1
|
Chew BLA, Tanoto FR, Luo D. LC-MS assay targeting the mycobacterial indirect aminoacylation pathway uncovers glutaminase activities of the nondiscriminating aspartyl-synthetase. FEBS Lett 2020; 594:2159-2167. [PMID: 32279326 DOI: 10.1002/1873-3468.13786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 11/08/2022]
Abstract
The synthesis of asparagine (Asn)-tRNAAsn in most prokaryotes uses an indirect aminoacylation pathway involving a nondiscriminating aspartyl synthetase (ND-AspRS) and a glutamine amidotransferase (GatCAB). This was recently implicated as an adaptive mistranslation mechanism for antimicrobial resistance in Mycobacterium tuberculosis, but it remains poorly understood. We report an accessible liquid chromatography-mass spectrometry method with unparalleled chemical specificity, sensitivity, and quantification over the current assays to enable the direct analysis and drug screening campaigns of this pathway. Through this method, we show that the mycobacterial ND-AspRS stimulates the glutaminase activity of GatCAB. We further uncover novel glutaminase activity of the synthetase. These biological insights help better understand the indirect aminoacylation biology and allude to new roles beyond protein translation.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore City, Singapore
| | | | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
2
|
Barros-Álvarez X, Turley S, Ranade RM, Gillespie JR, Duster NA, Verlinde CLMJ, Fan E, Buckner FS, Hol WGJ. The crystal structure of the drug target Mycobacterium tuberculosis methionyl-tRNA synthetase in complex with a catalytic intermediate. Acta Crystallogr F Struct Biol Commun 2018; 74:245-254. [PMID: 29633973 PMCID: PMC5893993 DOI: 10.1107/s2053230x18003151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is a pathogenic bacterial infectious agent that is responsible for approximately 1.5 million human deaths annually. Current treatment requires the long-term administration of multiple medicines with substantial side effects. Lack of compliance, together with other factors, has resulted in a worrisome increase in resistance. New treatment options are therefore urgently needed. Here, the crystal structure of methionyl-tRNA synthetase (MetRS), an enzyme critical for protein biosynthesis and therefore a drug target, in complex with its catalytic intermediate methionyl adenylate is reported. Phenylalanine 292 of the M. tuberculosis enzyme is in an `out' conformation and barely contacts the adenine ring, in contrast to other MetRS structures where ring stacking occurs between the adenine and a protein side-chain ring in the `in' conformation. A comparison with human cytosolic MetRS reveals substantial differences in the active site as well as regarding the position of the connective peptide subdomain 1 (CP1) near the active site, which bodes well for arriving at selective inhibitors. Comparison with the human mitochondrial enzyme at the amino-acid sequence level suggests that arriving at inhibitors with higher affinity for the mycobacterial enzyme than for the mitochondrial enzyme might be achievable.
Collapse
Affiliation(s)
- Ximena Barros-Álvarez
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela
| | - Stewart Turley
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Ranae M. Ranade
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - J. Robert Gillespie
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicole A. Duster
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Frederick S. Buckner
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Barros-Álvarez X, Kerchner KM, Koh CY, Turley S, Pardon E, Steyaert J, Ranade RM, Gillespie JR, Zhang Z, Verlinde CLMJ, Fan E, Buckner FS, Hol WGJ. Leishmania donovani tyrosyl-tRNA synthetase structure in complex with a tyrosyl adenylate analog and comparisons with human and protozoan counterparts. Biochimie 2017; 138:124-136. [PMID: 28427904 PMCID: PMC5484532 DOI: 10.1016/j.biochi.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
The crystal structure of Leishmania donovani tyrosyl-tRNA synthetase (LdTyrRS) in complex with a nanobody and the tyrosyl adenylate analog TyrSA was determined at 2.75 Å resolution. Nanobodies are the variable domains of camelid heavy chain-only antibodies. The nanobody makes numerous crystal contacts and in addition reduces the flexibility of a loop of LdTyrRS. TyrSA is engaged in many interactions with active site residues occupying the tyrosine and adenine binding pockets. The LdTyrRS polypeptide chain consists of two pseudo-monomers, each consisting of two domains. Comparing the two independent chains in the asymmetric unit reveals that the two pseudo-monomers of LdTyrRS can bend with respect to each other essentially as rigid bodies. This flexibility might be useful in the positioning of tRNA for catalysis since both pseudo-monomers in the LdTyrRS chain are needed for charging tRNATyr. An "extra pocket" (EP) appears to be present near the adenine binding region of LdTyrRS. Since this pocket is absent in the two human homologous enzymes, the EP provides interesting opportunities for obtaining selective drugs for treating infections caused by L. donovani, a unicellular parasite causing visceral leishmaniasis, or kala azar, which claims 20,000 to 30,000 deaths per year. Sequence and structural comparisons indicate that the EP is a characteristic which also occurs in the active site of several other important pathogenic protozoa. Therefore, the structure of LdTyrRS could inspire the design of compounds useful for treating several different parasitic diseases.
Collapse
Affiliation(s)
- Ximena Barros-Álvarez
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela
| | - Keshia M Kerchner
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Stewart Turley
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Ranae M Ranade
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, USA
| | - J Robert Gillespie
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, USA
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Frederick S Buckner
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, USA
| | - Wim G J Hol
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Haruehanroengra P, Vangaveti S, Ranganathan SV, Wang R, Chen A, Sheng J. Nature's Selection of Geranyl Group as a tRNA Modification: The Effects of Chain Length on Base-Pairing Specificity. ACS Chem Biol 2017; 12:1504-1513. [PMID: 28418649 DOI: 10.1021/acschembio.7b00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recently discovered geranyl modification on the 2-thio position of wobble U34 residues in tRNAGlu, tRNALys, and tRNAGln in several bacteria has been found to enhance the U:G pairing specificity and reduce the frameshifting error during translation. It is a fundamentally interesting question why nature chose a C10 terpene group in tRNA systems. In this study, we explore the significance of the terpene length on base-paring stability and specificity using a series of 2-thiouridine analogues containing different lengths of carbon chains, namely, methyl- (C1), dimethylallyl- (C5), and farnesyl-modified (C15) 2-thiothymidines in a DNA duplex. Our thermal denaturation studies indicate that the relatively long chain length of ≥ C10 is required to maintain the base-pairing discrimination of thymidine between G and A. The results from our molecular dynamics simulations show that in the T:G-pair-containing duplex, the geranyl and farnesyl groups fit into the minor groove and stabilize the overall duplex stability. This effect cannot be achieved by the shorter carbon chains such as methyl and dimethylallyl groups. For a duplex containing a T:A pair, the terpene groups disrupt both hydrogen bonding and stacking interactions by pushing the opposite A out of the helical structure. Overall, as the terpene chain length increases, the xT:G pair stabilizes the duplex, whereas the xT:A pair causes destabilization, indicating the evolutionary significance of the long terpene group on base-pairing specificity and codon recognition.
Collapse
Affiliation(s)
- Phensinee Haruehanroengra
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Sweta Vangaveti
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Srivathsan V. Ranganathan
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rui Wang
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Alan Chen
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Jia Sheng
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
5
|
Wang R, Haruehanroengra P, Sheng J. Synthesis of Geranyl‐2‐Thiouridine‐Modified RNA. ACTA ACUST UNITED AC 2017; 68:4.72.1-4.72.13. [DOI: 10.1002/cpnc.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rui Wang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York Albany New York
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York Albany New York
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York Albany New York
| |
Collapse
|
6
|
Wang R, Ranganathan SV, Basanta-Sanchez M, Shen F, Chen A, Sheng J. Synthesis and base pairing studies of geranylated 2-thiothymidine, a natural variant of thymidine. Chem Commun (Camb) 2016; 51:16369-72. [PMID: 26405057 DOI: 10.1039/c5cc07479g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis and base pairing of DNA duplexes containing the geranylated 2-thiothymidine have been investigated. This naturally existing hydrophobic modification could grant better base pairing stability to the T-G pair over normal T-A and other mismatched pairs in the duplex context. This study provides a potential explanation for the different codon recognition preferences of the geranylated tRNAs.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Srivathsan V Ranganathan
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Maria Basanta-Sanchez
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Fusheng Shen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Alan Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| |
Collapse
|
7
|
Wang R, Vangaveti S, Ranganathan SV, Basanta-Sanchez M, Haruehanroengra P, Chen A, Sheng J. Synthesis, base pairing and structure studies of geranylated RNA. Nucleic Acids Res 2016; 44:6036-45. [PMID: 27307604 PMCID: PMC5291276 DOI: 10.1093/nar/gkw544] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023] Open
Abstract
Natural RNAs utilize extensive chemical modifications to diversify their structures and functions. 2-Thiouridine geranylation is a special hydrophobic tRNA modification that has been discovered very recently in several bacteria, such as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium. The geranylated residues are located in the first anticodon position of tRNAs specific for lysine, glutamine and glutamic acid. This big hydrophobic terpene functional group affects the codon recognition patterns and reduces frameshifting errors during translation. We aimed to systematically study the structure, function and biosynthesis mechanism of this geranylation pathway, as well as answer the question of why nature uses such a hydrophobic modification in hydrophilic RNA systems. Recently, we have synthesized the deoxy-analog of S-geranyluridine and showed the geranylated T-G pair is much stronger than the geranylated T-A pair and other mismatched pairs in the B-form DNA duplex context, which is consistent with the observation that the geranylated tRNAGluUUC recognizes GAG more efficiently than GAA. In this manuscript we report the synthesis and base pairing specificity studies of geranylated RNA oligos. We also report extensive molecular simulation studies to explore the structural features of the geranyl group in the context of A-form RNA and its effect on codon–anticodon interaction during ribosome binding.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | - Maria Basanta-Sanchez
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Phensinee Haruehanroengra
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alan Chen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
8
|
Nair N, Raff H, Islam MT, Feen M, Garofalo DM, Sheppard K. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn). J Mol Biol 2016; 428:618-630. [PMID: 26804570 DOI: 10.1016/j.jmb.2016.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.
Collapse
Affiliation(s)
- Nilendra Nair
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | - Melanie Feen
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Denise M Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
9
|
Mailu BM, Li L, Arthur J, Nelson TM, Ramasamy G, Fritz-Wolf K, Becker K, Gardner MJ. Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites. J Biol Chem 2015; 290:29629-41. [PMID: 26318454 DOI: 10.1074/jbc.m115.655100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 01/25/2023] Open
Abstract
The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNA(Gln) and a glutaminyl-tRNA amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln). Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyl-tRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNA(Gln) to Gln-tRNA(Gln) in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.
Collapse
Affiliation(s)
- Boniface M Mailu
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Ling Li
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Jen Arthur
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Todd M Nelson
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Gowthaman Ramasamy
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Karin Fritz-Wolf
- the Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen 35392 Germany, and the Max-Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Katja Becker
- the Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen 35392 Germany, and
| | - Malcolm J Gardner
- From the Center for Infectious Disease Research, Seattle, Washington 98109, the Department of Global Health, University of Washington, Seattle, Washington 98195,
| |
Collapse
|
10
|
Juhas M. Pseudomonas aeruginosa essentials: an update on investigation of essential genes. MICROBIOLOGY-SGM 2015; 161:2053-60. [PMID: 26311069 DOI: 10.1099/mic.0.000161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
11
|
Miller C, Bröcker MJ, Prat L, Ip K, Chirathivat N, Feiock A, Veszprémi M, Söll D. A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro. FEBS Lett 2015; 589:2194-9. [PMID: 26160755 DOI: 10.1016/j.febslet.2015.06.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Incorporation of selenocysteine (Sec) in bacteria requires a UGA codon that is reassigned to Sec by the Sec-specific elongation factor SelB and a conserved mRNA motif (SECIS element). These requirements severely restrict the engineering of selenoproteins. Earlier, a synthetic tRNASec was reported that allowed canonical Sec incorporation by EF-Tu; however, serine misincorporation limited its scope. We report a superior tRNASec variant (tRNAUTuX) that facilitates EF-Tu dependent stoichiometric Sec insertion in response to UAG both in vivo in Escherichia coli and in vitro in a cellfree protein synthesis system. We also demonstrate recoding of several sense codons in a SelB supplemented cell-free system. These advances in Sec incorporation will aid rational design and directed evolution of selenoproteins.
Collapse
Affiliation(s)
- Corwin Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Markus J Bröcker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Laure Prat
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Kevan Ip
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Napon Chirathivat
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Alexander Feiock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Miklós Veszprémi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Alperstein A, Ulrich B, Garofalo DM, Dreisbach R, Raff H, Sheppard K. The predatory bacterium Bdellovibrio bacteriovorus aspartyl-tRNA synthetase recognizes tRNAAsn as a substrate. PLoS One 2014; 9:e110842. [PMID: 25338061 PMCID: PMC4206432 DOI: 10.1371/journal.pone.0110842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/20/2014] [Indexed: 11/29/2022] Open
Abstract
The predatory bacterium Bdellovibrio bacteriovorus preys on other Gram-negative bacteria and was predicted to be an asparagine auxotroph. However, despite encoding asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, B. bacteriovorus also contains the amidotransferase GatCAB. Deinococcus radiodurans, and Thermus thermophilus also encode both of these aminoacyl-tRNA synthetases with GatCAB. Both also code for a second aspartyl-tRNA synthetase and use the additional aspartyl-tRNA synthetase with GatCAB to synthesize asparagine on tRNAAsn. Unlike those two bacteria, B. bacteriovorus encodes only one aspartyl-tRNA synthetase. Here we demonstrate the lone B. bacteriovorus aspartyl-tRNA synthetase catalyzes aspartyl-tRNAAsn formation that GatCAB can then amidate to asparaginyl-tRNAAsn. This non-discriminating aspartyl-tRNA synthetase with GatCAB thus provides B. bacteriovorus a second route for Asn-tRNAAsn formation with the asparagine synthesized in a tRNA-dependent manner. Thus, in contrast to a previous prediction, B. bacteriovorus codes for a biosynthetic route for asparagine. Analysis of bacterial genomes suggests a significant number of other bacteria may also code for both routes for Asn-tRNAAsn synthesis with only a limited number encoding a second aspartyl-tRNA synthetase.
Collapse
Affiliation(s)
- Ariel Alperstein
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Brittany Ulrich
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Denise M. Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Ruth Dreisbach
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mladenova SR, Stein KR, Bartlett L, Sheppard K. Relaxed tRNA specificity of theStaphylococcus aureusaspartyl-tRNA synthetase enables RNA-dependent asparagine biosynthesis. FEBS Lett 2014; 588:1808-12. [DOI: 10.1016/j.febslet.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
14
|
Mailu BM, Ramasamay G, Mudeppa DG, Li L, Lindner SE, Peterson MJ, DeRocher AE, Kappe SHI, Rathod PK, Gardner MJ. A nondiscriminating glutamyl-tRNA synthetase in the plasmodium apicoplast: the first enzyme in an indirect aminoacylation pathway. J Biol Chem 2013; 288:32539-32552. [PMID: 24072705 PMCID: PMC3820887 DOI: 10.1074/jbc.m113.507467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/23/2013] [Indexed: 11/06/2022] Open
Abstract
The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.
Collapse
Affiliation(s)
- Boniface M Mailu
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | | | - Devaraja G Mudeppa
- the Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
| | - Ling Li
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Scott E Lindner
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Megan J Peterson
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Amy E DeRocher
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Stefan H I Kappe
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109,; the Department of Global Health, University of Washington, Seattle, Washington 98195
| | - Pradipsinh K Rathod
- the Department of Chemistry, University of Washington, Seattle, Washington 98195-1700; the Department of Global Health, University of Washington, Seattle, Washington 98195
| | - Malcolm J Gardner
- From the Seattle Biomedical Research Institute, Seattle, Washington 98109,; the Department of Global Health, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
15
|
Silva GN, Fatma S, Floyd AM, Fischer F, Chuawong P, Cruz AN, Simari RM, Joshi N, Kern D, Hendrickson TL. A tRNA-independent mechanism for transamidosome assembly promotes aminoacyl-tRNA transamidation. J Biol Chem 2012; 288:3816-22. [PMID: 23258533 DOI: 10.1074/jbc.m112.441394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many bacteria lack genes encoding asparaginyl- and/or glutaminyl-tRNA synthetase and consequently rely on an indirect path for the synthesis of both Asn-tRNA(Asn) and Gln-tRNA(Gln). In some bacteria such as Thermus thermophilus, efficient delivery of misacylated tRNA to the downstream amidotransferase (AdT) is ensured by formation of a stable, tRNA-dependent macromolecular complex called the Asn-transamidosome. This complex enables direct delivery of Asp-tRNA(Asn) from the non-discriminating aspartyl-tRNA synthetase to AdT, where it is converted into Asn-tRNA(Asn). Previous characterization of the analogous Helicobacter pylori Asn-transamidosome revealed that it is dynamic and cannot be stably isolated, suggesting the possibility of an alternative mechanism to facilitate assembly of a stable complex. We have identified a novel protein partner called Hp0100 as a component of a stable, tRNA-independent H. pylori Asn-transamidosome; this complex contains a non-discriminating aspartyl-tRNA synthetase, AdT, and Hp0100 but does not require tRNA(Asn) for assembly. Hp0100 also enhances the capacity of AdT to convert Asp-tRNA(Asn) into Asn-tRNA(Asn) by ∼35-fold. Our results demonstrate that bacteria have adopted multiple divergent methods for transamidosome assembly and function.
Collapse
Affiliation(s)
- Gayathri N Silva
- Department of Chemistry, Wayne State University, Detroit, Michigan 48230, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rampias T, Sheppard K, Söll D. The archaeal transamidosome for RNA-dependent glutamine biosynthesis. Nucleic Acids Res 2010; 38:5774-83. [PMID: 20457752 PMCID: PMC2943598 DOI: 10.1093/nar/gkq336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Archaea make glutaminyl-tRNA (Gln-tRNAGln) in a two-step process; a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) forms Glu-tRNAGln, while the heterodimeric amidotransferase GatDE converts this mischarged tRNA to Gln-tRNAGln. Many prokaryotes synthesize asparaginyl-tRNA (Asn-tRNAAsn) in a similar manner using a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) and the heterotrimeric amidotransferase GatCAB. The transamidosome, a complex of tRNA synthetase, amidotransferase and tRNA, was first described for the latter system in Thermus thermophilus [Bailly, M., Blaise, M., Lorber, B., Becker, H.D. and Kern, D. (2007) The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol. Cell, 28, 228–239.]. Here, we show a similar complex for Gln-tRNAGln formation in Methanothermobacter thermautotrophicus that allows the mischarged Glu-tRNAGln made by the tRNA synthetase to be channeled to the amidotransferase. The association of archaeal ND-GluRS with GatDE (KD = 100 ± 22 nM) sequesters the tRNA synthetase for Gln-tRNAGln formation, with GatDE reducing the affinity of ND-GluRS for tRNAGlu by at least 13-fold. Unlike the T. thermophilus transamidosome, the archaeal complex does not require tRNA for its formation, is not stable through product (Gln-tRNAGln) formation, and has no major effect on the kinetics of tRNAGln glutamylation nor transamidation. The differences between the two transamidosomes may be a consequence of the fact that ND-GluRS is a class I aminoacyl-tRNA synthetase, while ND-AspRS belongs to the class II family.
Collapse
Affiliation(s)
- Theodoros Rampias
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
17
|
Nakamura A, Sheppard K, Yamane J, Yao M, Söll D, Tanaka I. Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition. Nucleic Acids Res 2010; 38:672-82. [PMID: 19906721 PMCID: PMC2811023 DOI: 10.1093/nar/gkp955] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/06/2009] [Accepted: 10/10/2009] [Indexed: 01/07/2023] Open
Abstract
In many prokaryotes the biosynthesis of the amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), proceeds by an indirect route in which mischarged Glu-tRNA(Gln) or Asp-tRNA(Asn) is amidated to the correct aminoacyl-tRNA catalyzed by a tRNA-dependent amidotransferase (AdT). Two types of AdTs exist: bacteria, archaea and organelles possess heterotrimeric GatCAB, while heterodimeric GatDE occurs exclusively in archaea. Bacterial GatCAB and GatDE recognize the first base pair of the acceptor stem and the D-loop of their tRNA substrates, while archaeal GatCAB recognizes the tertiary core of the tRNA, but not the first base pair. Here, we present the crystal structure of the full-length Staphylococcus aureus GatCAB. Its GatB tail domain possesses a conserved Lys rich motif that is situated close to the variable loop in a GatCAB:tRNA(Gln) docking model. This motif is also conserved in the tail domain of archaeal GatCAB, suggesting this basic region may recognize the tRNA variable loop to discriminate Asp-tRNA(Asn) from Asp-tRNA(Asp) in archaea. Furthermore, we identified a 3(10) turn in GatB that permits the bacterial GatCAB to distinguish a U1-A72 base pair from a G1-C72 pair; the absence of this element in archaeal GatCAB enables the latter enzyme to recognize aminoacyl-tRNAs with G1-C72 base pairs.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Kelly Sheppard
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Junji Yamane
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Min Yao
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Isao Tanaka
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
18
|
Copeland CS, Marz M, Rose D, Hertel J, Brindley PJ, Santana CB, Kehr S, Attolini CSO, Stadler PF. Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum. BMC Genomics 2009; 10:464. [PMID: 19814823 PMCID: PMC2770079 DOI: 10.1186/1471-2164-10-464] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 10/08/2009] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Schistosomes are trematode parasites of the phylum Platyhelminthes. They are considered the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome sequences are now available for Schistosoma mansoni and Schistosoma japonicum. Non-coding RNA (ncRNA) plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes of closely related species are already available. RESULTS A homology search for structured ncRNA in the genome of S. mansoni resulted in 23 types of ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five miRNAs that have recently been reported in S. japonicum and found two additional homologs of known miRNAs. The tRNA complement of S. mansoni is comparable to that of the free-living planarian Schmidtea mediterranea, although for some amino acids differences of more than a factor of two are observed: Leu, Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in S. mansoni. On the other hand, the number of tRNAs in the genome of S. japonicum is reduced by more than a factor of four. Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected to exist in the S. mansoni genome were not found, among them the telomerase RNA, vault RNAs, and Y RNAs. CONCLUSION The ncRNA sequences and structures presented here represent the most complete dataset of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.
Collapse
Affiliation(s)
- Claudia S Copeland
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu J, Bu W, Sheppard K, Kitabatake M, Kwon ST, Söll D, Smith JL. Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme. J Mol Biol 2009; 391:703-16. [PMID: 19520089 DOI: 10.1016/j.jmb.2009.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/16/2009] [Accepted: 06/04/2009] [Indexed: 11/18/2022]
Abstract
Many bacteria form Gln-tRNA(Gln) and Asn-tRNA(Asn) by conversion of the misacylated Glu-tRNA(Gln) and Asp-tRNA(Asn) species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction. A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn(2+) site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn(2+) binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNA(Gln) or Asn-tRNA(Asn).
Collapse
Affiliation(s)
- Jing Wu
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | |
Collapse
|