1
|
Wang Q, Chen X, Wang YF. Sec61β, a subunit of the Sec61 complex at the endoplasmic reticulum, coordinates with Ocnus in regulating Drosophila spermatogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104310. [PMID: 40194670 DOI: 10.1016/j.ibmb.2025.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
sec61β encodes a subunit of the Sec61 translocon which is a highly conserved heterotrimer responsible for translocating the nascent polypeptides into the lumen of the endoplasmic reticulum (ER) or onto the ER membrane. In this study, we show that knockdown of sec61β in the early germline leads to male sterility in Drosophila melanogaster. These males exhibit testes that are dramatically reduced in size and devoid of germ cells. However, the somatic cells with hub markers extend abnormally beyond the stem cell niche region. Stat92E-positive cells are also expanded into the posterior region of the small testes and primarily in the nuclei. Through tracking the developmental processes of germ cells, we find that the loss of germ cells occurs during the 3rd instar larval stage. Additionally, studies in Drosophila S2 cells reveal that Sec61β can directly interact with Ocnus (Ocn), likely at the nuclear membrane. Genetically, we show that overexpression of ocn partially restores fertility in sec61β knockdown males, while overexpression of sec61β fails to compensate for the defects in male fertility induced by ocn knockdown. These findings suggest that Sec61β might play a critical role in testis development and spermatogenesis, potentially coordinating with Ocn and involving in the JAK/STAT pathway.
Collapse
Affiliation(s)
- Qian Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Xin Chen
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Sanghvi K, Shandilya S, Brown A, Todorova B, Jahn M, Gascoigne SJL, Camilleri TL, Pizzari T, Sepil I. Reproductive output of old males is limited by seminal fluid, not sperm number. Evol Lett 2025; 9:282-291. [PMID: 40191416 PMCID: PMC11968187 DOI: 10.1093/evlett/qrae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 04/09/2025] Open
Abstract
Male reproductive senescence is typically characterized by a decline in the number of sperm produced and transferred by old males, a phenomenon that may be exacerbated in polygynous species where males mate multiply. However, males also transfer seminal fluid to females, and little is known about its role in modulating male reproductive senescence. Here, we explore the contributions of sperm and seminal fluid towards male reproductive senescence in a series of sequential matings, using Drosophila melanogaster. As expected, old males produce fewer offspring than young males. However, this pattern is not driven by sperm limitation: old males have more sperm and transfer similar numbers to females, compared to young males. Instead, females storing fewer sperm of old males compared to that of young males, over a long term, drives male reproductive senescence. We are able to mitigate the age-related decline in male reproductive output by supplementing females with the seminal fluid of a young male, before she mates with an old male. Similarly, we alleviate the reduction in reproductive output across sequential matings by supplementing females with seminal fluid. Our findings highlight that seminal fluid, rather than sperm number, limits reproductive success in old or multiply mating males, highlighting its underappreciated role in reproductive aging.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Alana Brown
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Biliana Todorova
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Martin Jahn
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | | | - Tommaso Pizzari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Brunet M, Thomas J, Lapart JA, Krüttli L, Laporte MH, Riparbelli MG, Callaini G, Durand B, Morel V. Drosophila Alms1 proteins regulate centriolar cartwheel assembly by enabling Plk4-Ana2 amplification loop. EMBO J 2025; 44:2366-2395. [PMID: 40021845 PMCID: PMC12000580 DOI: 10.1038/s44318-025-00382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 03/03/2025] Open
Abstract
Centrioles play a central role in cell division by recruiting pericentriolar material (PCM) to form the centrosome. Alterations in centriole number or function lead to various diseases including cancer or microcephaly. Centriole duplication is a highly conserved mechanism in eukaryotes. Here, we show that the two Drosophila orthologs of the Alström syndrome protein 1 (Alms1a and Alms1b) are unexpected novel players of centriole duplication in fly. Using Ultrastructure Expansion Microscopy, we reveal that Alms1a is a PCM protein that is loaded proximally on centrioles at the onset of procentriole formation, whereas Alms1b caps the base of mature centrioles. We demonstrate that chronic loss of Alms1 proteins (with RNA null alleles) affects PCM maturation, whereas their acute loss (in RNAi KD) completely disrupts procentriole formation before Sas-6 cartwheel assembly. We establish that Alms1 proteins are required for the amplification of the Plk4-Ana2 pool at the duplication site and the subsequent Sas-6 recruitment. Thus, Alms1 proteins are novel critical but highly buffered regulators of PCM and cartwheel assembly in flies.
Collapse
Affiliation(s)
- Marine Brunet
- Universite Claude BERNARD Lyon 1, Lyon, France
- MeLiS-CNRS-UMR5284, Lyon, France
- INSERM-U1314, Lyon, France
| | - Joëlle Thomas
- Universite Claude BERNARD Lyon 1, Lyon, France
- MeLiS-CNRS-UMR5284, Lyon, France
- INSERM-U1314, Lyon, France
| | - Jean-André Lapart
- Universite Claude BERNARD Lyon 1, Lyon, France
- MeLiS-CNRS-UMR5284, Lyon, France
- INSERM-U1314, Lyon, France
| | - Léo Krüttli
- Universite Claude BERNARD Lyon 1, Lyon, France
- MeLiS-CNRS-UMR5284, Lyon, France
- INSERM-U1314, Lyon, France
| | - Marine H Laporte
- Universite Claude BERNARD Lyon 1, Lyon, France
- MeLiS-CNRS-UMR5284, Lyon, France
- INSERM-U1314, Lyon, France
| | | | | | - Bénédicte Durand
- Universite Claude BERNARD Lyon 1, Lyon, France.
- MeLiS-CNRS-UMR5284, Lyon, France.
- INSERM-U1314, Lyon, France.
| | - Véronique Morel
- Universite Claude BERNARD Lyon 1, Lyon, France.
- MeLiS-CNRS-UMR5284, Lyon, France.
- INSERM-U1314, Lyon, France.
| |
Collapse
|
4
|
Varga V, Szinyákovics J, Bebes A, Szikszai F, Kovács T. Role of Hemocytes in the Aging of Drosophila Male Germline. Cells 2025; 14:315. [PMID: 39996785 PMCID: PMC11854897 DOI: 10.3390/cells14040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Stem cells are essential for the proper functioning of tissues, replacing damaged, senescent cells to ensure tissue regeneration. However, as age advances, the number of these stem cells can change, and their self-renewal abilities can become impaired, leading to disruption of homeostasis, loss of regenerative capacity, and, ultimately, deterioration of tissue function. In Drosophila testis, in addition to the germline and somatic cells involved in spermatogenesis, there are immune cells (hemocytes) with macrophage function. In our study, we aimed to investigate the role of hemocytes in maintaining germline stem cells throughout their lifespan. Our results show that in the absence of plasmatocytes and crystal immune cells, the number of germline stem cells (GSCs) and apoptotic germline cells also increases significantly during senescence, which may have detrimental effects on the differentiation processes of germline cells. The size of the hub increases in aged male testes. It is therefore conceivable that changes in the hub may induce dysfunction of differentiation processes. The fertility of aged immunodeficient animals is decreased. Furthermore, we show that the expression of the JAK/STAT signaling pathway, which is essential for the maintenance of the stem cell niche, is impaired in the lack of hemocytes. We found an increased expression of Socs36e, an inhibitor of JAK-STAT, which correlates with decreased JAK-STAT activity. Overexpression of Socs36e in the apical part of the germline led to a phenotype similar to the immunodeficient aged germline, where an increased GSC number and hub size were also observed. However, spermatogenesis was also disturbed in this case. Our study shows that hemocytes are required to regulate the number of GSCs. This regulation could be mediated through the JAK-STAT signaling pathway. These results may help to provide a more complex insight into the relationships between immune cells and stem cells.
Collapse
Affiliation(s)
- Virginia Varga
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Anikó Bebes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Fanni Szikszai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| |
Collapse
|
5
|
Riparbelli MG, Migliorini M, Callaini G. Astral Microtubules Are Dispensable for Pavarotti Localization During Drosophila Spermatogonial Mitoses. Cytoskeleton (Hoboken) 2025. [PMID: 39754387 DOI: 10.1002/cm.21986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes. This unusual distribution restricts and enhances during anaphase where antiparallel cortical microtubules overlap. Additional Pav staining is also found in the inner central spindle where the microtubules overlap between the segregating chromosomes. At late telophase, Pav accumulates to the midbody and on a weak ring that surround the cytoplasmic bridges. Pav localizes in an equatorial discontinuous ring of Sas4 spermatogonia where the non-centrosomal microtubules overlap, but the motor protein is absent in the interior central spindle where the inner microtubules are lacking. However, the anastral spindles properly support cell division, suggesting that astral microtubules are dispensable for Pav localization in the Sas4 spermatogonial cell cortex. This function is presumably replaced by the antiparallel cortical microtubules extending from the acentriolar polar regions. In contrast, the majority of the meiotic spindles in Sas4 mutant testes do not progress beyond late anaphase, and only a small fraction of the primary spermatocytes experienced an abnormal division with the assembly of aberrant telophase spindles. Pav accumulates around the chromatin clusters or enhanced at the plus ends of the antiparallel non-centrosomal cortical bundles of microtubules. However, these bundles are not arranged properly in the equatorial region of the cell and cytokinesis is abnormal or fails. Therefore, the observations in Sas4 mutant testes suggest that the spermatogonial mitoses correctly occur in the absence of astral microtubules, whereas meiotic divisions fail.
Collapse
|
6
|
Zhao S, Jiang X, Li N, Wang T. SLMO transfers phosphatidylserine between the outer and inner mitochondrial membrane in Drosophila. PLoS Biol 2024; 22:e3002941. [PMID: 39680501 DOI: 10.1371/journal.pbio.3002941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Phospholipids are critical building blocks of mitochondria, and proper mitochondrial function and architecture rely on phospholipids that are primarily transported from the endoplasmic reticulum (ER). Here, we show that mitochondrial form and function rely on synthesis of phosphatidylserine (PS) in the ER through phosphatidylserine synthase (PSS), trafficking of PS from ER to mitochondria (and within mitochondria), and the conversion of PS to phosphatidylethanolamine (PE) by phosphatidylserine decarboxylase (PISD) in the inner mitochondrial membrane (IMM). Using a forward genetic screen in Drosophila, we found that Slowmo (SLMO) specifically transfers PS from the outer mitochondrial membrane (OMM) to the IMM within the inner boundary membrane (IBM) domain. Thus, SLMO is required for shaping mitochondrial morphology, but its putative conserved binding partner, dTRIAP, is not. Importantly, SLMO's role in maintaining mitochondrial morphology is conserved in humans via the SLMO2 protein and is independent of mitochondrial dynamics. Our results highlight the importance of a conserved PSS-SLMO-PISD pathway in maintaining the structure and function of mitochondria.
Collapse
Affiliation(s)
- Siwen Zhao
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuguang Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Kaneko S, Miyoshi K, Tomuro K, Terauchi M, Tanaka R, Kondo S, Tani N, Ishiguro KI, Toyoda A, Kamikouchi A, Noguchi H, Iwasaki S, Saito K. Mettl1-dependent m 7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat Commun 2024; 15:8147. [PMID: 39317727 PMCID: PMC11422498 DOI: 10.1038/s41467-024-52389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Modification of guanosine to N7-methylguanosine (m7G) in the variable loop region of tRNA is catalyzed by the METTL1/WDR4 heterodimer and stabilizes target tRNA. Here, we reveal essential functions of Mettl1 in Drosophila fertility. Knockout of Mettl1 (Mettl1-KO) causes no major effect on the development of non-gonadal tissues, but abolishes the production of elongated spermatids and mature sperm, which is fully rescued by expression of a Mettl1-transgene, but not a catalytic-dead Mettl1 transgene. This demonstrates that Mettl1-dependent m7G is required for spermatogenesis. Mettl1-KO results in a loss of m7G modification on a subset of tRNAs and decreased tRNA abundance. Ribosome profiling shows that Mettl1-KO led to ribosomes stalling at codons decoded by tRNAs that were reduced in abundance. Mettl1-KO also significantly reduces the translation efficiency of genes involved in elongated spermatid formation and sperm stability. Germ cell-specific expression of Mettl1 rescues disrupted m7G tRNA modification and tRNA abundance in Mettl1-KO testes but not in non-gonadal tissues. Ribosome stalling is much less detectable in non-gonadal tissues than in Mettl1-KO testes. These findings reveal a developmental role for m7G tRNA modification and indicate that m7G modification-dependent tRNA abundance differs among tissues.
Collapse
Affiliation(s)
- Shunya Kaneko
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Keita Miyoshi
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan.
| |
Collapse
|
8
|
Buglak DB, Holmes KHM, Galletta BJ, Rusan NM. The proximal centriole-like structure maintains nucleus-centriole architecture in sperm. J Cell Sci 2024; 137:jcs262311. [PMID: 39166297 PMCID: PMC11423811 DOI: 10.1242/jcs.262311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Proper connection between the sperm head and tail is critical for sperm motility and fertilization. Head-tail linkage is mediated by the head-tail coupling apparatus (HTCA), which secures the axoneme (tail) to the nucleus (head). However, the molecular architecture of the HTCA is poorly understood. Here, we use Drosophila to investigate formation and remodeling of the HTCA throughout spermiogenesis by visualizing key components of this complex. Using structured illumination microscopy, we demonstrate that key HTCA proteins Spag4 and Yuri form a 'centriole cap' that surrounds the centriole (or basal body) as it invaginates into the surface of the nucleus. As development progresses, the centriole is laterally displaced to the side of the nucleus while the HTCA expands under the nucleus, forming what we term the 'nuclear shelf'. We next show that the proximal centriole-like (PCL) structure is positioned under the nuclear shelf, functioning as a crucial stabilizer of centriole-nucleus attachment. Together, our data indicate that the HTCA is a complex, multi-point attachment site that simultaneously engages the PCL, the centriole and the nucleus to ensure proper head-tail connection during late-stage spermiogenesis.
Collapse
Affiliation(s)
- Danielle B. Buglak
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathleen H. M. Holmes
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian J. Galletta
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Li C, Ren Y, Chen MY, Wang Q, He Z, Wang YF. CG9920 is necessary for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. Dev Biol 2024; 512:13-25. [PMID: 38703942 DOI: 10.1016/j.ydbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Yue Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
10
|
Duan X, Wang H, Cao Z, Su N, Wang Y, Zheng Y. Deficiency of ValRS-m Causes Male Infertility in Drosophila melanogaster. Int J Mol Sci 2024; 25:7489. [PMID: 39000597 PMCID: PMC11242588 DOI: 10.3390/ijms25137489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.
Collapse
Affiliation(s)
- Xin Duan
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Haolin Wang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Zhixian Cao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Na Su
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Yufeng Wang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Ya Zheng
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| |
Collapse
|
11
|
Chao CF, Pesch YY, Yu H, Wang C, Aristizabal MJ, Huan T, Tanentzapf G, Rideout E. An important role for triglyceride in regulating spermatogenesis. eLife 2024; 12:RP87523. [PMID: 38805376 PMCID: PMC11132686 DOI: 10.7554/elife.87523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.
Collapse
Affiliation(s)
- Charlotte F Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Yanina-Yasmin Pesch
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Huaxu Yu
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Chenjingyi Wang
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | | | - Tao Huan
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
12
|
Buglak DB, Holmes KHM, Galletta BJ, Rusan NM. The Proximal Centriole-Like Structure Anchors the Centriole to the Sperm Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589606. [PMID: 38712096 PMCID: PMC11071290 DOI: 10.1101/2024.04.15.589606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Proper connection between the sperm head and tail is critical for sperm motility and fertilization. The link between the head and tail is mediated by the Head-Tail Coupling Apparatus (HTCA), which secures the axoneme (tail) to the nucleus (head). However, the molecular architecture of the HTCA is not well understood. Here, we use Drosophila to create a high-resolution map of proteins and structures at the HTCA throughout spermiogenesis. Using structured illumination microscopy, we demonstrate that key HTCA proteins Spag4 and Yuri form a 'Centriole Cap' that surrounds the centriole (or Basal Body) as it is inserted, or embedded into the surface of the nucleus. As development progresses, the centriole is laterally displaces to the side of the nucleus, during which time the HTCA expands under the nucleus, forming what we term the 'Nuclear Shelf.' We next show that the proximal centriole-like (PCL) structure is positioned under the Nuclear Shelf and functions as a critical stabilizer of the centriole-nuclear attachment. Together, our data indicate that the HTCA is complex, multi-point attachment site that simultaneously engages the PCL, the centriole, and the nucleus to ensure proper head-tail connection during late-stage spermiogenesis.
Collapse
|
13
|
Xu D, Pan J, Fang Y, Zhao L, Su Y. RpS25 is required for sperm elongation and individualization during Drosophila spermatogenesis. Biochem Biophys Res Commun 2024; 702:149633. [PMID: 38341921 DOI: 10.1016/j.bbrc.2024.149633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Ribosomal protein 25 (RPS25) has been related to male fertility diseases in humans. However, the role of RPS25 in spermatogenesis has yet to be well understood. RpS25 is evolutionarily highly conserved from flies to humans through sequence alignment and phylogenetic tree construction. In this study, we found that RpS25 plays a critical role in Drosophila spermatogenesis and its knockdown leads to male sterility. Examination of each stage of spermatogenesis from RpS25-knockdown flies showed that RpS25 was not required for initial germline cell divisions, but was required for spermatid elongation and individualization. In RpS25-knockdown testes, the average length of cyst elongation was shortened, the spermatid nuclei bundling was disrupted, and the assembly of individualization complex from actin cones failed, resulting in the failure of mature sperm production. Our data revealed an essential role of RpS25 during Drosophila spermatogenesis through regulating spermatid elongation and individualization.
Collapse
Affiliation(s)
- Di Xu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiahui Pan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Clémot M, D’Alterio C, Kwang AC, Jones DL. mTORC1 is required for differentiation of germline stem cells in the Drosophila melanogaster testis. PLoS One 2024; 19:e0300337. [PMID: 38512882 PMCID: PMC10956854 DOI: 10.1371/journal.pone.0300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Metabolism participates in the control of stem cell function and subsequent maintenance of tissue homeostasis. How this is achieved in the context of adult stem cell niches in coordination with other local and intrinsic signaling cues is not completely understood. The Target of Rapamycin (TOR) pathway is a master regulator of metabolism and plays essential roles in stem cell maintenance and differentiation. In the Drosophila male germline, mTORC1 is active in germline stem cells (GSCs) and early germ cells. Targeted RNAi-mediated downregulation of mTor in early germ cells causes a block and/or a delay in differentiation, resulting in an accumulation of germ cells with GSC-like features. These early germ cells also contain unusually large and dysfunctional autolysosomes. In addition, downregulation of mTor in adult male GSCs and early germ cells causes non-autonomous activation of mTORC1 in neighboring cyst cells, which correlates with a disruption in the coordination of germline and somatic differentiation. Our study identifies a previously uncharacterized role of the TOR pathway in regulating male germline differentiation.
Collapse
Affiliation(s)
- Marie Clémot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Cecilia D’Alterio
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Alexa C. Kwang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States of America
- Departments of Anatomy, Division of Geriatrics, University of California, San Francisco, San Francisco, CA, United States of America
- Departments of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
15
|
Rinehart L, Stewart WE, Luffman N, Wawersik M, Kerscher O. Chigno/CG11180 and SUMO are Chinmo-interacting proteins with a role in Drosophila testes somatic support cells. PeerJ 2024; 12:e16971. [PMID: 38495765 PMCID: PMC10944633 DOI: 10.7717/peerj.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Stem cells are critical for replenishment of cells lost to death, damage or differentiation. Drosophila testes are a key model system for elucidating mechanisms regulating stem cell maintenance and differentiation. An intriguing gene identified through such studies is the transcription factor, chronologically inappropriate morphogenesis (Chinmo). Chinmo is a downstream effector of the Jak-STAT signaling pathway that acts in testis somatic stem cells to ensure maintenance of male stem cell fate and sexual identity. Defects in these processes can lead to infertility and the formation of germ cell tumors. While Chinmo's effect on testis stem cell behavior has been investigated in detail, there is still much to be learned about its structure, function, and interactions with other proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins (CG4318, Ova (ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs (SIMs), we analyzed their interaction in more detail. Using site-directed mutagenesis of a unique SIM in CG11180, we demonstrate that Chinmo's interaction with CG11180 is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO are required in somatic cells of adult testes, and that reduction of either protein causes formation of germ cell tumors. Overall, our work suggests that SUMO may be involved in the interaction of Chinmo and CG11180 and that these genes are required in somatic cells of the adult Drosophila testis. Consistent with the CG11180 knockdown phenotype in male testes, and to underscore its connection to Chinmo, we propose the name Chigno (Childless Gambino) for CG11180.
Collapse
Affiliation(s)
- Leanna Rinehart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Wendy E. Stewart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Natalie Luffman
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Matthew Wawersik
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Oliver Kerscher
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| |
Collapse
|
16
|
Robben M, Ramesh B, Pau S, Meletis D, Luber J, Demuth J. scRNA-seq Reveals Novel Genetic Pathways and Sex Chromosome Regulation in Tribolium Spermatogenesis. Genome Biol Evol 2024; 16:evae059. [PMID: 38513111 PMCID: PMC10980526 DOI: 10.1093/gbe/evae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Spermatogenesis is critical to sexual reproduction yet evolves rapidly in many organisms. High-throughput single-cell transcriptomics promises unparalleled insight into this important process but understanding can be impeded in nonmodel systems by a lack of known genes that can reliably demarcate biologically meaningful cell populations. Tribolium castaneum, the red flour beetle, lacks known markers for spermatogenesis found in insect species like Drosophila melanogaster. Using single-cell sequencing data collected from adult beetle testes, we implement a strategy for elucidating biologically meaningful cell populations by using transient expression stage identification markers, weighted principal component clustering, and SNP-based haploid/diploid phasing. We identify populations that correspond to observable points in sperm differentiation and find species specific markers for each stage. Our results indicate that molecular pathways underlying spermatogenesis in Coleoptera are substantially diverged from those in Diptera. We also show that most genes on the X chromosome experience meiotic sex chromosome inactivation. Temporal expression of Drosophila MSL complex homologs coupled with spatial analysis of potential chromatin entry sites further suggests that the dosage compensation machinery may mediate escape from meiotic sex chromosome inactivation and postmeiotic reactivation of the X chromosome.
Collapse
Affiliation(s)
- Michael Robben
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Balan Ramesh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shana Pau
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Demetra Meletis
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jacob Luber
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jeffery Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
17
|
Tan SY, Liu CL, Han HL, Zhai XD, Jiang H, Wang BJ, Wang JJ, Wei D. Two heat shock cognate 70 genes involved in spermatogenesis regulate the male fertility of Zeugodacus cucurbitae, as potential targets for pest control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105816. [PMID: 38582574 DOI: 10.1016/j.pestbp.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 04/08/2024]
Abstract
The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.
Collapse
Affiliation(s)
- Shan-Yuan Tan
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Chuan-Lian Liu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xiao-Di Zhai
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongbo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Bao-Jun Wang
- Chongqing Agricultural Technology Extension Station, Chongqing 401121, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
18
|
Chen X, Qi Y, Huang Q, Sun C, Zheng Y, Ji L, Shi Y, Cheng X, Li Z, Zheng S, Cao Y, Gu Z, Yu J. Single-cell transcriptome characteristics of testicular terminal epithelium lineages during aging in the Drosophila. Aging Cell 2024; 23:e14057. [PMID: 38044573 PMCID: PMC10928582 DOI: 10.1111/acel.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
Aging is a complex biological process leading to impaired functions, with a variety of hallmarks. In the testis of Drosophila, the terminal epithelium region is involved in spermatid release and maturation, while its functional diversity and regulatory mechanism remain poorly understood. In this study, we performed single-cell RNA-sequencing analysis (scRNA-seq) to characterize the transcriptomes of terminal epithelium in Drosophila testes at 2-, 10 and 40-Days. Terminal epithelium populations were defined with Metallothionein A (MtnA) and subdivided into six novel sub-cell clusters (EP0-EP5), and a series of marker genes were identified based on their expressions. The data revealed the functional characteristics of terminal epithelium populations, such as tight junction, focal adhesion, bacterial invasion, oxidative stress, mitochondrial function, proteasome, apoptosis and metabolism. Interestingly, we also found that disrupting genes for several relevant pathways in terminal epithelium led to male fertility disorders. Moreover, we also discovered a series of age-biased genes and pseudotime trajectory mediated state-biased genes during terminal epithelium aging. Differentially expressed genes during terminal epithelium aging were mainly participated in the regulation of several common signatures, e.g. mitochondria-related events, protein synthesis and degradation, and metabolic processes. We further explored the Drosophila divergence and selection in the functional constraints of age-biased genes during aging, revealing that age-biased genes in epithelial cells of 2 Days group evolved rapidly and were endowed with greater evolutionary advantages. scRNA-seq analysis revealed the diversity of testicular terminal epithelium populations, providing a gene target resource for further systematic research of their functions during aging.
Collapse
Affiliation(s)
- Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong University; Medical School of Nantong University, Nantong UniversityNantongJiangsuChina
| | - Yujuan Qi
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Qiuru Huang
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Chi Sun
- Department of GeriatricsAffiliated Hospital of Nantong University, Nantong UniversityNantongChina
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong University; Medical School of Nantong University, Nantong UniversityNantongJiangsuChina
| | - Li Ji
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Yi Shi
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Xinmeng Cheng
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Zhenbei Li
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Sen Zheng
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Yijuan Cao
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Zhifeng Gu
- Department of RheumatologyAffiliated Hospital of Nantong University, Nantong UniversityNantongChina
| | - Jun Yu
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| |
Collapse
|
19
|
Yin Z, Ding G, Xue Y, Yu X, Dong J, Huang J, Ma J, He F. A postmeiotically bifurcated roadmap of honeybee spermatogenesis marked by phylogenetically restricted genes. PLoS Genet 2023; 19:e1011081. [PMID: 38048317 PMCID: PMC10721206 DOI: 10.1371/journal.pgen.1011081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.
Collapse
Affiliation(s)
- Zhiyong Yin
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdi Xue
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianghui Yu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ma
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
21
|
Xue J, Lv J. Analytical approach for specific populations at single-cell resolution: insights for ND-42 mediated mitochondrial derivative function during spermatid elongation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:107-108. [PMID: 38022873 PMCID: PMC10658163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Jiajia Xue
- Center for Reproductive Medicine, Dushu Lake Hospital Affiliated to Soochow University/Medical Center of Soochow University/Suzhou Dushu Lake Hospital Suzhou 215123, Jiangsu, China
| | - Jinxing Lv
- Center for Reproductive Medicine, Dushu Lake Hospital Affiliated to Soochow University/Medical Center of Soochow University/Suzhou Dushu Lake Hospital Suzhou 215123, Jiangsu, China
| |
Collapse
|
22
|
Zheng Y, Mao B, Wang Q, Duan X, Chen MY, Shen W, Li C, Wang YF. Quantitative proteomics and phosphoproteomics reveal insights into mechanisms of ocnus function in Drosophila testis development. BMC Genomics 2023; 24:283. [PMID: 37237333 DOI: 10.1186/s12864-023-09386-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Testis is the only organ supporting sperm production and with the largest number of proteins and tissue-specific proteins in animals. In our previous studies, we have found that knockdown of ocnus (ocn), a testis-specific gene, resulted in much smaller testis with no germ cells in Drosophila melanogaster. However, the molecular consequences of ocn knockdown in fly testes are unknown. RESULTS In this study, through iTRAQ quantitative proteomics sequencing, 606 proteins were identified from fly abdomens as having a significant and at least a 1.5-fold change in expression after ocn knockdown in fly testes, of which 85 were up-regulated and 521 were down-regulated. Among the differential expressed proteins (DEPs), apart from those proteins involved in spermatogenesis, the others extensively affected biological processes of generation of precursor metabolites and energy, metabolic process, and mitochondrial transport. Protein-protein interaction (PPI) analyses of DEPs showed that several kinases and/or phosphatases interacted with Ocn. Re-analyses of the transcriptome revealed 150 differential expressed genes (DEGs) appeared in the DEPs, and their changing trends in expressions after ocn knockdown were consistent. Many common down-regulated DEGs and DEPs were testis-specific or highly expressed in the testis of D. melanogaster. Quantitative RT-PCR (qRT-PCR) confirmed 12 genes appeared in both DEGs and DEPs were significantly down-regulated after ocn knockdown in fly testes. Furthermore, 153 differentially expressed phosphoproteins (DEPPs), including 72 up-regulated and 94 down-regulated phosphorylated proteins were also identified (13 phosphoproteins appeared in both up- and down-regulated groups due to having multiple phosphorylation sites). In addition to those DEPPs associated with spermatogenesis, the other DEPPs were enriched in actin filament-based process, protein folding, and mesoderm development. Some DEPs and DEPPs were involved in Notch, JAK/STAT, and cell death pathways. CONCLUSIONS Given the drastic effect of the ocn knockdown on tissue development and testis cells composition, the differences in protein abundance in the ocn knockdown flies might not necessarily be the direct result of differential gene regulation due to the inactivation of ocn. Nevertheless, our results suggest that the expression of ocn is essential for Drosophila testis development and that its down-regulation disturbs key signaling pathways related to cell survival and differentiation. These DEPs and DEPPs identified may provide significant candidate set for future studies on the mechanism of male reproduction of animals, including humans.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chao Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
23
|
Canal Domenech B, Fricke C. Developmental heat stress interrupts spermatogenesis inducing early male sterility in Drosophila melanogaster. J Therm Biol 2023; 114:103589. [PMID: 37300998 DOI: 10.1016/j.jtherbio.2023.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/12/2023]
Abstract
Thermal stress leads to fertility reduction, can cause temporal sterility and thus results in fitness loss with severe ecological and evolutionary consequences, e.g., threatening species persistence already at sub-lethal temperatures. For males we here tested which developmental stage is particularly sensitive to heat stress in the model species Drosophila melanogaster. As developmental stages characterize the different steps of sperm development, we could narrow down which particular processes are heat sensitive. We studied early male reproductive ability and, by following recovery dynamics after a move to benign temperatures, we investigated general mechanisms behind a subsequent gain of fertility. We found strong support to suggest that the last steps of spermatogenesis are particularly sensitive to heat stress, as processes occurring during the pupal stage were mostly interrupted, delaying both sperm production and sperm maturation. Moreover, further measurements in the testes and for proxies of sperm availability indicating the onset of adult reproductive capacity matched the expected heat-induced delay in completing spermatogenesis. We discuss these results within the context of how heat stress affects reproductive organ function and the consequences for male reproductive potential.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany; Muenster Graduate School of Evolution, University of Muenster, Muenster, Germany.
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany; Institute for Zoology, Halle-Wittenberg University, Halle (Saale), Germany.
| |
Collapse
|
24
|
Chandrasekhara C, Ranjan R, Urban JA, Davis BEM, Ku WL, Snedeker J, Zhao K, Chen X. A single N-terminal amino acid determines the distinct roles of histones H3 and H3.3 in the Drosophila male germline stem cell lineage. PLoS Biol 2023; 21:e3002098. [PMID: 37126497 PMCID: PMC10174566 DOI: 10.1371/journal.pbio.3002098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/11/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Adult stem cells undergo asymmetric cell divisions to produce 2 daughter cells with distinct cell fates: one capable of self-renewal and the other committed for differentiation. Misregulation of this delicate balance can lead to cancer and tissue degeneration. During asymmetric division of Drosophila male germline stem cells (GSCs), preexisting (old) and newly synthesized histone H3 are differentially segregated, whereas old and new histone variant H3.3 are more equally inherited. However, what underlies these distinct inheritance patterns remains unknown. Here, we report that the N-terminal tails of H3 and H3.3 are critical for their inheritance patterns, as well as GSC maintenance and proper differentiation. H3 and H3.3 differ at the 31st position in their N-termini with Alanine for H3 and Serine for H3.3. By swapping these 2 amino acids, we generated 2 mutant histones (i.e., H3A31S and H3.3S31A). Upon expressing them in the early-stage germline, we identified opposing phenotypes: overpopulation of early-stage germ cells in the H3A31S-expressing testes and significant germ cell loss in testes expressing the H3.3S31A. Asymmetric H3 inheritance is disrupted in the H3A31S-expressing GSCs, due to misincorporation of old histones between sister chromatids during DNA replication. Furthermore, H3.3S31A mutation accelerates old histone turnover in the GSCs. Finally, using a modified Chromatin Immunocleavage assay on early-stage germ cells, we found that H3A31S has enhanced occupancy at promoters and transcription starting sites compared with H3, while H3.3S31A is more enriched at transcriptionally silent intergenic regions compared to H3.3. Overall, these results suggest that the 31st amino acids for both H3 and H3.3 are critical for their proper genomic occupancy and function. Together, our findings indicate a critical role for the different amino acid composition of the N-terminal tails between H3 and H3.3 in an endogenous stem cell lineage and provide insights into the importance of proper histone inheritance in specifying cell fates and regulating cellular differentiation.
Collapse
Affiliation(s)
- Chinmayi Chandrasekhara
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer A. Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
25
|
Yu J, Li Z, Fu Y, Sun F, Chen X, Huang Q, He L, Yu H, Ji L, Cheng X, Shi Y, Shen C, Zheng B, Sun F. Single-cell RNA-sequencing reveals the transcriptional landscape of ND-42 mediated spermatid elongation via mitochondrial derivative maintenance in Drosophila testes. Redox Biol 2023; 62:102671. [PMID: 36933391 PMCID: PMC10036812 DOI: 10.1016/j.redox.2023.102671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During spermatogenesis, mitochondria extend along the whole length of spermatid tail and offer a structural platform for microtubule reorganization and synchronized spermatid individualization, that eventually helps to generate mature sperm in Drosophila. However, the regulatory mechanism of spermatid mitochondria during elongation remains largely unknown. Herein, we demonstrated that NADH dehydrogenase (ubiquinone) 42 kDa subunit (ND-42) was essential for male fertility and spermatid elongation in Drosophila. Moreover, ND-42 depletion led to mitochondrial disorders in Drosophila testes. Based on single-cell RNA-sequencing (scRNA-seq), we identified 15 distinct cell clusters, including several unanticipated transitional subpopulations or differentiative stages for testicular germ cell complexity in Drosophila testes. Enrichments of the transcriptional regulatory network in the late-stage cell populations revealed key roles of ND-42 in mitochondria and its related biological processes during spermatid elongation. Notably, we demonstrated that ND-42 depletion led to maintenance defects of the major mitochondrial derivative and the minor mitochondrial derivative by affecting mitochondrial membrane potential and mitochondrial-encoded genes. Our study proposes a novel regulatory mechanism of ND-42 for spermatid mitochondrial derivative maintenance, contributing to a better understanding of spermatid elongation.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Zhiran Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Lei He
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
26
|
Yu J, Fu Y, Li Z, Huang Q, Tang J, Sun C, Zhou P, He L, Sun F, Cheng X, Ji L, Yu H, Shi Y, Gu Z, Sun F, Zhao X. Single-cell RNA sequencing reveals cell landscape following antimony exposure during spermatogenesis in Drosophila testes. Cell Death Discov 2023; 9:86. [PMID: 36894529 PMCID: PMC9998446 DOI: 10.1038/s41420-023-01391-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antimony (Sb), is thought to induce testicular toxicity, although this remains controversial. This study investigated the effects of Sb exposure during spermatogenesis in the Drosophila testis and the underlying transcriptional regulatory mechanism at single-cell resolution. Firstly, we found that flies exposed to Sb for 10 days led to dose-dependent reproductive toxicity during spermatogenesis. Protein expression and RNA levels were measured by immunofluorescence and quantitative real-time PCR (qRT-PCR). Single-cell RNA sequencing (scRNA-seq) was performed to characterize testicular cell composition and identify the transcriptional regulatory network after Sb exposure in Drosophila testes. scRNA-seq analysis revealed that Sb exposure influenced various testicular cell populations, especially in GSCs_to_Early_Spermatogonia and Spermatids clusters. Importantly, carbon metabolism was involved in GSCs/early spermatogonia maintenance and positively related with SCP-Containing Proteins, S-LAPs, and Mst84D signatures. Moreover, Seminal Fluid Proteins, Mst57D, and Serpin signatures were highly positively correlated with spermatid maturation. Pseudotime trajectory analysis revealed three novel states for the complexity of germ cell differentiation, and many novel genes (e.g., Dup98B) were found to be expressed in state-biased manners during spermatogenesis. Collectively, this study indicates that Sb exposure negatively impacts GSC maintenance and spermatid elongation, damaging spermatogenesis homeostasis via multiple signatures in Drosophila testes and therefore supporting Sb-mediated testicular toxicity.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Zhiran Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Peiyao Zhou
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Lei He
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
27
|
Ridwan SM, Antel M, Inaba M. Enrichment of Undifferentiated Germline and Somatic Cells from Drosophila Testes. Methods Mol Biol 2023; 2677:127-138. [PMID: 37464239 DOI: 10.1007/978-1-0716-3259-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The Drosophila male germline provides a strong model system to understand numerous developmental and cell-biological processes, owing to a well-defined anatomy and cell type markers in combination with various genetic tools available for the Drosophila system. A major weakness of this system has been the difficulty of approaches for obtaining material for biochemical assays, proteomics, and genomic or transcriptomic profiling due to small-size and complex tissues. However, the recent development of techniques has started allowing us the usage of a low amount of material for these analyses and now we can strategize many new experiments. The method for enrichment or isolation of rare populations of cells is still challenging and should meaningfully influence the reliability of the results. Here, we provide our semi-optimized protocol of enrichment of undifferentiated germ cells and somatic cells from non-tumorous Drosophila testis, which we have successfully improved after multiple trials.
Collapse
Affiliation(s)
- Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Matthew Antel
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
28
|
Ueda K, Haskins J, Simmonds AJ. Manipulation and Visualization of Peroxisomes in Drosophila. Methods Mol Biol 2023; 2643:455-467. [PMID: 36952206 DOI: 10.1007/978-1-0716-3048-8_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Drosophila melanogaster is a proven metazoan model to investigate the fundamentals of human genetic diseases including peroxisome-related disorders. Drosophila have facile cell and animal culture but with a relatively simpler genome and organ morphology compared to vertebrates. Drosophila Schneider 2 (S2) cells have been used extensively as a platform for investigating peroxisome functions like transport along the cytoskeleton via their amenability to RNA-interference (RNAi)-based gene knockdown. Similarly, novel findings regarding tissue-specific roles for peroxisomes have come from studies in developing flies. Individual organs can be targeted for RNAi or gene mutations affecting a limited group of cells in the context of the entire animal. Here, we provide basic protocols on how to visualize peroxisomes and manipulate expression of the Peroxin or other peroxisome genes in S2 cells and developing Drosophila organs.
Collapse
Affiliation(s)
- Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Julie Haskins
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew James Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
29
|
Canal Domenech B, Fricke C. Recovery from heat-induced infertility-A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster. Ecol Evol 2022; 12:e9563. [PMID: 36466140 PMCID: PMC9712812 DOI: 10.1002/ece3.9563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
The predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature-induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male Drosophila melanogaster. We heat-stressed males during development and either allowed them to recover or not in early adulthood while measuring several determinants of male reproductive success. We found significant differences in recovery rate, organ sizes, sperm production, and other key reproductive traits among males from our different temperature treatments. Sperm maturation was impaired before reaching the upper thermal sterility threshold. While some effects were reversible, this did not compensate for the fitness loss due to damage imposed during development. Surprisingly, developmental heat stress was damaging to accessory gland growth, and female post-mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub-lethal thermal sterility and the subsequent fertility reduction are caused by a combination of inefficient functionality of both the accessory gland and testes.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Muenster Graduate School of Evolution University of Muenster Muenster Germany
| | - Claudia Fricke
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Institute for Zoology Halle-Wittenberg University Halle (Saale) Germany
| |
Collapse
|
30
|
Eya-controlled affinity between cell lineages drives tissue self-organization during Drosophila oogenesis. Nat Commun 2022; 13:6377. [PMID: 36289235 PMCID: PMC9605976 DOI: 10.1038/s41467-022-33845-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cooperative morphogenesis of cell lineages underlies the development of functional units and organs. To study mechanisms driving the coordination of lineages, we investigated soma-germline interactions during oogenesis. From invertebrates to vertebrates, oocytes develop as part of a germline cyst that consists of the oocyte itself and so-called nurse cells, which feed the oocyte and are eventually removed. The enveloping somatic cells specialize to facilitate either oocyte maturation or nurse cell removal, which makes it essential to establish the right match between germline and somatic cells. We uncover that the transcriptional regulator Eya, expressed in the somatic lineage, controls bilateral cell-cell affinity between germline and somatic cells in Drosophila oogenesis. Employing functional studies and mathematical modelling, we show that differential affinity and the resulting forces drive somatic cell redistribution over the germline surface and control oocyte growth to match oocyte and nurse cells with their respective somatic cells. Thus, our data demonstrate that differential affinity between cell lineages is sufficient to drive the complex assembly of inter-lineage functional units and underlies tissue self-organization during Drosophila oogenesis.
Collapse
|
31
|
Gap junctions mediate discrete regulatory steps during fly spermatogenesis. PLoS Genet 2022; 18:e1010417. [PMID: 36174062 PMCID: PMC9578636 DOI: 10.1371/journal.pgen.1010417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Gametogenesis requires coordinated signaling between germ cells and somatic cells. We previously showed that Gap junction (GJ)-mediated soma-germline communication is essential for fly spermatogenesis. Specifically, the GJ protein Innexin4/Zero population growth (Zpg) is necessary for somatic and germline stem cell maintenance and differentiation. It remains unknown how GJ-mediated signals regulate spermatogenesis or whether the function of these signals is restricted to the earliest stages of spermatogenesis. Here we carried out comprehensive structure/function analysis of Zpg using insights obtained from the protein structure of innexins to design mutations aimed at selectively perturbing different regulatory regions as well as the channel pore of Zpg. We identify the roles of various regulatory sites in Zpg in the assembly and maintenance of GJs at the plasma membrane. Moreover, mutations designed to selectively disrupt, based on size and charge, the passage of cargos through the Zpg channel pore, blocked different stages of spermatogenesis. Mutations were identified that progressed through early germline and soma development, but exhibited defects in entry to meiosis or sperm individualisation, resulting in reduced fertility or sterility. Our work shows that specific signals that pass through GJs regulate the transition between different stages of gametogenesis.
Collapse
|
32
|
Lee S, Chen YC, Gillen AE, Taliaferro JM, Deplancke B, Li H, Lai EC. Diverse cell-specific patterns of alternative polyadenylation in Drosophila. Nat Commun 2022; 13:5372. [PMID: 36100597 PMCID: PMC9470587 DOI: 10.1038/s41467-022-32305-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most genes in higher eukaryotes express isoforms with distinct 3' untranslated regions (3' UTRs), generated by alternative polyadenylation (APA). Since 3' UTRs are predominant locations of post-transcriptional regulation, APA can render such programs conditional, and can also alter protein sequences via alternative last exon (ALE) isoforms. We previously used 3'-sequencing from diverse Drosophila samples to define multiple tissue-specific APA landscapes. Here, we exploit comprehensive single nucleus RNA-sequencing data (Fly Cell Atlas) to elucidate cell-type expression of 3' UTRs across >250 adult Drosophila cell types. We reveal the cellular bases of multiple tissue-specific APA/ALE programs, such as 3' UTR lengthening in differentiated neurons and 3' UTR shortening in spermatocytes and spermatids. We trace dynamic 3' UTR patterns across cell lineages, including in the male germline, and discover new APA patterns in the intestinal stem cell lineage. Finally, we correlate expression of RNA binding proteins (RBPs), miRNAs and global levels of cleavage and polyadenylation (CPA) factors in several cell types that exhibit characteristic APA landscapes, yielding candidate regulators of transcriptome complexity. These analyses provide a comprehensive foundation for future investigations of mechanisms and biological impacts of alternative 3' isoforms across the major cell types of this widely-studied model organism.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY, 10013, USA
| | | | - Austin E Gillen
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering & Global Health Institute, School of Life Sciences, EPFL, CH-1015, Lausanne, Switzerland
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA.
| |
Collapse
|
33
|
Kunduri G, Le SH, Baena V, Vijaykrishna N, Harned A, Nagashima K, Blankenberg D, Yoshihiro I, Narayan K, Bamba T, Acharya U, Acharya JK. Delivery of ceramide phosphoethanolamine lipids to the cleavage furrow through the endocytic pathway is essential for male meiotic cytokinesis. PLoS Biol 2022; 20:e3001599. [PMID: 36170207 PMCID: PMC9550178 DOI: 10.1371/journal.pbio.3001599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/10/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cell division, wherein 1 cell divides into 2 daughter cells, is fundamental to all living organisms. Cytokinesis, the final step in cell division, begins with the formation of an actomyosin contractile ring, positioned midway between the segregated chromosomes. Constriction of the ring with concomitant membrane deposition in a specified spatiotemporal manner generates a cleavage furrow that physically separates the cytoplasm. Unique lipids with specific biophysical properties have been shown to localize to intercellular bridges (also called midbody) connecting the 2 dividing cells; however, their biological roles and delivery mechanisms remain largely unknown. In this study, we show that ceramide phosphoethanolamine (CPE), the structural analog of sphingomyelin, has unique acyl chain anchors in Drosophila spermatocytes and is essential for meiotic cytokinesis. The head group of CPE is also important for spermatogenesis. We find that aberrant central spindle and contractile ring behavior but not mislocalization of phosphatidylinositol phosphates (PIPs) at the plasma membrane is responsible for the male meiotic cytokinesis defect in CPE-deficient animals. Further, we demonstrate the enrichment of CPE in multivesicular bodies marked by Rab7, which in turn localize to cleavage furrow. Volume electron microscopy analysis using correlative light and focused ion beam scanning electron microscopy shows that CPE-enriched Rab7 positive endosomes are juxtaposed on contractile ring material. Correlative light and transmission electron microscopy reveal Rab7 positive endosomes as a multivesicular body-like organelle that releases its intraluminal vesicles in the vicinity of ingressing furrows. Genetic ablation of Rab7 or Rab35 or expression of dominant negative Rab11 results in significant meiotic cytokinesis defects. Further, we show that Rab11 function is required for localization of CPE positive endosomes to the cleavage furrow. Our results imply that endosomal delivery of CPE to ingressing membranes is crucial for meiotic cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Si-Hung Le
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Valentina Baena
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nagampalli Vijaykrishna
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kunio Nagashima
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Daniel Blankenberg
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Izumi Yoshihiro
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Usha Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jairaj K. Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
34
|
Maaroufi HO, Pauchova L, Lin YH, Wu BCH, Rouhova L, Kucerova L, Vieira LC, Renner M, Sehadova H, Hradilova M, Zurovec M. Mutation in Drosophila concentrative nucleoside transporter 1 alters spermatid maturation and mating behavior. Front Cell Dev Biol 2022; 10:945572. [PMID: 36105362 PMCID: PMC9467524 DOI: 10.3389/fcell.2022.945572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Concentrative nucleoside transporters (Cnts) are unidirectional carriers that mediate the energy-costly influx of nucleosides driven by the transmembrane sodium gradient. Cnts are transmembrane proteins that share a common structural organization and are found in all phyla. Although there have been studies on Cnts from a biochemical perspective, no deep research has examined their role at the organismal level. Here, we investigated the role of the Drosophila melanogaster cnt1 gene, which is specifically expressed in the testes. We used the CRISPR/Cas9 system to generate a mutation in the cnt1 gene. The cnt1 mutants exhibited defects in the duration of copulation and spermatid maturation, which significantly impaired male fertility. The most striking effect of the cnt1 mutation in spermatid maturation was an abnormal structure of the sperm tail, in which the formation of major and minor mitochondrial derivatives was disrupted. Our results demonstrate the importance of cnt1 in male fertility and suggest that the observed defects in mating behavior and spermatogenesis are due to alterations in nucleoside transport and associated metabolic pathways.
Collapse
Affiliation(s)
- Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Pauchova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Bulah Chia-Hsiang Wu
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Ligia Cota Vieira
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Marek Renner
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Hana Sehadova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Miluse Hradilova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
- *Correspondence: Michal Zurovec,
| |
Collapse
|
35
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
36
|
Sênos Demarco R, Stack BJ, Tang AM, Voog J, Sandall SL, Southall TD, Brand AH, Jones DL. Escargot controls somatic stem cell maintenance through the attenuation of the insulin receptor pathway in Drosophila. Cell Rep 2022; 39:110679. [PMID: 35443165 PMCID: PMC9043617 DOI: 10.1016/j.celrep.2022.110679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 11/24/2021] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Adult stem cells coordinate intrinsic and extrinsic, local and systemic, cues to maintain the proper balance between self-renewal and differentiation. However, the precise mechanisms stem cells use to integrate these signals remain elusive. Here, we show that Escargot (Esg), a member of the Snail family of transcription factors, regulates the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis by attenuating the activity of the pro-differentiation insulin receptor (InR) pathway. Esg positively regulates the expression of an antagonist of insulin signaling, ImpL2, while also attenuating the expression of InR. Furthermore, Esg-mediated repression of the InR pathway is required to suppress CySC loss in response to starvation. Given the conservation of Snail-family transcription factors, characterizing the mechanisms by which Esg regulates cell-fate decisions during homeostasis and a decline in nutrient availability is likely to provide insight into the metabolic regulation of stem cell behavior in other tissues and organisms.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brian J Stack
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander M Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Voog
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sharsti L Sandall
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Anatomy, Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster. Cells 2022; 11:cells11040695. [PMID: 35203341 PMCID: PMC8870657 DOI: 10.3390/cells11040695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during cytokinesis, but abscission does not take place. Thus, clusters of primary and secondary spermatocytes undergo meiotic divisions in synchrony, resulting in cysts of 32 secondary spermatocytes and then 64 spermatids connected by specialized structures called ring canals. The meiotic spindles in Drosophila males are substantially larger than the spindles of mammalian somatic cells and exhibit prominent central spindles and contractile rings during cytokinesis. These characteristics make male meiotic cells particularly amenable to immunofluorescence and live imaging analysis of the spindle microtubules and the actomyosin apparatus during meiotic divisions. Moreover, because the spindle assembly checkpoint is not robust in spermatocytes, Drosophila male meiosis allows investigating of whether gene products required for chromosome segregation play additional roles during cytokinesis. Here, we will review how the research studies on Drosophila male meiotic cells have contributed to our knowledge of the conserved molecular pathways that regulate spindle microtubules and cytokinesis with important implications for the comprehension of cancer and other diseases.
Collapse
|
38
|
Rowe L, Rockwell AL. Ubiquitous Knockdown of Mettl3 using TRiP.GL01126 Results in Spermatid Mislocalization During Drosophila Spermatogenesis. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000511. [PMID: 35071998 PMCID: PMC8767421 DOI: 10.17912/micropub.biology.000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
METTL3, the enzyme that catalyzes the m6A RNA modification in Drosophila is highly conserved and essential in various eukaryotic organisms. Mettl3 and its homologs have been linked to biological processes such as gametogenesis. We focused on characterizing the role of METTL3 in Drosophila spermatogenesis. We used the Gal4-UAS system to ubiquitously knockdown Mettl3 in both somatic cyst cells and germline cells. Using immunostaining and confocal microscopy, we found spermatid bundles mislocalize in testes that contain the morphologically abnormal swollen apical tip. Our result suggests Mettl3 knockdown using TRiP.GL01126 results in spermatogenesis aberrations.
Collapse
|
39
|
Bauerly E, Akiyama T, Staber C, Yi K, Gibson MC. Impact of cilia-related genes on mitochondrial dynamics during Drosophila spermatogenesis. Dev Biol 2021; 482:17-27. [PMID: 34822845 DOI: 10.1016/j.ydbio.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
Spermatogenesis is a dynamic process of cellular differentiation that generates the mature spermatozoa required for reproduction. Errors that arise during this process can lead to sterility due to low sperm counts and malformed or immotile sperm. While it is estimated that 1 out of 7 human couples encounter infertility, the underlying cause of male infertility can only be identified in 50% of cases. Here, we describe and examine the genetic requirements for missing minor mitochondria (mmm), sterile affecting ciliogenesis (sac), and testes of unusual size (tous), three previously uncharacterized genes in Drosophila that are predicted to be components of the flagellar axoneme. Using Drosophila, we demonstrate that these genes are essential for male fertility and that loss of mmm, sac, or tous results in complete immotility of the sperm flagellum. Cytological examination uncovered additional roles for sac and tous during cytokinesis and transmission electron microscopy of developing spermatids in mmm, sac, and tous mutant animals revealed defects associated with mitochondria and the accessory microtubules required for the proper elongation of the mitochondria and flagella during ciliogenesis. This study highlights the complex interactions of cilia-related proteins within the cell body and advances our understanding of male infertility by uncovering novel mitochondrial defects during spermatogenesis.
Collapse
Affiliation(s)
| | - Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Cynthia Staber
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
40
|
Meiosis initiation: a story of two sexes in all creatures great and small. Biochem J 2021; 478:3791-3805. [PMID: 34709374 PMCID: PMC8589329 DOI: 10.1042/bcj20210412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Meiosis facilitates diversity across individuals and serves as a major driver of evolution. However, understanding how meiosis begins is complicated by fundamental differences that exist between sexes and species. Fundamental meiotic research is further hampered by a current lack of human meiotic cells lines. Consequently, much of what we know relies on data from model organisms. However, contextualising findings from yeast, worms, flies and mice can be challenging, due to marked differences in both nomenclature and the relative timing of meiosis. In this review, we set out to combine current knowledge of signalling and transcriptional pathways that control meiosis initiation across the sexes in a variety of organisms. Furthermore, we highlight the emerging links between meiosis initiation and oncogenesis, which might explain the frequent re-expression of normally silent meiotic genes in a variety of human cancers.
Collapse
|
41
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
42
|
Rivard EL, Ludwig AG, Patel PH, Grandchamp A, Arnold SE, Berger A, Scott EM, Kelly BJ, Mascha GC, Bornberg-Bauer E, Findlay GD. A putative de novo evolved gene required for spermatid chromatin condensation in Drosophila melanogaster. PLoS Genet 2021; 17:e1009787. [PMID: 34478447 PMCID: PMC8445463 DOI: 10.1371/journal.pgen.1009787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics has enabled the identification of genes that potentially evolved de novo from non-coding sequences. Many such genes are expressed in male reproductive tissues, but their functions remain poorly understood. To address this, we conducted a functional genetic screen of over 40 putative de novo genes with testis-enriched expression in Drosophila melanogaster and identified one gene, atlas, required for male fertility. Detailed genetic and cytological analyses showed that atlas is required for proper chromatin condensation during the final stages of spermatogenesis. Atlas protein is expressed in spermatid nuclei and facilitates the transition from histone- to protamine-based chromatin packaging. Complementary evolutionary analyses revealed the complex evolutionary history of atlas. The protein-coding portion of the gene likely arose at the base of the Drosophila genus on the X chromosome but was unlikely to be essential, as it was then lost in several independent lineages. Within the last ~15 million years, however, the gene moved to an autosome, where it fused with a conserved non-coding RNA and evolved a non-redundant role in male fertility. Altogether, this study provides insight into the integration of novel genes into biological processes, the links between genomic innovation and functional evolution, and the genetic control of a fundamental developmental process, gametogenesis.
Collapse
Affiliation(s)
- Emily L. Rivard
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Andrew G. Ludwig
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Prajal H. Patel
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | | | - Sarah E. Arnold
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | | | - Emilie M. Scott
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Brendan J. Kelly
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Grace C. Mascha
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Erich Bornberg-Bauer
- University of Münster, Münster, Germany
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Geoffrey D. Findlay
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| |
Collapse
|
43
|
Wu J, Li X, Gao Z, Pang L, Liu X, Huang X, Wang Y, Wang Z. RNA kinase CLP1/Cbc regulates meiosis initiation in spermatogenesis. Hum Mol Genet 2021; 30:1569-1578. [PMID: 33864361 PMCID: PMC8369837 DOI: 10.1093/hmg/ddab107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/14/2022] Open
Abstract
CLP1, TSEN complex, and VCP are evolutionarily conserved proteins whose mutations are associated with neurodegenerative diseases. In this study, we have found that they are also involved in germline differentiation. To optimize both quantity and quality in gametes production, germ cells expand themselves through limited mitotic cycles prior to meiosis. Stemming from our previous findings on the correlation between mRNA 3'-processing and meiosis entry, here we identify that the RNA kinase Cbc, the Drosophila member of the highly conserved CLP1 family, is a component of the program regulating the transition from mitosis to meiosis. Using genetic manipulations in Drosophila testis, we demonstrate that nuclear Cbc is required to promote meiosis entry. Combining biochemical and genetic methods, we reveal that Cbc physically and/or genetically intersects with Tsen54 and TER94 (VCP ortholog) in this process. The C-terminal half of Tsen54 is both necessary and sufficient for its binding with Cbc. Further, we illustrate the functional conservation between Cbc and mammalian CLP1 in the assays of subcellular localization and Drosophila fertility. As CLP1, TSEN complex, and VCP have also been identified in neurodegenerations of animal models, a mechanism involving these factors seems to be shared in gametogenesis and neurogenesis.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Zhiyang Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Lin Pang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Xian Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Zhaohui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| |
Collapse
|
44
|
Zhu L, Fukunaga R. RNA-binding protein Maca is crucial for gigantic male fertility factor gene expression, spermatogenesis, and male fertility, in Drosophila. PLoS Genet 2021; 17:e1009655. [PMID: 34181646 PMCID: PMC8248703 DOI: 10.1371/journal.pgen.1009655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/01/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
During spermatogenesis, the process in which sperm for fertilization are produced from germline cells, gene expression is spatiotemporally highly regulated. In Drosophila, successful expression of extremely large male fertility factor genes on Y-chromosome spanning some megabases due to their gigantic intron sizes is crucial for spermatogenesis. Expression of such extremely large genes must be challenging, but the molecular mechanism that allows it remains unknown. Here we report that a novel RNA-binding protein Maca, which contains two RNA-recognition motifs, is crucial for this process. maca null mutant male flies exhibited a failure in the spermatid individualization process during spermatogenesis, lacked mature sperm, and were completely sterile, while maca mutant female flies were fully fertile. Proteomics and transcriptome analyses revealed that both protein and mRNA abundance of the gigantic male fertility factor genes kl-2, kl-3, and kl-5 (kl genes) are significantly decreased, where the decreases of kl-2 are particularly dramatic, in maca mutant testes. Splicing of the kl-3 transcripts was also dysregulated in maca mutant testes. All these physiological and molecular phenotypes were rescued by a maca transgene in the maca mutant background. Furthermore, we found that in the control genetic background, Maca is exclusively expressed in spermatocytes in testes and enriched at Y-loop A/C in the nucleus, where the kl-5 primary transcripts are localized. Our data suggest that Maca increases transcription processivity, promotes successful splicing of gigantic introns, and/or protects transcripts from premature degradation, of the kl genes. Our study identified a novel RNA-binding protein Maca that is crucial for successful expression of the gigantic male fertility factor genes, spermatogenesis, and male fertility.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The expanding field of stem cell metabolism has been supported by technical advances in metabolite profiling and novel functional analyses. While use of these methodologies has been fruitful, many challenges are posed by the intricacies of culturing stem cells in vitro, along with the distinctive scarcity of adult tissue stem cells and the complexities of their niches in vivo. This review provides an examination of the methodologies used to characterize stem cell metabolism, highlighting their utility while placing a sharper focus on their limitations and hurdles the field needs to overcome for the optimal study of stem cell metabolic networks.
Collapse
|
46
|
Wang P, Yang F, Ma Z, Zhang R. Chromosome Unipolar Division and Low Expression of Tws May Cause Parthenogenesis of Rice Water Weevil ( Lissorhoptrus oryzophilus Kuschel). INSECTS 2021; 12:278. [PMID: 33805047 PMCID: PMC8064085 DOI: 10.3390/insects12040278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Rice water weevil (RWW) is divided into two types of population, triploid parthenogenesis and diploid bisexual reproduction. In this study, we explored the meiosis of triploid parthenogenesis RWW (Shangzhuang Town, Haidian District, Beijing, China) by marking the chromosomes and microtubules of parthenogenetic RWW oocytes via immunostaining. The immunostaining results show that there is a canonical meiotic spindle formed in the triploid parthenogenetic RWW oocytes, but chromosomes segregate at only one pole, which means that there is a chromosomal unipolar division during the oogenesis of the parthenogenetic RWW. Furthermore, we cloned the conserved sequences of parthenogenetic RWW REC8 and Tws, and designed primers based on the parthenogenetic RWW sequence to detect expression patterns by quantitative PCR (Q-PCR). Q-PCR results indicate that the expression of REC8 and Tws in ovarian tissue of bisexual Drosophila melanogaster is 0.98 and 10,000.00 times parthenogenetic RWW, respectively (p < 0.01). The results show that Tws had low expression in parthenogenetic RWW ovarian tissue, and REC8 was expressed normally. Our study suggests that the chromosomal unipolar division and deletion of Tws may cause parthenogenesis in RWW.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- Department of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhuo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Abstract
Mitochondrial fusion and fission (mitochondrial dynamics) are homeostatic processes that safeguard normal cellular function. This relationship is especially strong in tissues with constitutively high energy demands, such as brain, heart and skeletal muscle. Less is known about the role of mitochondrial dynamics in developmental systems that involve changes in metabolic function. One such system is spermatogenesis. The first mitochondrial dynamics gene, Fuzzy onions (Fzo), was discovered in 1997 to mediate mitochondrial fusion during Drosophila spermatogenesis. In mammals, however, the role of mitochondrial fusion during spermatogenesis remained unknown for nearly two decades after discovery of Fzo Mammalian spermatogenesis is one of the most complex and lengthy differentiation processes in biology, transforming spermatogonial stem cells into highly specialized sperm cells over a 5-week period. This elaborate differentiation process requires several developmentally regulated mitochondrial and metabolic transitions, making it an attractive model system for studying mitochondrial dynamics in vivo We review the emerging role of mitochondrial biology, and especially its dynamics, during the development of the male germ line.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
48
|
Hudry B, de Goeij E, Mineo A, Gaspar P, Hadjieconomou D, Studd C, Mokochinski JB, Kramer HB, Plaçais PY, Preat T, Miguel-Aliaga I. Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell 2020; 178:901-918.e16. [PMID: 31398343 PMCID: PMC6700282 DOI: 10.1016/j.cell.2019.07.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized. Intestinal carbohydrate metabolism is male-biased and region-specific Testes masculinize gut sugar handling by promoting enterocyte JAK-STAT signaling The male intestine secretes citrate to the adjacent testes Gut-derived citrate promotes food intake and sperm maturation
Collapse
Affiliation(s)
- Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; Université Côte d'Azur, CNRS, INSERM, iBV, France.
| | - Eva de Goeij
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alessandro Mineo
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Joao B Mokochinski
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
49
|
Sênos Demarco R, Uyemura BS, Jones DL. EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis. Cell Rep 2020; 30:1101-1116.e5. [PMID: 31995752 PMCID: PMC7357864 DOI: 10.1016/j.celrep.2019.12.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Although typically upregulated upon cellular stress, autophagy can also be utilized under homeostatic conditions as a quality control mechanism or in response to developmental cues. Here, we report that autophagy is required for the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis. Disruption of autophagy in CySCs and early cyst cells (CCs) by the depletion of autophagy-related (Atg) genes reduced early CC numbers and affected CC function, resembling decreased epidermal growth factor receptor (EGFR) signaling. Indeed, our data indicate that EGFR acts to stimulate autophagy to preserve early CC function, whereas target of rapamycin (TOR) negatively regulates autophagy in the differentiating CCs. Finally, we show that the EGFR-mediated stimulation of autophagy regulates lipid levels in CySCs and CCs. These results demonstrate a key role for autophagy in regulating somatic stem cell behavior and tissue homeostasis by integrating cues from both the EGFR and TOR signaling pathways to control lipid metabolism.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bradley S Uyemura
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Wat LW, Chao C, Bartlett R, Buchanan JL, Millington JW, Chih HJ, Chowdhury ZS, Biswas P, Huang V, Shin LJ, Wang LC, Gauthier MPL, Barone MC, Montooth KL, Welte MA, Rideout EJ. A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS Biol 2020; 18:e3000595. [PMID: 31961851 PMCID: PMC6994176 DOI: 10.1371/journal.pbio.3000595] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/31/2020] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Triglycerides are the major form of stored fat in all animals. One important determinant of whole-body fat storage is whether an animal is male or female. Here, we use Drosophila, an established model for studies on triglyceride metabolism, to gain insight into the genes and physiological mechanisms that contribute to sex differences in fat storage. Our analysis of triglyceride storage and breakdown in both sexes identified a role for triglyceride lipase brummer (bmm) in the regulation of sex differences in triglyceride homeostasis. Normally, male flies have higher levels of bmm mRNA both under normal culture conditions and in response to starvation, a lipolytic stimulus. We find that loss of bmm largely eliminates the sex difference in triglyceride storage and abolishes the sex difference in triglyceride breakdown via strongly male-biased effects. Although we show that bmm function in the fat body affects whole-body triglyceride levels in both sexes, in males, we identify an additional role for bmm function in the somatic cells of the gonad and in neurons in the regulation of whole-body triglyceride homeostasis. Furthermore, we demonstrate that lipid droplets are normally present in both the somatic cells of the male gonad and in neurons, revealing a previously unrecognized role for bmm function, and possibly lipid droplets, in these cell types in the regulation of whole-body triglyceride homeostasis. Taken together, our data reveal a role for bmm function in the somatic cells of the gonad and in neurons in the regulation of male–female differences in fat storage and breakdown and identify bmm as a link between the regulation of triglyceride homeostasis and biological sex. An investigation of the genetic and physiological mechanisms underlying sex differences in fat storage and breakdown in the fruit fly Drosophila identifies previously unrecognized sex- and cell type-specific roles for the conserved triglyceride lipase brummer.
Collapse
Affiliation(s)
- Lianna W. Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachael Bartlett
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin L. Buchanan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jason W. Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui Ju Chih
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zahid S. Chowdhury
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian Huang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Leah J. Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lin Chuan Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marie-Pierre L. Gauthier
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria C. Barone
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Kristi L. Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|