1
|
Zhang W, Zhao S, Wang M, Lou C, Xiang Y, Wu Q. Programming anti-ribozymes to sense trigger RNAs for modulating gene expression in mammalian cells. Synth Syst Biotechnol 2025; 10:827-834. [PMID: 40291978 PMCID: PMC12033390 DOI: 10.1016/j.synbio.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Synthetic RNA-based switches provide distinctive merits in modulating gene expression. Simple and flexible RNA-based switches are crucial for advancing the field of gene regulation, paving the way for innovative tools that can sense and manipulate cellular processes. In this research, we have developed programmable ribozymes that are capable of suppressing gene expression in response to specific, endogenously expressed trigger RNAs. We engineer ribozymes by introducing upstream antisense sequences (anti-ribozymes) to inhibit the self-cleaving activity of the hammerhead ribozyme and open the expression of the target gene. The trigger RNA is designed to recognize and bind to complementary sequences within the anti-ribozymes, thereby inhibiting their ability to direct protein synthesis. The anti-ribozyme performance is optimized by regulating the essential sequence modules that play a crucial role in determining the specificity and efficiency of the anti-ribozyme's interaction with its trigger RNA. By applying this switch mechanism to various ribozyme designs, we have shown that it is possible to achieve control over gene expression across a wide range of trigger RNAs. By exploiting these programmable anti-ribozymes, we aim to create a powerful tool for controlling gene expression in mammalian cells, which could have important implications for basic research, disease diagnosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Wenhui Zhang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- State Key Laboratory of Green Biomanufacturing, MOE Key Lab. Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi Zhao
- State Key Laboratory of Green Biomanufacturing, MOE Key Lab. Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Wang
- State Key Laboratory of Green Biomanufacturing, MOE Key Lab. Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiong Wu
- State Key Laboratory of Green Biomanufacturing, MOE Key Lab. Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Huang X, Wang M, Liu Y, Gui Y. Synthesis of RNA-based gene regulatory devices for redirecting cellular signaling events mediated by p53. Am J Cancer Res 2021; 11:4688-4698. [PMID: 33754021 PMCID: PMC7978309 DOI: 10.7150/thno.55856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/12/2021] [Indexed: 11/05/2022] Open
Abstract
Rationale: The p53 gene is a well-known tumor suppressor, and its mutation often contributes to the occurrence and development of tumors. Due to the diversity and complexity of p53 mutations, there is still no effective p53 gene therapy. In this study, we designed and constructed an aptazyme switch that could effectively sense cellular wild-type p53 protein and regulate downstream gene function flexibly. The application of this artificial device in combination with Cre-LoxP and dCas9-VP64 tools achieved a precisely targeted killing effect on tumor cells. Methods: The affinity of the aptamer to p53 protein was verified by SPR. p53 aptazyme and gene circuits were chemically synthesized. The function of the gene circuit was detected by cell proliferation assay, apoptosis assay and Western blot. The nude mouse transplantation tumor experiment was used to evaluate the inhibitory effect of gene circuits on tumor cells in vivo. Results: The results of the SPR experiment showed that the p53 aptamer RNA sequence had a robust binding effect with p53 protein. The p53 aptazyme could efficiently sense wild-type p53 protein and initiate self-cleavage in cells. The Cre-p53 aptazyme gene circuit and dCas9-VP64/sgRNA mediated gene circuit designed based on p53 aptazyme significantly inhibited the growth and promoted the apoptosis of wild-type p53-deficient cancer cells in vitro. In addition, the gene circuits also had a significant inhibitory effect on tumors in vivo. Conclusion: The study developed a novel and efficient ribozyme switch for p53-specific recognition and provided a modular strategy for aptazyme binding to cellular proteins. In addition, the p53 aptazyme successfully inhibited tumor growth through a combined application with other synthetic biological tools, providing a new perspective for cancer therapy.
Collapse
|
3
|
Pu Q, Zhou S, Huang X, Yuan Y, Du F, Dong J, Chen G, Cui X, Tang Z. Intracellular Selection of Theophylline-Sensitive Hammerhead Aptazyme. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:400-408. [PMID: 32244167 PMCID: PMC7118274 DOI: 10.1016/j.omtn.2020.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Hammerhead ribozyme-based aptazyme (HHAz), inheriting the advantages of small size and high efficiency from the RNA-cleaving ribozyme and the specific recognition ability of aptamers to specific targets, exhibits the huge potential to be a transgene expression regulator. Herein, we report a selection strategy for HHAz by using a toxin protein IbsC as the reporter to offer a positive phenotype, thus realizing an easy-operating, time- and labor-saving selection of HHAz variants with desired properties. Based on this strategy, we obtained a new HHAz (TAP-1), which could react sensitively toward the extracellular regulatory molecule, theophylline, both in prokaryotic and eukaryotic systems. With fluorescent protein reporter, the intracellular switching efficiencies of TAP-1 and other reported theophylline-dependent HHAzs has been quantitatively evaluated, showing that TAP-1 not only exhibits the best downregulating ability at high concentration of theophylline but also maintains high activity with 0.1 mM theophylline, which is a safe concentration in the human body.
Collapse
Affiliation(s)
- Qinlin Pu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China; University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China; University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China.
| |
Collapse
|
4
|
Wrist A, Sun W, Summers RM. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research. ACS Synth Biol 2020; 9:682-697. [PMID: 32142605 DOI: 10.1021/acssynbio.9b00475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- Alexandra Wrist
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Wanqi Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
5
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
6
|
Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 2019; 46:10563-10576. [PMID: 30304486 PMCID: PMC6237808 DOI: 10.1093/nar/gky903] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Viroids were described 47 years ago as the smallest RNA molecules capable of infecting plants and autonomously self-replicating without an encoded protein. Work on viroids initiated the development of a number of innovative methods. Novel chromatographic and gelelectrophoretic methods were developed for the purification and characterization of viroids; these methods were later used in molecular biology, gene technology and in prion research. Theoretical and experimental studies of RNA folding demonstrated the general biological importance of metastable structures, and nuclear magnetic resonance spectroscopy of viroid RNA showed the partially covalent nature of hydrogen bonds in biological macromolecules. RNA biochemistry and molecular biology profited from viroid research, such as in the detection of RNA as template of DNA-dependent polymerases and in mechanisms of gene silencing. Viroids, the first circular RNA detected in nature, are important for studies on the much wider spectrum of circular RNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Gerhard Steger
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
A fully human transgene switch to regulate therapeutic protein production by cooling sensation. Nat Med 2019; 25:1266-1273. [PMID: 31285633 DOI: 10.1038/s41591-019-0501-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
The ability to safely control transgene expression with simple synthetic gene switches is critical for effective gene- and cell-based therapies. In the present study, the signaling pathway controlled by human transient receptor potential (TRP) melastatin 8 (hTRPM8), a TRP channel family member1, is harnessed to control transgene expression. Human TRPM8 signaling is stimulated by menthol, an innocuous, natural, cooling compound, or by exposure to a cool environment (15-18 °C). By functionally linking hTRPM8-induced signaling to a synthetic promoter containing elements that bind nuclear factor of activated T cells, a synthetic gene circuit was designed that can be adjusted by exposure to either a cool environment or menthol. It was shown that this gene switch is functional in various cell types and human primary cells, as well as in mice implanted with engineered cells. In response to transdermal delivery of menthol, microencapsulated cell implants harboring this gene circuit, coupled to expression of either of two therapeutic proteins, insulin or a modified, activin type IIB, receptor ligand trap protein (mActRIIBECD-hFc), could alleviate hyperglycemia in alloxan-treated mice (a model of type 1 diabetes) or reverse muscle atrophy in dexamethasone-treated mice (a model of muscle wasting), respectively. This fully human-derived orthogonal transgene switch should be amenable to a wide range of clinical applications.
Collapse
|
8
|
Stifel J, Spöring M, Hartig JS. Expanding the toolbox of synthetic riboswitches with guanine-dependent aptazymes. Synth Biol (Oxf) 2019; 4:ysy022. [PMID: 32995528 PMCID: PMC7445771 DOI: 10.1093/synbio/ysy022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
Artificial riboswitches based on ribozymes serve as versatile tools for ligand-dependent gene expression regulation. Advantages of these so-called aptazymes are their modular architecture and the comparably little coding space they require. A variety of aptamer-ribozyme combinations were constructed in the past 20 years and the resulting aptazymes were applied in diverse contexts in prokaryotic and eukaryotic systems. Most in vivo functional aptazymes are OFF-switches, while ON-switches are more advantageous regarding potential applications in e.g. gene therapy vectors. We developed new ON-switching aptazymes in the model organism Escherichia coli and in mammalian cell culture using the intensely studied guanine-sensing xpt aptamer. Utilizing a high-throughput screening based on fluorescence-activated cell sorting in bacteria we identified up to 9.2-fold ON-switches and OFF-switches with a dynamic range up to 32.7-fold. For constructing ON-switches in HeLa cells, we used a rational design approach based on existing tetracycline-sensitive ON-switches. We discovered that communication modules responding to tetracycline are also functional in the context of guanine aptazymes, demonstrating a high degree of modularity. Here, guanine-responsive ON-switches with a four-fold dynamic range were designed. Summarizing, we introduce a series of novel guanine-dependent ribozyme switches operative in bacteria and human cell culture that significantly broaden the existing toolbox.
Collapse
Affiliation(s)
- Julia Stifel
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Maike Spöring
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jörg Steffen Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Sinumvayo JP, Zhao C, Tuyishime P. Recent advances and future trends of riboswitches: attractive regulatory tools. World J Microbiol Biotechnol 2018; 34:171. [PMID: 30413889 DOI: 10.1007/s11274-018-2554-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Bacterial genomes contain a huge amount of different genes. These genes are spatiotemporally expressed to accomplish some required functions within the organism. Inside the cell, any step of gene expression may be modulated at four possible places such as transcription initiation, translation regulation, mRNA stability and protein stability. To achieve this, there is a necessity of strong regulators either natural or synthetic which can fine-tune gene expression regarding the required function. In recent years, riboswitches as metabolite responsive control elements residing in the untranslated regions of certain messenger RNAs, have been known to control gene expression at transcription or translation level. Importantly, these control elements do not prescribe the involvement of protein factors for metabolite binding. However, they own their particular properties to sense intramolecular metabolites (ligands). Herein, we highlighted current important bacterial riboswitches, their applications to support genetic control, ligand-binding domain mechanisms and current progress in synthetic riboswitches.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Philibert Tuyishime
- University of Chinese Academy of Sciences, Beijing, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
10
|
Lotz TS, Suess B. Small-Molecule-Binding Riboswitches. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0025-2018. [PMID: 30084346 PMCID: PMC11633615 DOI: 10.1128/microbiolspec.rwr-0025-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 12/11/2022] Open
Abstract
RNA is a versatile biomolecule capable of transferring information, taking on distinct three-dimensional shapes, and reacting to ambient conditions. RNA molecules utilize a wide range of mechanisms to control gene expression. An example of such regulation is riboswitches. Consisting exclusively of RNA, they are able to control important metabolic processes, thus providing an elegant and efficient RNA-only regulation system. Existing across all domains of life, riboswitches appear to represent one of the most highly conserved mechanisms for the regulation of a broad range of biochemical pathways. Through binding of a wide range of small-molecule ligands to their so-called aptamer domain, riboswitches undergo a conformational change in their downstream "expression platform." In consequence, the pattern of gene expression changes, which in turn results in increased or decreased protein production. Riboswitches unite the sensing and transduction of a signal that can directly be coupled to the metabolism of the cell; thus they constitute a very potent regulatory mechanism for many organisms. Highly specific RNA-binding domains not only occur in vivo but can also be evolved by means of the SELEX (systematic evolution of ligands by exponential enrichment) method, which allows in vitro selection of aptamers against almost any ligand. Coupling of these aptamers with an expression platform has led to the development of synthetic riboswitches, a highly active research field of great relevance and immense potential. The aim of this review is to summarize developments in the riboswitch field over the last decade and address key questions of recent research.
Collapse
Affiliation(s)
- Thea S Lotz
- Synthetic Genetic Circuits, Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Synthetic Genetic Circuits, Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
11
|
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A 2018; 115:E6722-E6730. [PMID: 29967137 PMCID: PMC6055150 DOI: 10.1073/pnas.1802448115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have developed an optogenetic far-red light (FRL)-activated CRISPR-dCas9 system (FACE) that is orthogonal, fine-tunable, reversible, and has robust endogenous gene-activation profiles upon stimulation with FRL, with deep tissue penetration capacity, low brightness, short illumination time, and negligible phototoxicity. The FACE device is biocompatible and meets the criteria for safe medical application in humans, providing a robust differentiation strategy for mass production of functional neural cells from induced pluripotent stem cells simply by utilizing a beam of FRL. This optogenetic device has expanded the optogenetic toolkit for precise mammalian genome engineering in many areas of basic and translational research that require precise spatiotemporal control of cellular behavior, which may in turn boost the clinical progress of optogenetics-based precision therapy. The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2. This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.
Collapse
|
12
|
Velazquez JJ, Su E, Cahan P, Ebrahimkhani MR. Programming Morphogenesis through Systems and Synthetic Biology. Trends Biotechnol 2017; 36:415-429. [PMID: 29229492 DOI: 10.1016/j.tibtech.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids.
Collapse
Affiliation(s)
- Jeremy J Velazquez
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Authors contributed equally
| | - Emily Su
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Authors contributed equally
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mo R Ebrahimkhani
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Phoenix, AZ, USA.
| |
Collapse
|
13
|
Wurmthaler LA, Klauser B, Hartig JS. Highly motif- and organism-dependent effects of naturally occurring hammerhead ribozyme sequences on gene expression. RNA Biol 2017; 15:231-241. [PMID: 29106331 DOI: 10.1080/15476286.2017.1397870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent bioinformatics studies have demonstrated a wide-spread occurrence of the hammerhead ribozyme (HHR) and similar small endonucleolytic RNA motifs in all domains of life. It is becoming increasingly evident that such ribozyme motifs participate in important genetic processes in diverse organisms. Although the HHR motif has been studied for more than three decades, only little is known about the consequences of ribozyme activity on gene expression. In the present study we analysed eight different naturally occurring HHR sequences in diverse genetic and organismal contexts. We investigated the influence of active ribozymes incorporated into mRNAs in mammalian, yeast and bacterial expression systems. The experiments show an unexpectedly high degree of organism-specific variability of ribozyme-mediated effects on gene expression. The presented findings demonstrate that ribozyme cleavage profoundly affect gene expression. However, the extent of this effect varies and depends strongly on the respective genetic context. The fast-cleaving type 3 HHRs [CChMVd(-) and sLTSV(-)] generally tended to cause the strongest effects on intracellular gene expression. The presented results are important in order to address potential functions of naturally occurring ribozymes in RNA processing and post-transcriptional regulation of gene expression. Additionally, our results are of interest for biotechnology and synthetic biology approaches that aim at the utilisation of self-cleaving ribozymes as widely applicable tools for controlling genetic processes.
Collapse
Affiliation(s)
- Lena A Wurmthaler
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| | - Benedikt Klauser
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| | - Jörg S Hartig
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| |
Collapse
|
14
|
Ausländer S, Fussenegger M. Synthetic RNA-based switches for mammalian gene expression control. Curr Opin Biotechnol 2017; 48:54-60. [DOI: 10.1016/j.copbio.2017.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/10/2017] [Indexed: 01/25/2023]
|
15
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
16
|
Functional nucleic acids as in vivo metabolite and ion biosensors. Biosens Bioelectron 2017; 94:94-106. [DOI: 10.1016/j.bios.2017.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022]
|
17
|
Ferry QRV, Lyutova R, Fulga TA. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun 2017; 8:14633. [PMID: 28256578 PMCID: PMC5339017 DOI: 10.1038/ncomms14633] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5' end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this 'plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Quentin R. V. Ferry
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Radostina Lyutova
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tudor A. Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
18
|
ZHANG YY, CHENG H, SUN Y, WANG JE, WU ZY, PEI RJ. Engineering of Thiamine Pyrophosphate Fluorescent Biosensors Based on Ribozyme Switches in Mammalian Cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(16)60992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Abstract
By using tools from synthetic biology, sophisticated genetic devices can be assembled to reprogram mammalian cell activities. Here, we demonstrate that a self-adjusting synthetic gene circuit can be designed to sense and reverse the insulin-resistance syndrome in different mouse models. By functionally rewiring the mitogen-activated protein kinase (MAPK) signalling pathway to produce MAPK-mediated activation of the hybrid transcription factor TetR-ELK1, we assembled a synthetic insulin-sensitive transcription-control device that self-sufficiently distinguished between physiological and increased blood insulin levels and correspondingly fine-tuned the reversible expression of therapeutic transgenes from synthetic TetR-ELK1-specific promoters. In acute experimental hyperinsulinemia, the synthetic insulin-sensing designer circuit reversed the insulin-resistance syndrome by coordinating expression of the insulin-sensitizing compound adiponectin. Engineering synthetic gene circuits to sense pathologic markers and coordinate the expression of therapeutic transgenes may provide opportunities for future gene- and cell-based treatments of multifactorial metabolic disorders.
Collapse
|
20
|
Zhang Y, Wang J, Cheng H, Sun Y, Liu M, Wu Z, Pei R. Conditional control of suicide gene expression in tumor cells with theophylline-responsive ribozyme. Gene Ther 2016; 24:84-91. [DOI: 10.1038/gt.2016.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/06/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
|
21
|
Felletti M, Hartig JS. Ligand-dependent ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27687155 DOI: 10.1002/wrna.1395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
The discovery of catalytic RNA (ribozymes) more than 30 years ago significantly widened the horizon of RNA-based functions in natural systems. Similarly to the activity of protein enzymes that are often modulated by the presence of an interaction partner, some examples of naturally occurring ribozymes are influenced by ligands that can either act as cofactors or allosteric modulators. Recent discoveries of new and widespread ribozyme motifs in many different genetic contexts point toward the existence of further ligand-dependent RNA catalysts. In addition to the presence of ligand-dependent ribozymes in nature, researchers have engineered ligand dependency into natural and artificial ribozymes. Because RNA functions can often be assembled in a truly modular way, many different systems have been obtained utilizing different ligand-sensing domains and ribozyme activities in diverse applications. We summarize the occurrence of ligand-dependent ribozymes in nature and the many examples realized by researchers that engineered ligand-dependent catalytic RNA motifs. We will also highlight methods for obtaining ligand dependency as well as discuss the many interesting applications of ligand-controlled catalytic RNAs. WIREs RNA 2017, 8:e1395. doi: 10.1002/wrna.1395 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michele Felletti
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
22
|
Abstract
The recent description of a new class of small endonucleolytic ribozymes termed twister opened new avenues into the development of artificial riboswitches, providing new tools for the development of artificial genetic circuits in bacteria. Here we present a method to develop new ligand-dependent riboswitches, employing the newly described catalytic motif as an expression platform in conjugation with naturally occurring or in vitro-selected aptameric domains. The twister motif is an outstandingly flexible tool for the development of highly active ribozyme-based riboswitches able to control gene expression in a ligand-dependent manner in Escherichia coli.
Collapse
|
23
|
Ausländer S, Fussenegger M. Engineering Gene Circuits for Mammalian Cell-Based Applications. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023895. [PMID: 27194045 DOI: 10.1101/cshperspect.a023895] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic gene switches are basic building blocks for the construction of complex gene circuits that transform mammalian cells into useful cell-based machines for next-generation biotechnological and biomedical applications. Ligand-responsive gene switches are cellular sensors that are able to process specific signals to generate gene product responses. Their involvement in complex gene circuits results in sophisticated circuit topologies that are reminiscent of electronics and that are capable of providing engineered cells with the ability to memorize events, oscillate protein production, and perform complex information-processing tasks. Microencapsulated mammalian cells that are engineered with closed-loop gene networks can be implanted into mice to sense disease-related input signals and to process this information to produce a custom, fine-tuned therapeutic response that rebalances animal metabolism. Progress in gene circuit design, in combination with recent breakthroughs in genome engineering, may result in tailored engineered mammalian cells with great potential for future cell-based therapies.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
24
|
Bai P, Ye H, Xie M, Saxena P, Zulewski H, Charpin-El Hamri G, Djonov V, Fussenegger M. A synthetic biology-based device prevents liver injury in mice. J Hepatol 2016; 65:84-94. [PMID: 27067456 PMCID: PMC4914822 DOI: 10.1016/j.jhep.2016.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.
Collapse
Affiliation(s)
- Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Medicine, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland; Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063 Zurich, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Université Claude Bernard 1, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Valentin Djonov
- Institute of Anatomy, University of Berne, Baltzerstrasse 2, CH-3000 Berne, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
25
|
McKeague M, Wong RS, Smolke CD. Opportunities in the design and application of RNA for gene expression control. Nucleic Acids Res 2016; 44:2987-99. [PMID: 26969733 PMCID: PMC4838379 DOI: 10.1093/nar/gkw151] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
The past decade of synthetic biology research has witnessed numerous advances in the development of tools and frameworks for the design and characterization of biological systems. Researchers have focused on the use of RNA for gene expression control due to its versatility in sensing molecular ligands and the relative ease by which RNA can be modeled and designed compared to proteins. We review the recent progress in the field with respect to RNA-based genetic devices that are controlled through small molecule and protein interactions. We discuss new approaches for generating and characterizing these devices and their underlying components. We also highlight immediate challenges, future directions and recent applications of synthetic RNA devices in engineered biological systems.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Remus S Wong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Dobrin A, Saxena P, Fussenegger M. Synthetic biology: applying biological circuits beyond novel therapies. Integr Biol (Camb) 2015; 8:409-30. [DOI: 10.1039/c5ib00263j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anton Dobrin
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
27
|
Lee CH, Han SR, Lee SW. Therapeutic Applications of Aptamer-Based Riboswitches. Nucleic Acid Ther 2015; 26:44-51. [PMID: 26539634 DOI: 10.1089/nat.2015.0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aptamers bind to their targets with high affinity and specificity through structure-based complementarity, instead of sequence complementarity that is used by most of the oligonucleotide-based therapeutics. This property has been exploited in using aptamers as multifunctional therapeutic units, by attaching them to therapeutic drugs, nanoparticles, or imaging agents, or as direct molecular decoys for inducing loss-of-function or gain-of-function of targets. One of the most interesting fields of aptamer application is their development as molecular sensors to regulate artificial riboswitches. Naturally, the riboswitches sense small-molecule metabolites and respond by regulating the expression of the corresponding metabolic genes. Riboswitches are cis-acting RNA structures that consist of the sensing (aptamer) and the regulating (expression platform) domains. In principle, diverse riboswitches can be engineered and applied to control different steps of gene expression in bacterial species as well as eukaryotes, by simply replacing aptamers against various endogenous and/or exogenous targets. Although these engineered aptamer-based riboswitches are recently gaining attention, it is clear that aptamer-based riboswitches have a potential for next-generation therapeutics against various diseases because of their controllability, specificity, and modularity in regulating gene expression through various cellular processes, including transcription, splicing, stability, RNA interference, and translation. In this review, we provide a summary of the recently developed and engineered aptamer-based riboswitches focusing on their therapeutic availability and further discuss their clinical potential.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seung Ryul Han
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| |
Collapse
|
28
|
Suga K, Tanaka S, Umakoshi H. Liposome membrane can induce self-cleavage of RNA that models the core fragments of hammerhead ribozyme. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:55-62. [PMID: 26385703 DOI: 10.1007/s00249-015-1076-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
The hammerhead ribozyme (HHR) is one of smallest catalytic RNAs, composed of a catalytic core and three stems; it undergoes self-cleavage in the presence of divalent magnesium ions (Mg(2+)) or other cations. It is hypothesized that the function and metabolism of RNAs might be regulated via interaction with lipid membranes in the prebiotic world. Using synthetic RNAs that model the core fragment of hammerhead ribozyme-like assembly (HHR-a), we investigated the enhancement of the self-cleavage reaction of HHR-a induced by the liposomes, both in the absence and presence of Mg(2+). The HHR-a activity was enhanced by 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DPPC) = 8/2 liposome with Mg(2+), while other liposomes did not so significant. In the presence of DOPE/DPPC = 8/2 liposome, the HHR-a activity was observed without Mg(2+), revealed by the conformational change of the HHR inhibitor complex induced by the interaction with the liposome. The UV resonance Raman spectroscopy analysis investigated the interaction between lipid molecules and nucleobases, suggesting that the ethanolamine group of DOPE molecules are assumed to act as monovalent cations alternative to Mg(2+), depending on the liposome membrane characteristics.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan
| | - Seishiro Tanaka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
29
|
Synthetic Biology--Toward Therapeutic Solutions. J Mol Biol 2015; 428:945-62. [PMID: 26334368 DOI: 10.1016/j.jmb.2015.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
Higher multicellular organisms have evolved sophisticated intracellular and intercellular biological networks that enable cell growth and survival to fulfill an organism's needs. Although such networks allow the assembly of complex tissues and even provide healing and protective capabilities, malfunctioning cells can have severe consequences for an organism's survival. In humans, such events can result in severe disorders and diseases, including metabolic and immunological disorders, as well as cancer. Dominating the therapeutic frontier for these potentially lethal disorders, cell and gene therapies aim to relieve or eliminate patient suffering by restoring the function of damaged, diseased, and aging cells and tissues via the introduction of healthy cells or alternative genes. However, despite recent success, these efforts have yet to achieve sufficient therapeutic effects, and further work is needed to ensure the safe and precise control of transgene expression and cellular processes. In this review, we describe the biological tools and devices that are at the forefront of synthetic biology and discuss their potential to advance the specificity, efficiency, and safety of the current generation of cell and gene therapies, including how they can be used to confer curative effects that far surpass those of conventional therapeutics. We also highlight the current therapeutic delivery tools and the current limitations that hamper their use in human applications.
Collapse
|
30
|
A general design strategy for protein-responsive riboswitches in mammalian cells. Nat Methods 2014; 11:1154-60. [DOI: 10.1038/nmeth.3136] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 11/09/2022]
|
31
|
Berens C, Suess B. Riboswitch engineering - making the all-important second and third steps. Curr Opin Biotechnol 2014; 31:10-5. [PMID: 25137633 DOI: 10.1016/j.copbio.2014.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
Abstract
Synthetic biology uses our understanding of biological systems to develop innovative solutions for challenges in fields as diverse as genetic control and logic devices, bioremediation, materials production or diagnostics and therapy in medicine by designing new biological components. RNA-based elements are key components of these engineered systems. Their structural and functional diversity is ideal for generating regulatory riboswitches that react with many different types of output to molecular and environmental signals. Recent advances have added new sensor and output domains to the existing toolbox, and demonstrated the portability of riboswitches to many different organisms. Improvements in riboswitch design and screens for selecting in vivo active switches provide the means to isolate riboswitches with regulatory properties more like their natural counterparts.
Collapse
Affiliation(s)
- Christian Berens
- Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany.
| | - Beatrix Suess
- Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany.
| |
Collapse
|
32
|
Groher F, Suess B. Synthetic riboswitches - A tool comes of age. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:964-973. [PMID: 24844178 DOI: 10.1016/j.bbagrm.2014.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022]
Abstract
Within the last decade, it has become obvious that RNA plays an important role in regulating gene expression. This has led to a plethora of approaches aiming at exploiting the outstanding chemical properties of RNA to develop synthetic RNA regulators for conditional gene expression systems. Consequently, many different regulators have been developed to act on various stages of gene expression. They can be engineered to respond to almost any ligand of choice and are, therefore, of great interest for applications in synthetic biology. This review presents an overview of such engineered riboswitches, discusses their applicability and points out recent trends in their development. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Florian Groher
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
33
|
Ramesh A, Winkler WC. Metabolite-binding ribozymes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:989-994. [PMID: 24769284 DOI: 10.1016/j.bbagrm.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/22/2022]
Abstract
Catalysis in the biological context was largely thought to be a protein-based phenomenon until the discovery of RNA catalysts called ribozymes. These discoveries demonstrated that many RNA molecules exhibit remarkable structural and functional versatility. By virtue of these features, naturally occurring ribozymes have been found to be involved in catalyzing reactions for fundamentally important cellular processes such as translation and RNA processing. Another class of RNAs called riboswitches directly binds ligands to control downstream gene expression. Most riboswitches regulate downstream gene expression by controlling premature transcription termination or by affecting the efficiency of translation initiation. However, one riboswitch class couples ligand-sensing to ribozyme activity. Specifically, the glmS riboswitch is a nucleolytic ribozyme, whose self-cleavage activity is triggered by the binding of GlcN6P. The products of this self-cleavage reaction are then targeted by cellular RNases for rapid degradation, thereby reducing glmS expression under conditions of sufficient GlcN6P. Since the discovery of the glmS ribozyme, other metabolite-binding ribozymes have been identified. Together, these discoveries have expanded the general understanding of noncoding RNAs and provided insights that will assist future development of synthetic riboswitch-ribozymes. A very broad overview of natural and synthetic ribozymes is presented herein with an emphasis on the structure and function of the glmS ribozyme as a paradigm for metabolite-binding ribozymes that control gene expression. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Arati Ramesh
- The University of Texas Southwestern Medical Center, Department of Biophysics, 6001 Forest Park Rd, Dallas, USA.
| | - Wade C Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, 3112 Biosciences Research Building, College Park, MD, USA.
| |
Collapse
|
34
|
Rice MK, Ruder WC. Creating biological nanomaterials using synthetic biology. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:014401. [PMID: 27877637 PMCID: PMC5090598 DOI: 10.1088/1468-6996/15/1/014401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/03/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.
Collapse
|
35
|
Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci U S A 2014; 111:E554-62. [PMID: 24449891 DOI: 10.1073/pnas.1318563111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses. Our study shows that the insertion of artificial aptazymes into the adenoviral immediate early gene E1A enables small-molecule-triggered, dose-dependent inhibition of gene expression. Aptazyme-mediated shutdown of E1A expression translates into inhibition of adenoviral genome replication, infectious particle production, and cytotoxicity/oncolysis. These results provide proof of concept for the aptazyme approach for effective control of biological outcomes in eukaryotic systems, specifically in virus infections. Importantly, we also demonstrate aptazyme-dependent regulation of measles virus fusion protein expression, translating into potent reduction of progeny infectivity and virus spread. This not only establishes functionality of aptazymes in fully cytoplasmic genetic systems, but also implicates general feasibility of this strategy for application in viruses with either DNA or RNA genomes. Our study implies that gene regulation by artificial riboswitches may be an appealing alternative to Tet- and other protein-dependent gene regulation systems, based on their small size, RNA-intrinsic mode of action, and flexibility of the inducing molecule. Future applications range from gene analysis in basic research to medicine, for example as a safety switch for new generations of efficiency-enhanced oncolytic viruses.
Collapse
|
36
|
Nomura Y, Zhou L, Miu A, Yokobayashi Y. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2013; 2:684-9. [PMID: 23697539 PMCID: PMC3874218 DOI: 10.1021/sb400037a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
We engineered small molecule responsive
allosteric ribozymes based
on the genomic hepatitis delta virus (HDV) ribozyme by replacing the
P4-L4 stem-loop with an RNA aptamer through a connector stem. When
embedded in the 3′ untranslated region of a reporter gene mRNA,
these RNA devices enabled regulation of cis-gene
expression by theophylline and guanine by up to 29.5-fold in mammalian
cell culture. Furthermore, a NOR logic gate device was constructed
by placing two engineered ribozymes in tandem, demonstrating the modularity
of the RNA devices. The significant improvement in the regulatory
dynamic range (ON/OFF ratio) of the RNA devices based on the HDV ribozyme
should provide new opportunities for practical applications.
Collapse
Affiliation(s)
- Yoko Nomura
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Linlin Zhou
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Anh Miu
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Yohei Yokobayashi
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| |
Collapse
|
37
|
|
38
|
Petkovic S, Müller S. RNA self-processing: formation of cyclic species and concatemers from a small engineered RNA. FEBS Lett 2013; 587:2435-40. [PMID: 23796421 DOI: 10.1016/j.febslet.2013.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023]
Abstract
We have engineered a self-processing RNA, derived from the hairpin ribozyme that runs through a cascade of cleavage and ligation reactions thereby changing its topology. The first two cleavage events leave the resulting RNA with a 5'-OH group and a 2',3'-cyclic phosphate. Thus, upon refolding, intramolecular ligation delivers a cyclic species. In addition, we demonstrate formation of concatemers resulting from multiple intermolecular ligations. Our results demonstrate the potential of RNA for self-supported topology changes and support the suggestion of 2',3'-cyclic phosphates being suitable activated building blocks for reversible phosphodiester bond formation in the RNA world.
Collapse
Affiliation(s)
- Sonja Petkovic
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | | |
Collapse
|
39
|
Folcher M, Xie M, Spinnler A, Fussenegger M. Synthetic mammalian trigger-controlled bipartite transcription factors. Nucleic Acids Res 2013; 41:e134. [PMID: 23685433 PMCID: PMC3711444 DOI: 10.1093/nar/gkt405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), γ-butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and γ-butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in bacteria, and that their synthetic transcription-factor analogs may enable the design of compact therapeutic gene circuits for gene and cell-based therapies.
Collapse
Affiliation(s)
- Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
40
|
Lanza AM, Cheng JK, Alper HS. Emerging synthetic biology tools for engineering mammalian cell systems and expediting cell line development. Curr Opin Chem Eng 2012. [DOI: 10.1016/j.coche.2012.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Wieland M, Fussenegger M. Reprogrammed cell delivery for personalized medicine. Adv Drug Deliv Rev 2012; 64:1477-87. [PMID: 22721864 DOI: 10.1016/j.addr.2012.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/01/2012] [Accepted: 06/13/2012] [Indexed: 11/29/2022]
Abstract
In most approaches, personalized medicine requires time- and cost-intensive characterization of an individual's genetic background in order to achieve the best-adapted therapy. For this purpose, cell-based drug delivery offers a promising alternative. In particular, synthetic biology has introduced the vision of cells being programmable therapeutic production facilities that can be introduced into patients. This review highlights the progress made in synthetic biology-based cell engineering toward advanced drug delivery entities. Starting from basic one-input responsive transcriptional or post-transcriptional gene control systems, the field has reached a level on which cells can be engineered to detect cancer cells, to obtain control over T-cell proliferation, and to restore blood glucose homeostasis upon blue light illumination. Furthermore, a cellular implant was developed that detects blood urate level disorders and acts accordingly to restore homeostasis while another cellular implant was engineered as an artificial insemination device that releases bull sperm into bovine ovarian only during ovulation time by recording endogenous luteinizing hormone levels. Soon, the field will reach a stage at which cells can be reprogrammed to detect multiple metabolic parameters and self-sufficiently treat any disorder connected to them.
Collapse
Affiliation(s)
- Markus Wieland
- ETH Zurich, Department of Biosystems Science and Bioengineering (D-BSSE), Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
42
|
Nomura Y, Kumar D, Yokobayashi Y. Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb) 2012; 48:7215-7. [PMID: 22692003 DOI: 10.1039/c2cc33140c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Allosteric hammerhead ribozymes (aptazymes) that are activated by guanine were used to control mammalian gene expression in cis and in trans. Coexpression of the two mechanistically distinct riboswitches resulted in an improved dynamic range of gene expression.
Collapse
Affiliation(s)
- Yoko Nomura
- Department of Biomedical Engineering, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | | | |
Collapse
|