1
|
Sowers ML, Anderson APP, Wrabl JO, Yin YW. Networked Communication between Polymerase and Exonuclease Active Sites in Human Mitochondrial DNA Polymerase. J Am Chem Soc 2019; 141:10821-10829. [PMID: 31251605 PMCID: PMC7119269 DOI: 10.1021/jacs.9b04655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High fidelity human mitochondrial DNA polymerase (Pol γ) contains two active sites, a DNA polymerization site (pol) and a 3'-5' exonuclease site (exo) for proofreading. Although separated by 35 Å, coordination between the pol and exo sites is crucial to high fidelity replication. The biophysical mechanisms for this coordination are not completely understood. To understand the communication between the two active sites, we used a statistical-mechanical model of the protein ensemble to calculate the energetic landscape and local stability. We compared a series of structures of Pol γ, complexed with primer/template DNA, and either a nucleotide substrate or a series of nucleotide analogues, which are differentially incorporated and excised by pol and exo activity. Despite the nucleotide or its analogues being bound in the pol, Pol γ residue stability varied across the protein, particularly in the exo domain. This suggests that substrate presence in the pol can be "sensed" in the exo domain. Consistent with this hypothesis, in silico mutations made in one active site mutually perturbed the energetics of the other. To identify specific regions of the polymerase that contributed to this communication, we constructed an allosteric network connectivity map that further demonstrates specific pol-exo cooperativity. Thus, a cooperative network underlies energetic connectivity. We propose that Pol γ and other dual-function polymerases exploit an energetic coupling network that facilitates domain-domain communication to enhance discrimination between correct and incorrect nucleotides.
Collapse
Affiliation(s)
- Mark L. Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew P. P. Anderson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 71115, United States
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Y. Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 71115, United States
| |
Collapse
|
2
|
Arnold JJ, Sharma SD, Feng JY, Ray AS, Smidansky ED, Kireeva ML, Cho A, Perry J, Vela JE, Park Y, Xu Y, Tian Y, Babusis D, Barauskus O, Peterson BR, Gnatt A, Kashlev M, Zhong W, Cameron CE. Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides. PLoS Pathog 2012; 8:e1003030. [PMID: 23166498 PMCID: PMC3499576 DOI: 10.1371/journal.ppat.1003030] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/28/2012] [Indexed: 12/29/2022] Open
Abstract
Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity. Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by side effects of unknown origin. Here we show in biochemical and cell-based studies that antiviral ribonucleotide analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Analogues that terminate RNA synthesis by viral RNA polymerases also inhibit these cellular RNA polymerase. Importantly, the TFIIS proofreading activity of Pol II is capable of excising these analogues from Pol II transcripts. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.
Collapse
Affiliation(s)
- Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (JJA); (CEC)
| | - Suresh D. Sharma
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joy Y. Feng
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Adrian S. Ray
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Eric D. Smidansky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Maria L. Kireeva
- Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, United States of America
| | - Aesop Cho
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jason Perry
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jennifer E. Vela
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yeojin Park
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yang Tian
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Darius Babusis
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ona Barauskus
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Blake R. Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Averell Gnatt
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mikhail Kashlev
- Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, United States of America
| | - Weidong Zhong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (JJA); (CEC)
| |
Collapse
|
3
|
Arnold JJ, Smidansky ED, Moustafa IM, Cameron CE. Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:948-60. [PMID: 22551784 DOI: 10.1016/j.bbagrm.2012.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022]
Abstract
Transcription of the human mitochondrial genome is required for the expression of 13 subunits of the respiratory chain complexes involved in oxidative phosphorylation, which is responsible for meeting the cells' energy demands in the form of ATP. Also transcribed are the two rRNAs and 22 tRNAs required for mitochondrial translation. This process is accomplished, with the help of several accessory proteins, by the human mitochondrial RNA polymerase (POLRMT, also known as h-mtRNAP), a nuclear-encoded single-subunit DNA-dependent RNA polymerase (DdRp or RNAP) that is distantly related to the bacteriophage T7 class of single-subunit RNAPs. In addition to its role in transcription, POLRMT serves as the primase for mitochondrial DNA replication. Therefore, this enzyme is of fundamental importance for both expression and replication of the human mitochondrial genome. Over the past several years rapid progress has occurred in understanding POLRMT and elucidating the molecular mechanisms of mitochondrial transcription. Important accomplishments include development of recombinant systems that reconstitute human mitochondrial transcription in vitro, determination of the X-ray crystal structure of POLRMT, identification of distinct mechanisms for promoter recognition and transcription initiation, elucidation of the kinetic mechanism for POLRMT-catalyzed nucleotide incorporation and discovery of unique mechanisms of mitochondrial transcription inhibition including the realization that POLRMT is an off target for antiviral ribonucleoside analogs. This review summarizes the current understanding of POLRMT structure-function, mechanism and inhibition. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|