1
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
2
|
Dumigan A, Gonzalez RC, Morris B, Sá-Pessoa J. Visualisation of Host-Pathogen Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:19-39. [PMID: 37016109 DOI: 10.1007/978-3-031-26462-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The core of biomedical science is the use of laboratory techniques to support the diagnosis and treatment of disease in clinical settings. Despite tremendous advancement in our understanding of medicine in recent years, we are still far from having a complete understanding of human physiology in homeostasis, let alone the pathology of disease states. Indeed medical advances over the last two hundred years would not have been possible without the invention of and continuous development of visualisation techniques available to research scientists and clinicians. As we have all learned from the recent COVID pandemic, despite advances in modern medicine we still have much to learn regarding infection biology. Indeed antimicrobial resistant (AMR) bacteria are a global threat to human health, meaning research into bacterial pathogenesis is vital. In this chapter, we will briefly describe the nature of microbes and host immune responses before delving into some of the visualisation techniques utilised in the field of biomedical research with a focus on host-pathogen interactions. We will give a brief overview of commonly used techniques from gold standard staining methods, in situ hybridisation, microscopy, western blotting, microbial characterisation, to cutting-edge image flow cytometry and mass spectrometry. Specifically, we will focus on techniques utilised to visualise interactions between the host, our own bodies, and invading organisms including bacteria. We will touch on in vitro and ex vivo modelling methodology with examples utilised to delineate pathogenicity in disease. A better understanding of bacterial biology, immunology and how these fields interact (host-pathogen communications) in biomedical research is integral to developing novel therapeutic approaches which circumvent the need for antibiotics, an important issue as we enter a post-antibiotic era.
Collapse
Affiliation(s)
- Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | | - Brenda Morris
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Mayoral J, Tomita T, Tu V, Aguilan JT, Sidoli S, Weiss LM. Toxoplasma gondii PPM3C, a secreted protein phosphatase, affects parasitophorous vacuole effector export. PLoS Pathog 2020; 16:e1008771. [PMID: 33370417 PMCID: PMC7793252 DOI: 10.1371/journal.ppat.1008771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/08/2021] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell. The flexible life cycle of the intracellular parasite Toxoplasma gondii allows it to infect many different types of warm-blooded hosts, as well as diverse cell types once inside the host organism. This formidable achievement is partly mediated by the establishment of a unique compartment following host cell invasion, termed the parasitophorous vacuole. While advancements have been made in cataloguing Toxoplasma secreted proteins that reside within this vacuole, the specific functions and contributions of many of these secreted parasite “tools” remain elusive. Here, we assessed the contribution of a parasite vacuolar protein called TgPPM3C, predicted to function as an enzyme that dephosphorylates other proteins. We found that deleting the TgPPM3C gene in the parasite results in a profound virulence defect during infection in mice, likely due to the dysregulated phosphorylation status of many vacuolar proteins detected by phosphoproteomic analysis of TgPPM3C-deleted parasites. We found that the phosphorylation status of one such protein, GRA16, influences its ability to cross the parasitophorous vacuole membrane and enter the host cell, where it is known to induce host transcriptional changes that benefit parasite growth. These findings illustrate the emerging role of Toxoplasma vacuolar phosphatases in regulating host-parasite interactions during infection.
Collapse
Affiliation(s)
- Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jennifer T. Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA, Avgousti DC. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 2019; 593:3551-3570. [PMID: 31769503 DOI: 10.1002/1873-3468.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.
Collapse
Affiliation(s)
- Kelsey L Lynch
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linda R Gooding
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
6
|
Nadal S, Raj R, Mohammed S, Davis BG. Synthetic post-translational modification of histones. Curr Opin Chem Biol 2018; 45:35-47. [DOI: 10.1016/j.cbpa.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|
7
|
Litichevskiy L, Peckner R, Abelin JG, Asiedu JK, Creech AL, Davis JF, Davison D, Dunning CM, Egertson JD, Egri S, Gould J, Ko T, Johnson SA, Lahr DL, Lam D, Liu Z, Lyons NJ, Lu X, MacLean BX, Mungenast AE, Officer A, Natoli TE, Papanastasiou M, Patel J, Sharma V, Toder C, Tubelli AA, Young JZ, Carr SA, Golub TR, Subramanian A, MacCoss MJ, Tsai LH, Jaffe JD. A Library of Phosphoproteomic and Chromatin Signatures for Characterizing Cellular Responses to Drug Perturbations. Cell Syst 2018; 6:424-443.e7. [PMID: 29655704 PMCID: PMC5951639 DOI: 10.1016/j.cels.2018.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 01/05/2023]
Abstract
Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics.
Collapse
Affiliation(s)
| | - Ryan Peckner
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jacob K Asiedu
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Amanda L Creech
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - John F Davis
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Desiree Davison
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jarrett D Egertson
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Shawn Egri
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Joshua Gould
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Tak Ko
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sarah A Johnson
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - David L Lahr
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel Lam
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Zihan Liu
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Xiaodong Lu
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Brendan X MacLean
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Alison E Mungenast
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Adam Officer
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Ted E Natoli
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jinal Patel
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Vagisha Sharma
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Courtney Toder
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jennie Z Young
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Steven A Carr
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Todd R Golub
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jacob D Jaffe
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Balakrishnan L, Milavetz B. Epigenetic Regulation of Viral Biological Processes. Viruses 2017; 9:v9110346. [PMID: 29149060 PMCID: PMC5707553 DOI: 10.3390/v9110346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
It is increasingly clear that DNA viruses exploit cellular epigenetic processes to control their life cycles during infection. This review will address epigenetic regulation in members of the polyomaviruses, adenoviruses, human papillomaviruses, hepatitis B, and herpes viruses. For each type of virus, what is known about the roles of DNA methylation, histone modifications, nucleosome positioning, and regulatory RNA in epigenetic regulation of the virus infection will be discussed. The mechanisms used by certain viruses to dysregulate the host cell through manipulation of epigenetic processes and the role of cellular cofactors such as BRD4 that are known to be involved in epigenetic regulation of host cell pathways will also be covered. Specifically, this review will focus on the role of epigenetic regulation in maintaining viral episomes through the generation of chromatin, temporally controlling transcription from viral genes during the course of an infection, regulating latency and the switch to a lytic infection, and global dysregulation of cellular function.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Barry Milavetz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| |
Collapse
|
9
|
Avgousti DC, Della Fera AN, Otter CJ, Herrmann C, Pancholi NJ, Weitzman MD. Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome. J Virol 2017; 91:e01089-17. [PMID: 28794020 PMCID: PMC5625504 DOI: 10.1128/jvi.01089-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin.IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that can cause a multitude of diseases, such as respiratory infections and conjunctivitis. Here we describe how a small adenovirus core protein that localizes to host chromatin during infection can globally downregulate the DDR. Our study focuses on key players in the damage signaling pathway and highlights how viral manipulation of chromatin may influence access of DDR proteins to the host genome.
Collapse
Affiliation(s)
- Daphne C Avgousti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ashley N Della Fera
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Clayton J Otter
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christin Herrmann
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Neha J Pancholi
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, Cheng Z, Montellier E, Gaucher J, Curtet S, Debernardi A, Charbonnier G, Puthier D, Petosa C, Panne D, Rousseaux S, Roeder RG, Zhao Y, Khochbin S. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters. Mol Cell 2017; 62:169-180. [PMID: 27105113 PMCID: PMC4850424 DOI: 10.1016/j.molcel.2016.03.014] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 12/01/2022]
Abstract
Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. Active gene TSSs are marked by competing H4 K5K8 acetylation and butyrylation Histone butyrylation directly stimulates transcription H4K5 butyrylation prevents binding of the testis specific gene expression-driver Brdt H4K5K8 butyrylation is associated with delayed histone removal in spermatogenic cells
Collapse
Affiliation(s)
- Afsaneh Goudarzi
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Di Zhang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Sophie Barral
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Oh Kwang Kwon
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shankang Qi
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Thierry Buchou
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Anne-Laure Vitte
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Tieming He
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou 310018, China
| | - Zhongyi Cheng
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou 310018, China
| | - Emilie Montellier
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Jonathan Gaucher
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France; EMBL Grenoble, BP 181, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Sandrine Curtet
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Alexandra Debernardi
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Guillaume Charbonnier
- TAGC, UMR, S 1090 INSERM Aix-Marseille Université, U928 Parc Scientifique de Luminy case 928 163, Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Denis Puthier
- TAGC, UMR, S 1090 INSERM Aix-Marseille Université, U928 Parc Scientifique de Luminy case 928 163, Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Carlo Petosa
- Université Grenoble Alpes/CEA/CNRS, Institut de Biologie Structurale, 38027 Grenoble, France
| | - Daniel Panne
- EMBL Grenoble, BP 181, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Sophie Rousseaux
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| | - Saadi Khochbin
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institut Albert Bonniot, 38700 Grenoble, France.
| |
Collapse
|
11
|
Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 2017; 13:922. [PMID: 28348067 PMCID: PMC5371729 DOI: 10.15252/msb.20167062] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organisms are constantly exposed to microbial pathogens in their environments. When a pathogen meets its host, a series of intricate intracellular interactions shape the outcome of the infection. The understanding of these host–pathogen interactions is crucial for the development of treatments and preventive measures against infectious diseases. Over the past decade, proteomic approaches have become prime contributors to the discovery and understanding of host–pathogen interactions that represent anti‐ and pro‐pathogenic cellular responses. Here, we review these proteomic methods and their application to studying viral and bacterial intracellular pathogens. We examine approaches for defining spatial and temporal host–pathogen protein interactions upon infection of a host cell. Further expanding the understanding of proteome organization during an infection, we discuss methods that characterize the regulation of host and pathogen proteomes through alterations in protein abundance, localization, and post‐translational modifications. Finally, we highlight bioinformatic tools available for analyzing such proteomic datasets, as well as novel strategies for integrating proteomics with other omic tools, such as genomics, transcriptomics, and metabolomics, to obtain a systems‐level understanding of infectious diseases.
Collapse
Affiliation(s)
- Pierre M Jean Beltran
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
12
|
Greco TM, Cristea IM. Proteomics Tracing the Footsteps of Infectious Disease. Mol Cell Proteomics 2017; 16:S5-S14. [PMID: 28163258 DOI: 10.1074/mcp.o116.066001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Every year, a major cause of human disease and death worldwide is infection with the various pathogens-viruses, bacteria, fungi, and protozoa-that are intrinsic to our ecosystem. In efforts to control the prevalence of infectious disease and develop improved therapies, the scientific community has focused on building a molecular picture of pathogen infection and spread. These studies have been aimed at defining the cellular mechanisms that allow pathogen entry into hosts cells, their replication and transmission, as well as the core mechanisms of host defense against pathogens. The past two decades have demonstrated the valuable implementation of proteomic methods in all these areas of infectious disease research. Here, we provide a perspective on the contributions of mass spectrometry and other proteomics approaches to understanding the molecular details of pathogen infection. Specifically, we highlight methods used for defining the composition of viral and bacterial pathogens and the dynamic interaction with their hosts in space and time. We discuss the promise of MS-based proteomics in supporting the development of diagnostics and therapies, and the growing need for multiomics strategies for gaining a systems view of pathogen infection.
Collapse
Affiliation(s)
- Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
13
|
McBride AA. The Promise of Proteomics in the Study of Oncogenic Viruses. Mol Cell Proteomics 2017; 16:S65-S74. [PMID: 28104704 DOI: 10.1074/mcp.o116.065201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/16/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic viruses are responsible for about 15% human cancers. This article explores the promise and challenges of viral proteomics in the study of the oncogenic human DNA viruses, HPV, McPyV, EBV and KSHV. These viruses have coevolved with their hosts and cause persistent infections. Each virus encodes oncoproteins that manipulate key cellular pathways to promote viral replication and evade the host immune response. Viral proteomics can identify cellular pathways perturbed by viral infection, identify cellular proteins that are crucial for viral persistence and oncogenesis, and identify important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Alison A McBride
- From the ‡Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Avgousti DC, Herrmann C, Kulej K, Pancholi NJ, Sekulic N, Petrescu J, Molden RC, Blumenthal D, Paris AJ, Reyes ED, Ostapchuk P, Hearing P, Seeholzer SH, Worthen GS, Black BE, Garcia BA, Weitzman MD. A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 2016; 535:173-7. [PMID: 27362237 PMCID: PMC4950998 DOI: 10.1038/nature18317] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 01/06/2023]
Abstract
Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.
Collapse
Affiliation(s)
- Daphne C. Avgousti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Christin Herrmann
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Katarzyna Kulej
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Neha J. Pancholi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Currently: Biotechnology Centre of Oslo and Department of Chemistry, University of Oslo, Oslo, Norway
| | - Joana Petrescu
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
- Villanova University, Villanova, PA USA
| | - Rosalynn C. Molden
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Daniel Blumenthal
- Division of Cell Pathology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Andrew J. Paris
- Division of Pulmonary, Allergy, and Critical Care Medicine, Hospital of the University of Pennsylvania, and the Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D. Reyes
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York USA
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York USA
| | - Steven H. Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - G. Scott Worthen
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|
15
|
Paternoster V, Edhager AV, Sibbersen C, Nielsen AL, Børglum AD, Christensen JH, Palmfeldt J. Quantitative assessment of methyl-esterification and other side reactions in a standard propionylation protocol for detection of histone modifications. Proteomics 2016; 16:2059-63. [DOI: 10.1002/pmic.201500425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Veerle Paternoster
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research; i PSYCH, Aarhus and Copenhagen; Denmark
- Centre for Integrative Sequencing; i SEQ; Aarhus University; Denmark
| | | | - Christian Sibbersen
- Department of Chemistry; Aarhus University; Aarhus Denmark
- Department of Forensic Medicine; Bioanalytical Unit; Aarhus University; Aarhus Denmark
| | | | - Anders Dupont Børglum
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research; i PSYCH, Aarhus and Copenhagen; Denmark
- Centre for Integrative Sequencing; i SEQ; Aarhus University; Denmark
| | - Jane Hvarregaard Christensen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research; i PSYCH, Aarhus and Copenhagen; Denmark
- Centre for Integrative Sequencing; i SEQ; Aarhus University; Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
16
|
Minshull TC, Cole J, Dockrell DH, Read RC, Dickman MJ. Analysis of histone post translational modifications in primary monocyte derived macrophages using reverse phase×reverse phase chromatography in conjunction with porous graphitic carbon stationary phase. J Chromatogr A 2016; 1453:43-53. [PMID: 27260198 PMCID: PMC4906248 DOI: 10.1016/j.chroma.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
A two dimensional-liquid chromatography (2D-LC) based approach was developed for the identification and quantification of histone post translational modifications in conjunction with mass spectrometry analysis. Using a bottom-up strategy, offline 2D-LC was developed using reverse phase chromatography. A porous graphitic carbon stationary phase in the first dimension and a C18 stationary phase in the second dimension interfaced with mass spectrometry was used to analyse global levels of histone post translational modifications in human primary monocyte-derived macrophages. The results demonstrated that 84 different histone peptide proteoforms, with modifications at 18 different sites including combinatorial marks were identified, representing an increase in the identification of histone peptides by 65% and 51% compared to two different 1D-LC approaches on the same mass spectrometer. The use of the porous graphitic stationary phase in the first dimension resulted in efficient separation of histone peptides across the gradient, with good resolution and is orthogonal to the online C18 reverse phase chromatography. Overall, more histone peptides were identified using the 2D-LC approach compared to conventional 1D-LC approaches. In addition, a bioinformatic pipeline was developed in-house to enable the high throughput efficient and accurate quantification of fractionated histone peptides. The automation of a section of the downstream analysis pipeline increased the throughput of the 2D-LC-MS/MS approach for the quantification of histone post translational modifications.
Collapse
Affiliation(s)
- Thomas C Minshull
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom; Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, United Kingdom; Sheffield Teaching Hospitals, United Kingdom
| | - Joby Cole
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom; Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, United Kingdom; Sheffield Teaching Hospitals, United Kingdom
| | - David H Dockrell
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, United Kingdom; Sheffield Teaching Hospitals, United Kingdom
| | - Robert C Read
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO166YD, United Kingdom
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
17
|
Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics 2016; 17:95. [PMID: 26847871 PMCID: PMC4740988 DOI: 10.1186/s12864-016-2414-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background Pluripotent cells can be differentiated into many different cell types in vitro. Successful differentiation is guided in large part by epigenetic reprogramming and regulation of critical gene expression patterns. Recent genome-wide studies have identified the distribution of different histone-post-translational modifications (PTMs) in various conditions and during cellular differentiation. However, our understanding of the abundance of histone PTMs and their regulatory mechanisms still remain unknown. Results Here, we present a quantitative and comprehensive study of the abundance levels of histone PTMs during the differentiation of mouse embryonic stem cells (ESCs) using mass spectrometry (MS). We observed dynamic changes of histone PTMs including increased H3K9 methylation levels in agreement with previously reported results. More importantly, we found a global decrease of multiply acetylated histone H4 peptides. Brd4 targets acetylated H4 with a strong affinity to multiply modified H4 acetylation sites. We observed that the protein levels of Brd4 decreased upon differentiation together with global histone H4 acetylation. Inhibition of Brd4:histone H4 interaction by the BET domain inhibitor (+)-JQ1 in ESCs results in enhanced differentiation to the endodermal lineage, by disrupting the protein abundance dynamics. Genome-wide ChIP-seq mapping showed that Brd4 and H4 acetylation are co-occupied in the genome, upstream of core pluripotency genes such as Oct4 and Nanog in ESCs and lineage-specific genes in embryoid bodies (EBs). Conclusions Together, our data demonstrate the fundamental role of Brd4 in monitoring cell differentiation through its interaction with acetylated histone marks and disruption of Brd4 may cause aberrant differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2414-y) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Mossman K. Methods related to molecular virology. Methods 2015; 90:1-2. [PMID: 26589248 DOI: 10.1016/j.ymeth.2015.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Karen Mossman
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|