly enriched for contiguous blocks of disrupted nucleosomes, the majority of which overlapped the UAS region. These results support a probabilistic model in which chromatin remodeling at PHO5 spreads from sites of transactivator association with DNA and attenuates with distance.
Collapse
Affiliation(s)
- Walter J Jessen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
28
|
Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, Jones PA. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 2005; 33:e176. [PMID: 16314307 PMCID: PMC1292996 DOI: 10.1093/nar/gni180] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters are molecular ‘modules’, which are controlled as individual entities yet are often analyzed by nuclease digestion methodologies which, a priori, destroy this modularity. About 40% of mammalian genes contain CpG islands in their promoters and exonic regions, which are normally unmethylated. We developed a footprinting strategy to map the chromatin structure at unmethylated CpG islands by treatment of isolated nuclei with the CpG-specific DNA methyltransferase SssI (M.SssI), followed by genomic bisulfite sequencing of individual progeny DNA molecules. This gave single molecule resolution over the promoter region and allowed for the physical linkage between binding sites on individual promoter molecules to be maintained. Comparison of the p16 promoters in two human cell lines, J82 and LD419, expressing the p16 gene at 25-fold different levels showed that the two cell lines contain remarkably different, heterogeneously positioned nucleosomes over the promoter region, which were not distinguishable by standard methods using nucleases. Our high resolution approach gives a ‘digitized’ visualization of each promoter providing information regarding nucleosome occupancy and may be utilized to define transcription factor binding and chromatin remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter A. Jones
- To whom correspondence should be addressed. Tel: +1 323 865 0816; Fax: +1 323 865 0102;
| |
Collapse
|