1
|
A role for SOX9 in post-transcriptional processes: insights from the amphibian oocyte. Sci Rep 2018; 8:7191. [PMID: 29740094 PMCID: PMC5940923 DOI: 10.1038/s41598-018-25356-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Sox9 is a member of the gene family of SOX transcription factors, which is highly conserved among vertebrates. It is involved in different developmental processes including gonadogenesis. In all amniote species examined thus far, Sox9 is expressed in the Sertoli cells of the male gonad, suggesting an evolutionarily conserved role in testis development. However, in the anamniotes, fishes and amphibians, it is also expressed in the oocyte but the significance of such an expression remains to be elucidated. Here, we have investigated the nuclear localization of the SOX9 protein in the oocyte of three amphibian species, the urodelan Pleurodeles waltl, and two anurans, Xenopus laevis and Xenopus tropicalis. We demonstrate that SOX9 is associated with ribonucleoprotein (RNP) transcripts of lampbrush chromosomes in an RNA-dependent manner. This association can be visualized by Super-resolution Structured Illumination Microscopy (SIM). Our results suggest that SOX9, known to bind DNA, also carries an additional function in the posttranscriptional processes. We also discuss the significance of the acquisition or loss of Sox9 expression in the oocyte during evolution at the transition between anamniotes and amniotes.
Collapse
|
2
|
Elewa A, Wang H, Talavera-López C, Joven A, Brito G, Kumar A, Hameed LS, Penrad-Mobayed M, Yao Z, Zamani N, Abbas Y, Abdullayev I, Sandberg R, Grabherr M, Andersson B, Simon A. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun 2017; 8:2286. [PMID: 29273779 PMCID: PMC5741667 DOI: 10.1038/s41467-017-01964-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
Salamanders exhibit an extraordinary ability among vertebrates to regenerate complex body parts. However, scarce genomic resources have limited our understanding of regeneration in adult salamanders. Here, we present the ~20 Gb genome and transcriptome of the Iberian ribbed newt Pleurodeles waltl, a tractable species suitable for laboratory research. We find that embryonic stem cell-specific miRNAs mir-93b and mir-427/430/302, as well as Harbinger DNA transposons carrying the Myb-like proto-oncogene have expanded dramatically in the Pleurodeleswaltl genome and are co-expressed during limb regeneration. Moreover, we find that a family of salamander methyltransferases is expressed specifically in adult appendages. Using CRISPR/Cas9 technology to perturb transcription factors, we demonstrate that, unlike the axolotl, Pax3 is present and necessary for development and that contrary to mammals, muscle regeneration is normal without functional Pax7 gene. Our data provide a foundation for comparative genomic studies that generate models for the uneven distribution of regenerative capacities among vertebrates. The Iberian ribbed newt Pleurodeles waltl has a wide spectrum of regeneration abilities. Here, Elewa et al. sequence its ~20 Gb genome and transcriptome to investigate the molecular features underlying its regenerative capacities.
Collapse
Affiliation(s)
- Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.
| | - Heng Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,The Francis Crick Institute, NW1 1AT, London, UK
| | - Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - L Shahul Hameed
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - May Penrad-Mobayed
- Institut Jacques Monod, CNRS & University Paris-Diderot, Paris, 75205, France
| | - Zeyu Yao
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Neda Zamani
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Yamen Abbas
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Ilgar Abdullayev
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,Ludwig Institute for Cancer Research, Stockholm, SE-171 65, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,Ludwig Institute for Cancer Research, Stockholm, SE-171 65, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.
| |
Collapse
|
3
|
Sellés J, Penrad-Mobayed M, Guillaume C, Fuger A, Auvray L, Faklaris O, Montel F. Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Sci Rep 2017; 7:14732. [PMID: 29116248 PMCID: PMC5677124 DOI: 10.1038/s41598-017-15433-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/26/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear Pore Complex (NPC) is of paramount importance for cellular processes since it is the unique gateway for molecular exchange through the nucleus. Unraveling the modifications of the NPC structure in response to physiological cues, also called nuclear pore plasticity, is key to the understanding of the selectivity of this molecular machinery. As a step towards this goal, we use the optical super-resolution microscopy method called direct Stochastic Optical Reconstruction Microscopy (dSTORM), to analyze oocyte development impact on the internal structure and large-scale organization of the NPC. Staining of the FG-Nups proteins and the gp210 proteins allowed us to pinpoint a decrease of the global diameter by measuring the mean diameter of the central channel and the luminal ring of the NPC via autocorrelation image processing. Moreover, by using an angular and radial density function we show that development of the Xenopus laevis oocyte is correlated with a progressive decrease of the density of NPC and an ordering on a square lattice.
Collapse
Affiliation(s)
- Julien Sellés
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
- Institut Jacques Monod, Université Paris Diderot/CNRS, UMR 7592, 15 rue Hélène Brion, 75205, Paris, CEDEX 13, France
| | - May Penrad-Mobayed
- Institut Jacques Monod, Université Paris Diderot/CNRS, UMR 7592, 15 rue Hélène Brion, 75205, Paris, CEDEX 13, France
| | - Cyndélia Guillaume
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
| | - Alica Fuger
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
| | - Loïc Auvray
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France
| | - Orestis Faklaris
- ImagoSeine core facility, Institut Jacques Monod, Université Paris Diderot/CNRS, UMR 7592, 15 rue Hélène Brion, 75205, Paris, CEDEX 13, France
| | - Fabien Montel
- Matière et Systèmes Complexes, Université Paris Diderot/CNRS (UMR 7057), 75205, Paris, Cedex 13, France.
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France.
| |
Collapse
|
4
|
Gall JG, Nizami ZF. Isolation of Giant Lampbrush Chromosomes from Living Oocytes of Frogs and Salamanders. J Vis Exp 2016:54103. [PMID: 28060282 PMCID: PMC5226360 DOI: 10.3791/54103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We describe methods for studying the giant transcriptionally active lampbrush chromosomes (LBCs) found in the oocyte, or unlaid egg, of frogs and salamanders. Individual LBCs can be up to 1 mm in length and they reside in a gigantic nucleus, itself up to 0.5 mm in diameter. The large size of the chromosomes permits unparalleled observations of active genes by light optical microscopy, but at the same time special techniques are required for isolating the nucleus, removing the nuclear envelope, and spreading the chromosomes on a microscope slide. The oocyte nucleus, also called the germinal vesicle (GV), is isolated in a medium that allows partial gelling of the nuclear actin and preserves the delicate structure of the LBCs. This step is carried out manually under a dissecting microscope using jeweler's forceps. Next, the nuclear envelope is removed, again manually with jeweler's forceps. The nuclear contents are quickly transferred to a medium that disperses the actin gel and allows the undamaged LBCs to settle onto a microscope slide. At this point the LBCs and other nuclear organelles can be viewed by phase contrast or differential interference contrast microscopy, although finer details are obscured by Brownian motion. For high resolution microscopical observation or molecular analysis, the whole preparation is centrifuged to attach the delicate LBCs firmly to the slide. A brief fixation in paraformaldehyde is then followed by immunofluorescent staining or in situ hybridization. LBCs are in a transcriptionally active state and their enormous size permits molecular analysis at the individual gene level using confocal or super-resolution microscopy.
Collapse
Affiliation(s)
- Joseph G Gall
- Department of Embryology, Carnegie Institution for Science;
| | - Zehra F Nizami
- Department of Embryology, Carnegie Institution for Science
| |
Collapse
|
5
|
Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian SZ, Penrad-Mobayed M, Sachs LM, Ruan X, Wei CL, Liu ET, Wilczynski GM, Plewczynski D, Li G, Ruan Y. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell 2015; 163:1611-27. [PMID: 26686651 PMCID: PMC4734140 DOI: 10.1016/j.cell.2015.11.024] [Citation(s) in RCA: 699] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/12/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023]
Abstract
Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.
Collapse
Affiliation(s)
- Zhonghui Tang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Oscar Junhong Luo
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Xingwang Li
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA; National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meizhen Zheng
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Jacqueline Jufen Zhu
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Przemyslaw Szalaj
- Center for Bioinformatics and Data Analysis, Medical University of Bialystok, ul. Jana Kilinskiego 1, 15-089 Bialystok, Poland; I-BioStat, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Pawel Trzaskoma
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Blazej Ruszczycki
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paul Michalski
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Emaly Piecuch
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Danjuan Wang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Simon Zhongyuan Tian
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - May Penrad-Mobayed
- Université Paris-Diderot-Paris 7, Centre National de la Recherche Scientifique and Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris Cedex, France
| | - Laurent M Sachs
- Centre National de la Recherche Scientifique and Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75231 Paris Cedex, France
| | - Xiaoan Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Chia-Lin Wei
- Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | | | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA; National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
6
|
Precocious detection on amphibian oocyte lampbrush chromosomes of subtle changes in the cellular localisation of the Ro52 protein induced by in vitro culture. Chromosome Res 2013; 20:1033-44. [PMID: 23149575 DOI: 10.1007/s10577-012-9325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Subterminal lampbrush loops of one of the 12 bivalents of the oocyte karyotype of Pleurodeles waltl (Amphibian, Urodele) underwent prominent morphological changes upon in vitro culture. These loops exhibited a fine ribonucleoprotein (RNP) granular matrix, which evolved during culture into huge structures that we have named 'chaussons' (slippers). This phenomenon involved progressive accumulation of proteins in the RNP matrix without protein neosynthesis. One of these proteins, which translocated into the nucleus during the culture, was identified as a homolog of the human Ro52 E3 ubiquitin ligase. RNA polymerase III was also found to accumulate on the same loops. These results suggest that the subterminal loops of bivalent XII act as a storage site for the components of a nuclear machinery involved in the quality control of RNA synthesis and maturation in response to cellular stress. They also emphasise the considerable value of the lampbrush chromosome system for a direct visualisation of modifications in gene expression and open the question of a nuclear accumulation of Ro52 in human or animal oocytes cultured in vitro for assisted reproductive technologies (ART).
Collapse
|
7
|
Kanhoush R, Praseuth D, Perrin C, Chardard D, Vinh J, Penrad-Mobayed M. Differential RNA-binding activity of the hnRNP G protein correlated with the sex genotype in the amphibian oocyte. Nucleic Acids Res 2011; 39:4109-21. [PMID: 21278421 PMCID: PMC3105392 DOI: 10.1093/nar/gkq1315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A proteomic approach has enabled the identification of an orthologue of the splicing factor hnRNP G in the amphibians Xenopus tropicalis, Ambystoma mexicanum, Notophthalmus viridescens and Pleurodeles walt, which shows a specific RNA-binding affinity similar to that of the human hnRN G protein. Three isoforms of this protein with a differential binding affinity for a specific RNA probe were identified in the P. walt oocyte. In situ hybridization to lampbrush chromosomes of P. waltl revealed the presence of a family of hnRNP G genes, which were mapped on the Z and W chromosomes and one autosome. This indicates that the isoforms identified in this study are possibly encoded by a gene family linked to the evolution of sex chromosomes similarly to the hnRNP G/RBMX gene family in mammals.
Collapse
Affiliation(s)
- Rasha Kanhoush
- Institut Jacques Monod, UMR 7592, CNRS and Université Paris-Diderot, Museum National d'Histoire Naturelle, U 565, USM 503, UMR 5153, INSERM and CNRS, Paris, France
| | | | | | | | | | | |
Collapse
|