1
|
Suthanthiraraj PPA, Shreve AP, Graves SW. Essential Fluidics for a Flow Cytometer. Curr Protoc 2024; 4:e1124. [PMID: 39401000 PMCID: PMC11483160 DOI: 10.1002/cpz1.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Flow cytometry is an inherently fluidic process that flows particles on a one-by-one basis through a sensing region to discretely measure their optical and physical properties. It can be used to analyze particles ranging in size from nanoparticles to whole organisms (e.g., zebrafish). It has particular value for blood analysis, and thus most instruments are fluidically optimized for particles that are comparable in size to a typical blood cell. The principles of fluid dynamics allow for particles of such size to be precisely positioned in flow as they pass through sensing regions that are tens of microns in length at linear velocities of meters per second. Such fluidic systems enable discrete analysis of cell-sized particles at rates approaching 100 kHz. For larger particles, the principles of fluidics greatly reduce the achievable rates, but such high rates of data acquisition for cell-sized particles allow rapid collection of information on many thousands to millions of cells and provides for research and clinical measurements of both rare and common cell populations with a high degree of statistical confidence. Additionally, flow cytometers can accurately count particles via the use of volumetric sample delivery and can be coupled with high-throughput sampling technologies to greatly increase the rate at which independent samples can be delivered to the system. Due to the combination of high analysis rates, sensitive multiparameter measurements, high-throughput sampling, and accurate counting, flow cytometry analysis is the gold standard for many critical applications in clinical, research, pharmaceutical, and environmental areas. Beyond the power of flow cytometry as an analytical technique, the fluidic pathway can be coupled with a sorting mechanism to collect particles based on desired properties. We present an overview of fluidic systems that enable flow cytometry-based analysis and sorting. We introduce historical approaches, explanations of commonly implemented fluidics, and brief discussions of potential future fluidics where appropriate. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Andrew P. Shreve
- The University of New Mexico, Department of Chemical and Biological Engineering, Albuquerque, NM, US
| | - Steven W. Graves
- The University of New Mexico, Department of Chemical and Biological Engineering, Albuquerque, NM, US
| |
Collapse
|
2
|
Harshbarger CL. Harnessing the power of Microscale AcoustoFluidics: A perspective based on BAW cancer diagnostics. BIOMICROFLUIDICS 2024; 18:011304. [PMID: 38434238 PMCID: PMC10907075 DOI: 10.1063/5.0180158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Cancer directly affects one in every three people, and mortality rates strongly correlate with the stage at which diagnosis occurs. Each of the multitude of methods used in cancer diagnostics has its own set of advantages and disadvantages. Two common drawbacks are a limited information value of image based diagnostic methods and high invasiveness when opting for methods that provide greater insight. Microfluidics offers a promising avenue for isolating circulating tumor cells from blood samples, offering high informational value at predetermined time intervals while being minimally invasive. Microscale AcoustoFluidics, an active method capable of manipulating objects within a fluid, has shown its potential use for the isolation and measurement of circulating tumor cells, but its full potential has yet to be harnessed. Extensive research has focused on isolating single cells, although the significance of clusters should not be overlooked and requires attention within the field. Moreover, there is room for improvement by designing smaller and automated devices to enhance user-friendliness and efficiency as illustrated by the use of bulk acoustic wave devices in cancer diagnostics. This next generation of setups and devices could minimize streaming forces and thereby enable the manipulation of smaller objects, thus aiding in the implementation of personalized oncology for the next generation of cancer treatments.
Collapse
Affiliation(s)
- C. L. Harshbarger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; and Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Awate DM, Holton S, Meyer K, Juárez JJ. Processes for the 3D Printing of Hydrodynamic Flow-Focusing Devices. MICROMACHINES 2023; 14:1388. [PMID: 37512699 PMCID: PMC10383660 DOI: 10.3390/mi14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Flow focusing is an important hydrodynamic technique for cytometric analysis, enabling the rapid study of cellular samples to identify a variety of biological processes. To date, the majority of flow-focusing devices are fabricated using conventional photolithography or flame processing of glass capillaries. This article presents a suite of low-cost, millifluidic, flow-focusing devices that were fabricated using a desktop sterolithgraphy (SLA) 3D printer. The suite of SLA printing strategies consists of a monolithic SLA method and a hybrid molding process. In the monolithic SLA approach, 1.3 mm square millifluidic channels were printed as a single piece. The printed device does not require any post processing, such as bonding or surface polishing for optical access. The hybrid molding approach consists of printing a mold using the SLA 3D printer. The mold is treated to an extended UV exposure and oven baked before using PDMS as the molding material for the channel. To demonstrate the viability of these channels, we performed a series of experiments using several flow-rate ratios to show the range of focusing widths that can be achieved in these devices. The experiments are validated using a numerical model developed in ANSYS.
Collapse
Affiliation(s)
- Diwakar M Awate
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Seth Holton
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Katherine Meyer
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jaime J Juárez
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Harshbarger CL, Gerlt MS, Ghadamian JA, Bernardoni DC, Snedeker JG, Dual J. Optical feedback control loop for the precise and robust acoustic focusing of cells, micro- and nanoparticles. LAB ON A CHIP 2022; 22:2810-2819. [PMID: 35843222 DOI: 10.1039/d2lc00376g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite a long history and the vast number of applications demonstrated, very few market products incorporate acoustophoresis. Because a human operator must run and control a device during an experiment, most devices are limited to proof of concepts. On top of a possible detuning due to temperature changes, the human operator introduces a bias which reduces the reproducibility, performance and reliability of devices. To mitigate some of these problems, we propose an optical feedback control loop that optimizes the excitation frequency. We investigate the improvements that can be expected when a human operator is replaced for acoustic micro- and nanometer particle focusing experiments. Three experiments previously conducted in our group were taken as a benchmark. In addition to being automatic, this resulted in the feedback control loop displaying a superior performance compared to an experienced scientist in 1) improving the particle focusing by at least a factor of two for 5 μm diameter PS particles, 2) increasing the range of flow rates in which 1 μm diameter PS particles could be focused and 3) was even capable of focusing 600 nm diameter PS particles at a frequency of 1.72075 MHz. Furthermore, the feedback control loop is capable of focusing biological cells in one and two pressure nodes. The requirements for the feedback control loop are: an optical setup, a run-of-the-mill computer and a computer controllable function generator. Thus resulting in a cost-effective, high-throughput and automated method to rapidly increase the efficiency of established systems. The code for the feedback control loop is openly accessible and the authors explicitly wish that the community uses and modifies the feedback control loop to their own needs.
Collapse
Affiliation(s)
- Cooper L Harshbarger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Michael S Gerlt
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jan A Ghadamian
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Davide C Bernardoni
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jürg Dual
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Perera LN, Piyasena ME. Acoustic focusing of microplastics in microfabricated and steel tube devices: An experimental study on the effects from particle size and medium density. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wang C, Ma Y, Chen Z, Wu Y, Song F, Qiu J, Shi M, Wu X. Sheathless microflow cytometer utilizing two bulk standing acoustic waves. Cytometry A 2021; 99:987-998. [PMID: 33956400 DOI: 10.1002/cyto.a.24362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
In recent years, microflow cytometry has become a popular research field because of its potential to provide low-cost and disposable chips for complex cell analyses. Herein, we demonstrate a sheathless microflow cytometer which integrates a bulk standing acoustic wave based microchip capable of three dimensional cell focusing. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of 2.16% with standard calibration beads. The sensitivities calibrated by rainbow beads are 518 MEFL in fluorescein Isothiocyanate (FITC) channel and 264 MEPE in P-phycoerythrin (PE) channels, respectively. The linearities are more than 99% in both channels. The capability of the proposed microflow cytometer is further demonstrated by immunologically labeled leukocytes differentiation in blood. This acoustic-based microflow cytometer did not require any sheath flows or complex structures and can be mass produced. Because of the simple fluid channel, the chip can be easily made pipeless, disposable for applications requiring no cross contamination. Moreover, with the gentle and bio-compatible acoustic waves used, this technique is expected to maintain the viability of cells and other bioparticles.
Collapse
Affiliation(s)
- Ce Wang
- School of Biomedical Engineering(Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhongxiang Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yunliang Wu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jianping Qiu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mengdie Shi
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaodong Wu
- School of Biomedical Engineering(Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Li Z, Li P, Xu J, Shao W, Yang C, Cui Y. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing. Biomed Microdevices 2020; 22:27. [PMID: 32222836 DOI: 10.1007/s10544-020-00481-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional flow cytometers employ hydrodynamic focusing method to insure detection accuracy by forcing cells go through detected position. However, an increased flow velocity will significantly reduce detection precision due to a fact that cells will deviate center position and are easily silted in choke point. In an effort to overcome this limitation, a two-dimension ultrasonic particle focusing method are presented in this work to enhance the performance of flow cytometer. Two piezoelectric transducers are used to attach to a 250 μm × 250 μm rectangular fused silica flow channel to realize the modification. Finite element model simulation is performed for parametrical analysis and simplifying experiment design. 3 μm polystyrene fluorescent particles are adopted to test focusing effect. One dimension acoustic focusing is achieved at 2.95 MHz with single focusing node as well as 2, 3, 4 nodes focusing near 6, 9, 12 MHz respectively. The 2D focusing particle stream width in two dimensions is less than 10 μm. Results verified that this method is applicable for Jurkat cells. Sample flow maintains its stability without clogging up even at high sample concentration. Focusing still works at flow velocity over 100 μl/min. All these results certify this acoustic particles focusing method can enhance the performance of hydrodynamic flow cytometer by minor modification.
Collapse
Affiliation(s)
- Zhangjian Li
- University of Science and Technology of China, Hefei, 230027, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Peiyang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jie Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Weiwei Shao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chen Yang
- University of Science and Technology of China, Hefei, 230027, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yaoyao Cui
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
9
|
Wang Y, Sayyadi N, Zheng X, Woods TA, Leif RC, Shi B, Graves SW, Piper JA, Lu Y. Time-resolved microfluidic flow cytometer for decoding luminescence lifetimes in the microsecond region. LAB ON A CHIP 2020; 20:655-664. [PMID: 31934716 DOI: 10.1039/c9lc00895k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Time-resolved luminescence detection using long-lived probes with lifetimes in the microsecond region have shown great potential in ultrasensitive and multiplexed bioanalysis. In flow cytometry, however, the long lifetime poses a significant challenge to measure wherein the detection window is often too short to determine the decay characteristics. Here we report a time-resolved microfluidic flow cytometer (tr-mFCM) incorporating an acoustic-focusing chip, which allows slowing down of the flow while providing the same detection conditions for every target, achieving accurate lifetime measurement free of autofluorescence interference. Through configuration of the flow velocity and detection aperture with respect to the time-gating sequence, a multi-cycle luminescence decay profile is captured for every event under maximum excitation and detection efficiency. A custom fitting algorithm is then developed to resolve europium-stained polymer microspheres as well as leukemia cells against abundant fluorescent particles, achieving counting efficiency approaching 100% and lifetime CVs (coefficient of variation) around 2-6%. We further demonstrate lifetime-multiplexed detection of prostate and bladder cancer cells stained with different europium probes. Our acoustic-focusing tr-mFCM offers a practical technique for rapid screening of biofluidic samples containing multiple cell types, especially in resource-limited environments such as regional and/or underdeveloped areas as well as for point-of-care applications.
Collapse
Affiliation(s)
- Yan Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nima Sayyadi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xianlin Zheng
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Travis A Woods
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Robert C Leif
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Bingyang Shi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Steven W Graves
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - James A Piper
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia and School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
10
|
Cell alignment and accumulation using acoustic nozzle for bioprinting. Sci Rep 2019; 9:17774. [PMID: 31780803 PMCID: PMC6883046 DOI: 10.1038/s41598-019-54330-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023] Open
Abstract
Bioprinting could spatially align various cells in high accuracy to simulate complex and highly organized native tissues. However, the uniform suspension and low concentration of cells in the bioink and subsequently printed construct usually results in weak cell-cell interaction and slow proliferation. Acoustic manipulation of biological cells during the extrusion-based bioprinting by a specific structural vibration mode was proposed and evaluated. Both C2C12 cells and human umbilical vein endothelial cells (HUVECs) could be effectively and quickly accumulated at the center of the cylindrical tube and consequently the middle of the printed construct with acoustic excitation at the driving frequency of 871 kHz. The full width at half maximum (FWHM) of cell distributions fitted with a Gaussian curve showed a significant reduction by about 2.2 fold in the printed construct. The viability, morphology, and differentiation of these cells were monitored and compared. C2C12 cells that were undergone the acoustic excitation had nuclei oriented densely within ±30° and decreased circularity index by 1.91 fold or significant cell elongation in the printing direction. In addition, the formation of the capillary-like structure in the HUVECs construct was found. The number of nodes, junctions, meshes, and branches of HUVECs on day 14 was significantly greater with acoustic excitation for the enhanced neovascularization. Altogether, the proposed acoustic technology can satisfactorily accumulate/pattern biological cells in the printed construct at high biocompatibility. The enhanced cell interaction and differentiation could subsequently improve the performance and functionalities of the engineered tissue samples.
Collapse
|
11
|
Shabaniverki S, Thorud S, Juárez JJ. Vibrationally directed assembly of micro- and nanoparticle-polymer composites. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Kalb DM, Olson RJ, Sosik HM, Woods TA, Graves SW. Resonance control of acoustic focusing systems through an environmental reference table and impedance spectroscopy. PLoS One 2018; 13:e0207532. [PMID: 30427942 PMCID: PMC6235394 DOI: 10.1371/journal.pone.0207532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022] Open
Abstract
Acoustic standing waves can precisely focus flowing particles or cells into tightly positioned streams for interrogation or downstream separations. The efficiency of an acoustic standing wave device is dependent upon operating at a resonance frequency. Small changes in a system's temperature and sample salinity can shift the device's resonance condition, leading to poor focusing. Practical implementation of an acoustic standing wave system requires an automated resonance control system to adjust the standing wave frequency in response to environmental changes. Here we have developed a rigorous approach for quantifying the optimal acoustic focusing frequency at any given environmental condition. We have demonstrated our approach across a wide range of temperature and salinity conditions to provide a robust characterization of how the optimal acoustic focusing resonance frequency shifts across these conditions. To generalize these results, two microfluidic bulk acoustic standing wave systems (a steel capillary and an etched silicon wafer) were examined. Models of these temperature and salinity effects suggest that it is the speed of sound within the liquid sample that dominates the resonance frequency shift. Using these results, a simple reference table can be generated to predict the optimal resonance condition as a function of temperature and salinity. Additionally, we show that there is a local impedance minimum associated with the optimal system resonance. The integration of the environmental results for coarse frequency tuning followed by a local impedance characterization for fine frequency adjustments, yields a highly accurate method of resonance control. Such an approach works across a wide range of environmental conditions, is easy to automate, and could have a significant impact across a wide range of microfluidic acoustic standing wave systems.
Collapse
Affiliation(s)
- Daniel M. Kalb
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States
- * E-mail: (SWG); (DMK)
| | - Robert J. Olson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Heidi M. Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Travis A. Woods
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States
- University of New Mexico Center for Molecular Discovery, 1 University of New Mexico, Albuquerque, NM, United States
| | - Steven W. Graves
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States
- * E-mail: (SWG); (DMK)
| |
Collapse
|
13
|
Shabaniverki S, Thorud S, Juárez JJ. Protocol for assembling micro- and nanoparticles in a viscous liquid above a vibrating plate. MethodsX 2018; 5:1156-1165. [PMID: 30302322 PMCID: PMC6174525 DOI: 10.1016/j.mex.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/17/2018] [Indexed: 12/03/2022] Open
Abstract
In this protocol, we demonstrate the use of a vibrating plate to drive the assembly of micro- and nanoparticles as an approach to high-throughput, large-scale directed assembly in a viscous liquid. Vibration drives the assembly of glass bead microparticles and iron oxide nanoparticles in contact with water over an area of 6400 mm2. We use a scaling analysis to show that there is a competition between acoustic radiation force and vibration-generated fluid flow in a viscous medium, which determines particle transport characteristics. For assembly in a viscous liquid, we find close agreement between the observed experimental results when compared to a numerical solution of the 2D wave equation that describes plate displacement. This model indicates that microparticles migrate along displacement gradients towards displacement anti-nodes where the magnitude of displacement is maximum. We also observe that nanoparticles migrate toward displacement nodes where the magnitude of displacement is zero. Cost-effective directed assembly technique without the need for microfabrication facilities Large-scale assembly produces heterogeneously ordered structures on a vibrating substrate
Collapse
|
14
|
Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis. Anal Bioanal Chem 2018; 410:6561-6571. [PMID: 30046870 DOI: 10.1007/s00216-018-1261-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Acoustophoresis has gained increasing attention as a gentle, non-contact, and high-throughput cell and particle separation technique. It is conveniently used to isolate and enrich particles that are greater than 2 μm; however, its use in manipulating particles smaller than 2 μm is limited. In this work, we present an alternative way of using acoustic forces to manipulate sub-micrometer particles in continuous flow fashion. It has been shown that acoustic forces can be employed to relocate parallel laminar flow streams of two impedance-mismatched fluids. We demonstrate the separation of sub-micron particles from micron particles by the combination of acoustophoresis and acoustic fluid relocation. The micron particles are focused into the middle of the flow channel via primary acoustic forces while sub-micron particles are moved to the side via drag forces created by the relocating fluid. We demonstrate the proof of the concept using binary mixtures of particles comprised of sub-micron/micron particles, micron/micron particles, and bovine red blood cells with E. coli. The efficiency of the particle enrichment is determined via flow cytometry analysis of the collected streams. This study demonstrates that by combining acoustic fluid relocation with acoustophoresis, sub-micron particles can be effectively separated from micron particles at high flow rates and it can be further implemented to separate binary mixtures of micron particles if the volumetric ratio of two particles is greater than 10 and the larger particle diameter is about 10 μm. The combined method is more appropriate to use than acoustophoresis in situations where acoustic streaming and differences in acoustic impedance of fluids can be of concern. Graphical abstract In the presence of a resonance acoustic field, the clean high-density fluid (dark gray) and the low-density sample fluid are relocated. During this process, E. coli are separated from the red blood cells (RBCs).
Collapse
|
15
|
Geng S, Huang Y. From Mouth Pipetting to Microfluidics: The Evolution of Technologies for Picking Healthy Single Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuang Geng
- Beijing Advanced Innovation Center for Genomics (ICG); Biodynamics Optical Imaging Center (BIOPIC); School of Life Sciences; Peking-Tsinghua Center for Life Sciences; and College of Engineering; Peking University; Beijing 100871 China
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG); Biodynamics Optical Imaging Center (BIOPIC); School of Life Sciences; Peking-Tsinghua Center for Life Sciences; and College of Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
16
|
Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells. Anal Bioanal Chem 2018; 410:3385-3394. [PMID: 29651523 DOI: 10.1007/s00216-018-1034-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
We introduce a new method to construct microfluidic devices especially useful for bulk acoustic wave (BAW)-based manipulation of cells and microparticles. To obtain efficient acoustic focusing, BAW devices require materials that have high acoustic impedance mismatch relative to the medium in which the cells/microparticles are suspended and materials with a high-quality factor. To date, silicon and glass have been the materials of choice for BAW-based acoustofluidic channel fabrication. Silicon- and glass-based fabrication is typically performed in clean room facilities, generates hazardous waste, and can take several hours to complete the microfabrication. To address some of the drawbacks in fabricating conventional BAW devices, we explored a new approach by micromachining microfluidic channels in aluminum substrates. Additionally, we demonstrate plasma bonding of poly(dimethylsiloxane) (PDMS) onto micromachined aluminum substrates. Our goal was to achieve an approach that is both low cost and effective in BAW applications. To this end, we micromachined aluminum 6061 plates and enclosed the systems with a thin PDMS cover layer. These aluminum/PDMS hybrid microfluidic devices use inexpensive materials and are simply constructed outside a clean room environment. Moreover, these devices demonstrate effectiveness in BAW applications as demonstrated by efficient acoustic focusing of polystyrene microspheres, bovine red blood cells, and Jurkat cells and the generation of multiple focused streams in flow-through systems. Graphical abstract The aluminum acoustofluidic device and the generation of multinode focusing of particles.
Collapse
|
17
|
Shrirao AB, Fritz Z, Novik EM, Yarmush GM, Schloss RS, Zahn JD, Yarmush ML. Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. TECHNOLOGY 2018; 6:1-23. [PMID: 29682599 PMCID: PMC5907470 DOI: 10.1142/s2339547818300019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flow cytometry is an invaluable tool utilized in modern biomedical research and clinical applications requiring high throughput, high resolution particle analysis for cytometric characterization and/or sorting of cells and particles as well as for analyzing results from immunocytometric assays. In recent years, research has focused on developing microfluidic flow cytometers with the motivation of creating smaller, less expensive, simpler, and more autonomous alternatives to conventional flow cytometers. These devices could ideally be highly portable, easy to operate without extensive user training, and utilized for research purposes and/or point-of-care diagnostics especially in limited resource facilities or locations requiring on-site analyses. However, designing a device that fulfills the criteria of high throughput analysis, automation and portability, while not sacrificing performance is not a trivial matter. This review intends to present the current state of the field and provide considerations for further improvement by focusing on the key design components of microfluidic flow cytometers. The recent innovations in particle focusing and detection strategies are detailed and compared. This review outlines performance matrix parameters of flow cytometers that are interdependent with each other, suggesting trade offs in selection based on the requirements of the applications. The ongoing contribution of microfluidics demonstrates that it is a viable technology to advance the current state of flow cytometry and develop automated, easy to operate and cost-effective flow cytometers.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Zachary Fritz
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Eric M Novik
- Hurel Corporation, 671, Suite B, U.S. Highway 1, North Brunswick, NJ 08902
| | - Gabriel M Yarmush
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
18
|
Akella M, Juárez JJ. High-Throughput Acoustofluidic Self-Assembly of Colloidal Crystals. ACS OMEGA 2018; 3:1425-1436. [PMID: 31458472 PMCID: PMC6641480 DOI: 10.1021/acsomega.7b01862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/22/2018] [Indexed: 05/17/2023]
Abstract
Colloidal crystals are encountered in a variety of energy-harvesting applications, where they serve as waveguides or filters for electromagnetic and electro-optic energy. Techniques such as electric or magnetic assembly are used to assemble colloidal crystals, but are limited by crystal size, yield, and throughput. This article demonstrates the continuous, high-throughput assembly of two-dimensional (2D)-colloidal crystals in an acoustofluidic flow cell. The device is fabricated using off-the-shelf components and does not require a clean-room access. An experimental state diagram shows how the fluid flow rate and voltage applied to the piezoelectric element in our device can tune the crystal microstructure. Highly ordered colloidal crystals are continuously assembled in less than a minute with a throughput yield of several hundred particles per minute using this device. The acoustically assembled ordered 2D crystals are immobilized using a UV-curable resin and extracted as ordered polymer-particle fibers, demonstrating the ability of using acoustic fields to assemble ordered structures embedded in bulk materials. Particle tracking is used to construct the cross-channel particle distribution to understand the effect of acoustic compression on colloidal crystal assembly. Microparticle image velocimetry data is compared to a theoretical transport model to quantify the effect fluid flow and acoustic trapping has on the colloidal crystal ensemble.
Collapse
|
19
|
Kalb DM, Fencl FA, Woods TA, Swanson A, Maestas GC, Juárez JJ, Edwards BS, Shreve AP, Graves SW. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry. Anal Chem 2017; 89:9967-9975. [PMID: 28823146 PMCID: PMC6134836 DOI: 10.1021/acs.analchem.7b02319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.
Collapse
Affiliation(s)
- Daniel M. Kalb
- Center for Biomedical Engineering & Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Frank A. Fencl
- Center for Biomedical Engineering & Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Travis A. Woods
- Center for Biomedical Engineering & Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
- Center for Molecular Discovery, Innovation Discovery and Training Center, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, 87131-0001 United States
| | | | - Gian C. Maestas
- Center for Biomedical Engineering & Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Jaime J. Juárez
- Center for Biomedical Engineering & Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Bruce S. Edwards
- Center for Molecular Discovery, Innovation Discovery and Training Center, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, 87131-0001 United States
| | - Andrew P. Shreve
- Center for Biomedical Engineering & Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Steven W. Graves
- Center for Biomedical Engineering & Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
20
|
Béné MC. Microfluidics in flow cytometry and related techniques. Int J Lab Hematol 2017; 39 Suppl 1:93-97. [PMID: 28447416 DOI: 10.1111/ijlh.12669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Technological advances in laboratory automation are now well understood and applied as they considerably improved the speed and robustness of haematological laboratory data, in the companion fields of blood analyzers and flow cytometry. Still rather confidential is the field of microfluidics, mostly confined so far to academic settings and research laboratories. The literature in the field of microfluidics is growing and applications in hematology range from cell counting to flow cytometry, cell sorting, or ex vivo testing. A literature search allows to identify many innovative solutions developed to master the specific physics of fluid movements in microchips. Miniaturization also dwells on findings that have emerged from different areas such as electronics and nanoengineering. This review proposes an overview of the major principles guiding developments in microfluidics and describes a necessarily limited and nonexhaustive series of specific applications. Readers are strongly encouraged to consult the documents referred to in the references section to learn more about this world knocking at our door and possibly liable to revolutionize our profession of hematology biologists in a not so far future.
Collapse
Affiliation(s)
- M C Béné
- Hematology Biology, University Hospital, Nantes, France
| |
Collapse
|
21
|
Kaynak M, Ozcelik A, Nourhani A, Lammert PE, Crespi VH, Huang TJ. Acoustic actuation of bioinspired microswimmers. LAB ON A CHIP 2017; 17:395-400. [PMID: 27991641 PMCID: PMC5465869 DOI: 10.1039/c6lc01272h] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.
Collapse
Affiliation(s)
- Murat Kaynak
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adem Ozcelik
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Amir Nourhani
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Paul E Lammert
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Vincent H Crespi
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
22
|
Alazzam A, Mathew B, Khashan S. Microfluidic Platforms for Bio-applications. ADVANCED MECHATRONICS AND MEMS DEVICES II 2017. [DOI: 10.1007/978-3-319-32180-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
|
24
|
Song Y, Wang C, Li M, Pan X, Li D. Focusing particles by induced charge electrokinetic flow in a microchannel. Electrophoresis 2016; 37:666-75. [PMID: 26640123 DOI: 10.1002/elps.201500361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/11/2015] [Accepted: 11/27/2015] [Indexed: 02/02/2023]
Abstract
A novel method of sheathless particle focusing by induced charge electrokinetic flow in a microchannel is presented in this paper. By placing a pair of metal plates on the opposite walls of the channel and applying an electrical field, particle focusing is achieved due to the two pairs of vortex that constrain the flow of the particle solution. As an example, the trajectories of particles under different electrical fields with only one metal plate on one side channel wall were numerically simulated and experimentally validated. Other flow focusing effects, such as the focused width ratio (focused width/channel width) and length ratio (focused length/half-length of metal plate) of the sample solution, were also numerically studied. The results show that the particle firstly passes through the gaps between the upstream vortices and the channel walls. Afterwards, the particle is focused to pass through the gap between the two downstream vortices that determine the focused particle position. Numerical simulations show that the focused particle stream becomes thin with the increases in the applied electrical field and the length of the metal plates. As regards to the focused length ratio of the focused stream, however, it slightly increases with the increase in the applied electrical field and almost keeps constant with the increase in the length of the metal plate. The size of the focused sample solution, therefore, can be easily adjusted by controlling the applied electrical field and the sizes of the metal plates.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Chengfa Wang
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Mengqi Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Xinxiang Pan
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
25
|
Ohiri KA, Evans BA, Shields CW, Gutiérrez RA, Carroll NJ, Yellen BB, López GP. Magnetically Responsive Negative Acoustic Contrast Microparticles for Bioanalytical Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25030-25035. [PMID: 27622731 DOI: 10.1021/acsami.6b09591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Smart colloidal particles are routinely used as carriers for biological molecules, fluorescent reporters, cells, and other analytes for the purposes of sample preparation and detection. However, such particles are typically engineered to respond to a single type of stimulus (e.g., commercial magnetic beads to magnetic fields). Here, we demonstrate a unique class of particles that display both positive magnetic contrast and negative acoustic contrast in water. This dual functionality allows for fine spatiotemporal control, enabling multiple separation modalities and increasing the utility of the particles in various chemical and biological assays.
Collapse
Affiliation(s)
| | - Benjamin A Evans
- Department of Physics, Elon University , Elon, North Carolina 27244, United States
| | | | | | | | | | - Gabriel P López
- Department of Chemical & Biological Engineering, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
26
|
Chen Y, Wu M, Ren L, Liu J, Whitley PH, Wang L, Huang TJ. High-throughput acoustic separation of platelets from whole blood. LAB ON A CHIP 2016; 16:3466-72. [PMID: 27477388 PMCID: PMC5010861 DOI: 10.1039/c6lc00682e] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Platelets contain growth factors which are important in biomedical and clinical applications. In this work, we present an acoustic separation device for high-throughput, non-invasive platelet isolation. In particular, we separated platelets from whole blood at a 10 mL min(-1) throughput, which is three orders of magnitude greater than that of existing acoustic-based platelet separation techniques. Without sample dilution, we observed more than 80% RBC/WBC removal and platelet recovery. High throughput, high separation efficiency, and biocompatibility make this device useful for many clinical applications.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengxi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jiayang Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pamela H. Whitley
- American Red Cross, Mid-Atlantic Blood Services Region, 400 Gresham Dr., Suite 100, Norfolk, VA 23507, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies Inc., Durham, NC 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
27
|
Shields CW, Cruz DF, Ohiri KA, Yellen BB, Lopez GP. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles. J Vis Exp 2016. [PMID: 27022681 PMCID: PMC4828217 DOI: 10.3791/53861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the geometry of the device, it is possible to induce the formation of standing waves that can focus particles along desired fluidic streamlines within a bulk flow. Here, we describe a method for the fabrication of acoustophoretic devices from common materials and clean room equipment. We show representative results for the focusing of particles with positive or negative acoustic contrast factors, which move towards the pressure nodes or antinodes of the standing waves, respectively. These devices offer enormous practical utility for precisely positioning large numbers of microscopic entities (e.g., cells) in stationary or flowing fluids for applications ranging from cytometry to assembly.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University; Department of Biomedical Engineering, Duke University
| | - Daniela F Cruz
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University; Department of Biomedical Engineering, Duke University
| | - Korine A Ohiri
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University; Department of Mechanical Engineering and Materials Science, Duke University
| | - Benjamin B Yellen
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University; Department of Biomedical Engineering, Duke University; Department of Mechanical Engineering and Materials Science, Duke University
| | - Gabriel P Lopez
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University; Department of Biomedical Engineering, Duke University; Department of Mechanical Engineering and Materials Science, Duke University;
| |
Collapse
|
28
|
Zmijan R, Jonnalagadda US, Carugo D, Kochi Y, Lemm E, Packham G, Hill M, Glynne-Jones P. High throughput imaging cytometer with acoustic focussing. RSC Adv 2015; 5:83206-83216. [PMID: 29456838 PMCID: PMC5782801 DOI: 10.1039/c5ra19497k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/23/2015] [Indexed: 11/25/2022] Open
Abstract
We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.
Collapse
Affiliation(s)
- Robert Zmijan
- Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Umesh S Jonnalagadda
- Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Dario Carugo
- Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Yu Kochi
- Japan Patent Office, 3-chome-4-3 Kasumigaseki, Chiyoda-ku Tokyo 100-8915, Japan
| | - Elizabeth Lemm
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton General Hospital, UK
- Experimental Cancer Medicine Centre, Southampton General Hospital, UK
| | - Graham Packham
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton General Hospital, UK
- Experimental Cancer Medicine Centre, Southampton General Hospital, UK
| | - Martyn Hill
- Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Peter Glynne-Jones
- Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
29
|
Shields CW, Reyes CD, López GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. LAB ON A CHIP 2015; 15:1230-49. [PMID: 25598308 PMCID: PMC4331226 DOI: 10.1039/c4lc01246a] [Citation(s) in RCA: 586] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
30
|
Prest JE, Treves Brown BJ, Fielden PR, Wilkinson SJ, Hawkes JJ. Scaling-up ultrasound standing wave enhanced sedimentation filters. ULTRASONICS 2015; 56:260-270. [PMID: 25193111 DOI: 10.1016/j.ultras.2014.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Particle concentration and filtration is a key stage in a wide range of processing industries and also one that can be present challenges for high throughput, continuous operation. Here we demonstrate some features which increase the efficiency of ultrasound enhanced sedimentation and could enable the technology the potential to be scaled up. In this work, 20 mm piezoelectric plates were used to drive 100 mm high chambers formed from single structural elements. The coherent structural resonances were able to drive particles (yeast cells) in the water to nodes throughout the chamber. Ultrasound enhanced sedimentation was used to demonstrate the efficiency of the system (>99% particle clearance). Sub-wavelength pin protrusions were used for the contacts between the resonant chamber and other elements. The pins provided support and transferred power, replacing glue which is inefficient for power transfer. Filtration energies of ∼4 J/ml of suspension were measured. A calculation of thermal convection indicates that the circulation could disrupt cell alignment in ducts >35 mm high when a 1K temperature gradient is present; we predict higher efficiencies when this maximum height is observed. For the acoustic design, although modelling was minimal before construction, the very simple construction allowed us to form 3D models of the nodal patterns in the fluid and the duct structure. The models were compared with visual observations of particle movement, Chladni figures and scanning laser vibrometer mapping. This demonstrates that nodal planes in the fluid can be controlled by the position of clamping points and that the contacts could be positioned to increase the efficiency and reliability of particle manipulations in standing waves.
Collapse
Affiliation(s)
- Jeff E Prest
- Department of Chemistry Faraday Building, Lancaster University, Bailrigg, Lancaster LA1 4YB, UK
| | - Bernard J Treves Brown
- Manchester Institute of Biotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Peter R Fielden
- Department of Chemistry Faraday Building, Lancaster University, Bailrigg, Lancaster LA1 4YB, UK
| | - Stephen J Wilkinson
- University of Chester Faculty of Science and Engineering, Thornton Science Park, CH2 4NU, UK
| | - Jeremy J Hawkes
- Manchester Institute of Biotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
31
|
Gao L, Wyatt Shields C, Johnson LM, Graves SW, Yellen BB, López GP. Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems. BIOMICROFLUIDICS 2015; 9:014105. [PMID: 25713687 PMCID: PMC4304957 DOI: 10.1063/1.4905875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/01/2015] [Indexed: 05/16/2023]
Abstract
We report a modeling and experimental study of techniques to acoustically focus particles flowing through a microfluidic channel. Our theoretical model differs from prior works in that we solve an approximate 2-D wave transmission model that accounts for wave propagation in both the solid and fluid phases. Our simulations indicate that particles can be effectively focused at driving frequencies as high as 10% off of the resonant condition. This conclusion is supported by experiments on the acoustic focusing of particles in nearly square microchannels, which are studied for different flow rates, driving frequencies and placements of the lead zirconate titanate transducer, either underneath the microchannel or underneath a parallel trough. The relative acoustic potential energy and the resultant velocity fields for particles with positive acoustic contrast coefficients are estimated in the 2-D limit. Confocal microscopy was used to observe the spatial distribution of the flowing microparticles in three dimensions. Through these studies, we show that a single driving frequency from a single piezoelectric actuator can induce the 2-D concentration of particles in a microchannel with a nearly square cross section, and we correlate these behaviors with theoretical predictions. We also show that it is possible to control the extent of focusing of the microparticles, and that it is possible to decouple the focusing of microparticles in the vertical direction from the lateral direction in rectangular channels with anisotropic cross sections. This study provides guidelines to design and operate microchip-based acoustofluidic devices for precise control over the spatial arrangement of microparticles for applications such as flow cytometry and cellular sorting.
Collapse
Affiliation(s)
| | | | - Leah M Johnson
- Department of Biomedical Engineering, Duke University , Durham, North Carolina 27708, USA
| | - Steven W Graves
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, University of New Mexico , Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
32
|
Jiang H, Weng X, Li D. A novel microfluidic flow focusing method. BIOMICROFLUIDICS 2014; 8:054120. [PMID: 25538810 PMCID: PMC4241768 DOI: 10.1063/1.4899807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
A new microfluidic method that allows hydrodynamic focusing in a microchannel with two sheath flows is demonstrated. The microchannel network consists of a T-shaped main channel and two T-shaped branch channels. The flows of the sample stream and the sheath streams in the microchannel are generated by electroosmotic flow-induced pressure gradients. In comparison with other flow focusing methods, this novel method does not expose the sample to electrical field, and does not need any external pumps, tubing, and valves.
Collapse
Affiliation(s)
- Hai Jiang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Xuan Weng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
33
|
Piyasena ME, Graves SW. The intersection of flow cytometry with microfluidics and microfabrication. LAB ON A CHIP 2014; 14:1044-59. [PMID: 24488050 PMCID: PMC4077616 DOI: 10.1039/c3lc51152a] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A modern flow cytometer can analyze and sort particles on a one by one basis at rates of 50,000 particles per second. Flow cytometers can also measure as many as 17 channels of fluorescence, several angles of scattered light, and other non-optical parameters such as particle impedance. More specialized flow cytometers can provide even greater analysis power, such as single molecule detection, imaging, and full spectral collection, at reduced rates. These capabilities have made flow cytometers an invaluable tool for numerous applications including cellular immunophenotyping, CD4+ T-cell counting, multiplex microsphere analysis, high-throughput screening, and rare cell analysis and sorting. Many bio-analytical techniques have been influenced by the advent of microfluidics as a component in analytical tools and flow cytometry is no exception. Here we detail the functions and uses of a modern flow cytometer, review the recent and historical contributions of microfluidics and microfabricated devices to field of flow cytometry, examine current application areas, and suggest opportunities for the synergistic application of microfabrication approaches to modern flow cytometry.
Collapse
Affiliation(s)
- Menake E. Piyasena
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM USA
- Department of Chemistry, New Mexico Tech, Socorro, NM USA
| | - Steven W. Graves
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM USA
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM USA, FAX: 15052771979; TEL:15052772043
| |
Collapse
|
34
|
Abstract
The use of fluidics is implicit in a technology named "flow cytometry," which flows a cell or particle through a sensing volume to obtain serial analysis of particles on a one by one basis. This flow of particles enables flow cytometry to collect information on multiple particle populations, giving it a distinct advantage over bulk analysis approaches. Moreover, flow cytometers can analyze thousands of particles per second in a single flowing stream. Additionally, use of volumetric sample delivery makes it possible for flow cytometers to accurately count cells and particles. Furthermore, the analysis results can be coupled with a fluidic diversion mechanism to sort and collect particles based on desired properties. Finally, when high-throughput sampling technologies are employed to rapidly change the input of the sample stream, a flow cytometer can become an integral tool for high-throughput screening. The above properties have made flow cytometry useful in a wide range of biomedical applications. In this unit we will present an overview of fluidic systems that make flow cytometry possible. This will introduce historical approaches, explanations of the commonly implemented current fluidics, and brief discussions of potential future fluidics where appropriate.
Collapse
Affiliation(s)
| | - Steven W Graves
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
35
|
Cushing KW, Piyasena ME, Carroll NJ, Maestas GC, López BA, Edwards BS, Graves SW, López GP. Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 2013; 85:2208-15. [PMID: 23331264 PMCID: PMC3621144 DOI: 10.1021/ac3029344] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This report describes the development of elastomeric capture microparticles (ECμPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry.We have developed simple methods to form ECμPs by cross-linking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECμPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum, or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECμPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECμPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECμPs) and positive contrast particles (cells). Separated ECμPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types.
Collapse
Affiliation(s)
- Kevin W. Cushing
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
- National Flow Cytometry Resource, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Menake E. Piyasena
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Nick J. Carroll
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Gian C. Maestas
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Beth Ann López
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Bruce S. Edwards
- Department of Pathology, School of Medicine, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Steven W. Graves
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
- National Flow Cytometry Resource, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Gabriel P. López
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Depts. of Biomedical Engineering and Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
36
|
Galbraith D. Flow cytometry and cell sorting: the next generation. Methods 2013; 57:249-50. [PMID: 22939984 DOI: 10.1016/j.ymeth.2012.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 01/13/2023] Open
|