1
|
Georges A, Coyaud E, Marcon E, Greenblatt J, Raught B, Frappier L. USP7 Regulates Cytokinesis through FBXO38 and KIF20B. Sci Rep 2019; 9:2724. [PMID: 30804394 PMCID: PMC6389929 DOI: 10.1038/s41598-019-39368-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
Abstract
The ubiquitin specific protease 7 (USP7 or HAUSP) is known to regulate a variety of cellular processes by binding and deubiquitylating specific target proteins. To gain a more comprehensive understanding of its interactions and functions, we used affinity purification coupled to mass spectrometry to profile USP7 interactions. This revealed a novel interaction with FBXO38, a poorly characterized F-box protein. We showed that USP7 stabilizes FBXO38 dependent on its catalytic activity by protecting FBXO38 from proteasomal degradation. We used a BioID approach to profile the protein interactions (and putative functions) of FBXO38, revealing an interaction with KIF20B, a Kinesin-6 protein required for efficient cytokinesis. FBXO38 was shown to function independently from an SCF complex to stabilize KIF20B. Consequently, depletion of either FBXO38 or USP7 led to dramatic decreases in KIF20B levels and KIF20B at the midbody, which were manifested in cytokinetic defects. Furthermore, cytokinetic defects associated with USP7 silencing were rescued by restoring FBXO38 or KIF20B. The results indicate a novel mechanism of regulating cytokinesis through USP7 and FBXO38.
Collapse
Affiliation(s)
- Anna Georges
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Coyaud
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Brian Raught
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Georges A, Marcon E, Greenblatt J, Frappier L. Identification and Characterization of USP7 Targets in Cancer Cells. Sci Rep 2018; 8:15833. [PMID: 30367141 PMCID: PMC6203733 DOI: 10.1038/s41598-018-34197-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin specific protease, USP7, regulates multiple cellular pathways relevant for cancer through its ability to bind and sometimes stabilize specific target proteins through deubiquitylation. To gain a more complete profile of USP7 interactions in cancer cells, we performed affinity purification coupled to mass spectrometry to identify USP7 binding targets in gastric carcinoma cells. This confirmed reported associations of USP7 with USP11, PPM1G phosphatase and TRIP12 E3 ubiquitin ligase as well as identifying novel interactions with two DEAD/DEAH-box RNA helicases, DDX24 and DHX40. Using USP7 binding pocket mutants, we show that USP11, PPM1G, TRIP12 and DDX24 bind USP7 through its TRAF domain binding pocket, while DHX40 interacts with USP7 through a distinct binding pocket in the Ubl2 domain. P/A/ExxS motifs in USP11 and DDX24 that are critical for USP7 binding were also identified. Modulation of USP7 expression levels and inhibition of USP7 catalytic activity in multiple cells lines showed that USP7 consistently stabilizes DDX24, DHX40 and TRIP12 dependent on its catalytic activity, while USP11 and PPM1G levels were not consistently affected. Our study better defines the mechanisms of USP7 interaction with known targets and identifies DDX24 and DHX40 as new targets that are specifically bound and regulated by USP7.
Collapse
Affiliation(s)
- Anna Georges
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Marshall NC, Finlay BB, Overall CM. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol Cell Proteomics 2017; 16:S161-S171. [PMID: 28179412 PMCID: PMC5393396 DOI: 10.1074/mcp.o116.066456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The human immune system consists of an intricate network of tightly controlled pathways, where proteases are essential instigators and executioners at multiple levels. Invading microbial pathogens also encode proteases that have evolved to manipulate and dysregulate host proteins, including host proteases during the course of disease. The identification of pathogen proteases as well as their substrates and mechanisms of action have empowered significant developments in therapeutics for infectious diseases. Yet for many pathogens, there remains a great deal to be discovered. Recently, proteomic techniques have been developed that can identify proteolytically processed proteins across the proteome. These “degradomics” approaches can identify human substrates of microbial proteases during infection in vivo and expose the molecular-level changes that occur in the human proteome during infection as an operational network to develop hypotheses for further research as well as new therapeutics. This Perspective Article reviews how proteases are utilized during infection by both the human host and invading bacterial pathogens, including archetypal virulence-associated microbial proteases, such as the Clostridia spp. botulinum and tetanus neurotoxins. We highlight the potential knowledge that degradomics studies of host–pathogen interactions would uncover, as well as how degradomics has been successfully applied in similar contexts, including use with a viral protease. We review how microbial proteases have been targeted in current therapeutic approaches and how microbial proteases have shaped and even contributed to human therapeutics beyond infectious disease. Finally, we discuss how, moving forward, degradomics research can greatly contribute to our understanding of how microbial pathogens cause disease in vivo and lead to the identification of novel substrates in vivo, and the development of improved therapeutics to counter these pathogens.
Collapse
Affiliation(s)
- Natalie C Marshall
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories
| | - B Brett Finlay
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories.,¶Department of Biochemistry & Molecular Biology
| | - Christopher M Overall
- ¶Department of Biochemistry & Molecular Biology, .,**Department of Oral Biological & Medical Sciences, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Abstract
Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.
Collapse
Affiliation(s)
- Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
5
|
Affinity Purification-Mass Spectroscopy Methods for Identifying Epstein-Barr Virus-Host Interactions. Methods Mol Biol 2017; 1532:79-92. [PMID: 27873268 DOI: 10.1007/978-1-4939-6655-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considerable insight into the function and mechanism of action of viral proteins has come from identifying the cellular proteins with which they interact. In recent years, mass spectrometry-based methods have emerged as the method of choice for protein interaction discovery due to their comprehensive and unbiased nature. Methods involving single affinity purifications of epitope-tagged viral proteins (AP-MS) and tandem affinity purifications of viral proteins with two purification tags (TAP tagging) have both been used to identify novel host interactions with EBV proteins. However, to date these methods have only been applied to a small number of EBV proteins. Here we provide detailed methods of AP-MS and TAP tagging approaches that can be applied to any EBV protein in order to discover its host interactions.
Collapse
|
6
|
Mossman K. Methods related to molecular virology. Methods 2015; 90:1-2. [PMID: 26589248 DOI: 10.1016/j.ymeth.2015.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Karen Mossman
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|