1
|
Kellner R, Malempré R, Vandenameele J, Brans A, Hennen AF, Rochus N, Di Paolo A, Vandevenne M, Matagne A. Protein formulation through automated screening of pH and buffer conditions, using the Robotein® high throughput facility. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:473-490. [PMID: 33611612 DOI: 10.1007/s00249-021-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Among various factors, the direct environment (e.g. pH, buffer components, salts, additives, etc.…) is known to have a crucial effect on both the stability and activity of proteins. In particular, proper buffer and pH conditions can improve their stability and function significantly during purification, storage and handling, which is highly relevant for both academic and industrial applications. It can also promote data reproducibility, support the interpretation of experimental results and, finally, contribute to our general understanding of the biophysical properties of proteins. In this study, we have developed a high throughput screen of 158 different buffers/pH conditions in which we evaluated: (i) the protein stability, using differential scanning fluorimetry and (ii) the protein function, using either enzymatic assays or binding activity measurements, both in an automated manner. The modular setup of the screen allows for easy implementation of other characterization methods and parameters, as well as additional test conditions. The buffer/pH screen was validated with five different proteins used as models, i.e. two active-site serine β-lactamases, two metallo-β-lactamases (one of which is only active as a tetramer) and a single-domain dromedary antibody fragment (VHH or nanobody). The formulation screen allowed automated and fast determination of optimum buffer and pH profiles for the tested proteins. Besides the determination of the optimum buffer and pH, the collection of pH profiles of many different proteins may also allow to delineate general concepts to understand and predict the relationship between pH and protein properties.
Collapse
Affiliation(s)
- Ruth Kellner
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Romain Malempré
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Alain Brans
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | | | - Noémie Rochus
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium
| | - Alexandre Di Paolo
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium.,Xpress Biologics SA, Accessia Pharma Site, Avenue du Parc Industriel, 89, 4041, Milmort, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium.
| |
Collapse
|
2
|
Expression, purification and stabilization of human serotonin transporter from E. coli. Protein Expr Purif 2019; 164:105479. [PMID: 31442583 DOI: 10.1016/j.pep.2019.105479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/21/2022]
Abstract
The serotonin transporter belongs to the family of sodium-chloride coupled neurotransmitter transporter and is related to depression in humans. It is therefore an important drug target to support treatment of depression. Recently, structures of human serotonin transporter in complex with inhibitor molecules have been published. However, the production of large protein amounts for crystallization experiments remains a bottleneck. Here we present the possibility to obtain purified serotonin transporter from E. coli. Fos-choline 12 solubilized target protein was obtained with a purity of >95% and a yield of 1.2 mg L-1 culture in autoinduction medium. CD spectroscopic analysis of protein stability allowed identifying CHS and POPX as stabilizing components, which increased hSERT thermostability by 7 °C. The kinetic dissociation constant KD of 2.8 μM (±0.05) for of the inhibitor Desipramine was determined with a ka of 10,848 M - 1 s-1 (±220) and a kd of 0.03 s-1 (±4.7 × 10-5).
Collapse
|
3
|
Abstract
Focus a laser on dissolved particles and analyze the scattered light to reveal their size. This well established principle is used in dynamic light scattering (DLS), or also called photon-correlation spectroscopy, which is a widely popular and highly adaptable analytical method applied in different fields of life and material sciences, as well as in industrial quality control processes.
Collapse
Affiliation(s)
- Alice S. Pereira
- grid.10772.330000000121511713Molecular Biophysics Lab., UCIBIO/Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Tavares
- grid.10772.330000000121511713Molecular Biophysics Lab., UCIBIO/Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo Limão-Vieira
- grid.10772.330000000121511713Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
4
|
Uetrecht C, Lorenzen K, Kitel M, Heidemann J, Robinson Spencer JH, Schlüter H, Schulz J. Native mass spectrometry provides sufficient ion flux for XFEL single-particle imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:653-659. [PMID: 31074428 PMCID: PMC6510201 DOI: 10.1107/s1600577519002686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/21/2019] [Indexed: 05/11/2023]
Abstract
The SPB/SFX instrument at the European XFEL provides unique conditions for single-particle imaging (SPI) experiments due to its high brilliance, nano-focus and unique pulse structure. Promising initial results provided by the international LCLS (Linac Coherent Light Source) SPI initiative highlight the potential of SPI. Current available injection methods generally have high sample consumption and do not provide any options for pulsing, selection or orientation of particles, which poses a problem for data evaluation. Aerosol-injector-based sample delivery is the current method of choice for SPI experiments, although, to a lesser extent, electrospray and electrospinning are used. Single particles scatter only a limited number of photons providing a single orientation for data evaluation, hence large datasets are required from particles in multiple orientations in order to reconstruct a structure. Here, a feasibility study demonstrates that nano-electrospray ionization, usually employed in biomolecular mass spectrometry, provides enough ion flux for SPI experiments. A novel instrument setup at the SPB/SFX instrument is proposed, which has the benefit of extremely low background while delivering mass over charge and conformation-selected ions for SPI.
Collapse
Affiliation(s)
- Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | | | - Matthäus Kitel
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Jesse Huron Robinson Spencer
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
- Institute for Clinical Chemistry, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| |
Collapse
|
5
|
Holm T, Kopicki JD, Busch C, Olschewski S, Rosenthal M, Uetrecht C, Günther S, Reindl S. Biochemical and structural studies reveal differences and commonalities among cap-snatching endonucleases from segmented negative-strand RNA viruses. J Biol Chem 2018; 293:19686-19698. [PMID: 30348898 PMCID: PMC6314124 DOI: 10.1074/jbc.ra118.004373] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
Viruses rely on many host cell processes, including the cellular transcription machinery. Segmented negative-strand RNA viruses (sNSV) in particular cannot synthesize the 5'-cap structure for their mRNA but cleave off cellular caps and use the resulting oligonucleotides as primers for their transcription. This cap-snatching mechanism, involving a viral cap-binding site and RNA endonuclease, is both virus-specific and essential for viral proliferation and therefore represents an attractive drug target. Here, we present biochemical and structural results on the putative cap-snatching endonuclease of Crimean-Congo hemorrhagic fever virus (CCHFV), a highly pathogenic bunyavirus belonging to the Nairoviridae family, and of two additional nairoviruses, Erve virus (EREV) and Nairobi sheep disease virus (NSDV). Our findings are presented in the context of other cap-snatching endonucleases, such as the enzymatically active endonuclease from Rift Valley fever virus (RVFV), from Arenaviridae and Bunyavirales, belonging to the His- and His+ endonucleases, respectively, according to the absence or presence of a metal ion-coordinating histidine in the active site. Mutational and metal-binding experiments revealed the presence of only acidic metal-coordinating residues in the active site of the CCHFV domain and a unique active-site conformation that was intermediate between those of His+ and His- endonucleases. On the basis of small-angle X-ray scattering (SAXS) and homology modeling results, we propose a protein topology for the CCHFV domain that, despite its larger size, has a structure overall similar to those of related endonucleases. These results suggest structural and functional conservation of the cap-snatching mechanism among sNSVs.
Collapse
Affiliation(s)
- Tobias Holm
- From the Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Janine-Denise Kopicki
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany, and
| | - Carola Busch
- From the Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Silke Olschewski
- From the Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Maria Rosenthal
- From the Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Charlotte Uetrecht
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany, and
- the European XFEL GmbH, 22869 Schenefeld, Germany
| | - Stephan Günther
- From the Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Sophia Reindl
- From the Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany,
| |
Collapse
|
6
|
Bucciarelli S, Midtgaard SR, Nors Pedersen M, Skou S, Arleth L, Vestergaard B. Size-exclusion chromatography small-angle X-ray scattering of water soluble proteins on a laboratory instrument. J Appl Crystallogr 2018; 51:1623-1632. [PMID: 30546289 PMCID: PMC6276278 DOI: 10.1107/s1600576718014462] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/13/2018] [Indexed: 11/16/2022] Open
Abstract
Coupling of size-exclusion chromatography with biological solution small-angle X-ray scattering (SEC-SAXS) on dedicated synchrotron beamlines enables structural analysis of challenging samples such as labile proteins and low-affinity complexes. For this reason, the approach has gained increased popularity during the past decade. Transportation of perishable samples to synchrotrons might, however, compromise the experiments, and the limited availability of synchrotron beamtime renders iterative sample optimization tedious and lengthy. Here, the successful setup of laboratory-based SEC-SAXS is described in a proof-of-concept study. It is demonstrated that sufficient quality data can be obtained on a laboratory instrument with small sample consumption, comparable to typical synchrotron SEC-SAXS demands. UV/vis measurements directly on the SAXS exposure cell ensure accurate concentration determination, crucial for direct molecular weight determination from the scattering data. The absence of radiation damage implies that the sample can be fractionated and subjected to complementary analysis available at the home institution after SEC-SAXS. Laboratory-based SEC-SAXS opens the field for analysis of biological samples at the home institution, thus increasing productivity of biostructural research. It may further ensure that synchrotron beamtime is used primarily for the most suitable and optimized samples.
Collapse
Affiliation(s)
- Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Søren Roi Midtgaard
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Martin Nors Pedersen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Abstract
In this book chapter, a practical approach for conducting small angle X-ray scattering (SAXS) experiments is given. Our aim is to guide SAXS users through a three-step process of planning, preparing and performing a basic SAXS measurement. The minimal requirements necessary to prepare samples are described specifically for protein and other macromolecular samples in solution. We address the very important aspects in terms of sample characterization using additional techniques as well as the essential role of accurately subtracting background scattering contributions. At the end of the chapter some advice is given for trouble-shooting problems that may occur during the course of the SAXS measurements. Automated pipelines for data processing are described which are useful in allowing users to evaluate the quality of the data 'on the spot' and consequently react to events such as radiation damage, the presence of unwanted sample aggregates or miss-matched buffers.
Collapse
|
8
|
Falke S, Dierks K, Blanchet C, Graewert M, Cipriani F, Meijers R, Svergun D, Betzel C. Multi-channel in situ dynamic light scattering instrumentation enhancing biological small-angle X-ray scattering experiments at the PETRA III beamline P12. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:361-372. [PMID: 29488914 DOI: 10.1107/s1600577517017568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography-SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.
Collapse
Affiliation(s)
- Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| | - Karsten Dierks
- Xtal Concepts GmbH, Marlowring 19, Hamburg 22525, Germany
| | - Clement Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Florent Cipriani
- European Molecular Biology Laboratory (EMBL), 71 Avenue des Martyrs, Grenoble 38042, France
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| |
Collapse
|
9
|
Cianci M, Bourenkov G, Pompidor G, Karpics I, Kallio J, Bento I, Roessle M, Cipriani F, Fiedler S, Schneider TR. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:323-332. [PMID: 28009574 PMCID: PMC5182027 DOI: 10.1107/s1600577516016465] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/15/2016] [Indexed: 05/26/2023]
Abstract
The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirkpatrick-Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s-1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s-1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s-1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer `MARVIN' with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users.
Collapse
Affiliation(s)
- Michele Cianci
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Gleb Bourenkov
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Guillaume Pompidor
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Ivars Karpics
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Johanna Kallio
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Isabel Bento
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Manfred Roessle
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
- Fachhochschule Lübeck, Fachbereich Angewandte Naturwissenschaften, Mönkhofer Weg 239, 23562 Lübeck, Germany
| | - Florent Cipriani
- European Molecular Biology Laboratory, Institut Laue-Langevin, BP 181, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France
| | - Stefan Fiedler
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| | - Thomas R. Schneider
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
10
|
Abstract
This chapter provides a review of different advanced methods that help to increase the success rate of a crystallization project, by producing larger and higher quality single crystals for determination of macromolecular structures by crystallographic methods. For this purpose, the chapter is divided into three parts. The first part deals with the fundamentals for understanding the crystallization process through different strategies based on physical and chemical approaches. The second part presents new approaches involved in more sophisticated methods not only for growing protein crystals but also for controlling the size and orientation of crystals through utilization of electromagnetic fields and other advanced techniques. The last section deals with three different aspects: the importance of microgravity, the use of ligands to stabilize proteins, and the use of microfluidics to obtain protein crystals. All these advanced methods will allow the readers to obtain suitable crystalline samples for high-resolution X-ray and neutron crystallography.
Collapse
Affiliation(s)
- Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Av. Universidad 3000, Cd.Mx., Mexico City, 04510, Mexico.
| |
Collapse
|
11
|
Kozak S, Lercher L, Karanth MN, Meijers R, Carlomagno T, Boivin S. Optimization of protein samples for NMR using thermal shift assays. JOURNAL OF BIOMOLECULAR NMR 2016; 64:281-9. [PMID: 26984476 PMCID: PMC4869703 DOI: 10.1007/s10858-016-0027-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/08/2016] [Indexed: 05/09/2023]
Abstract
Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor(®) provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies.
Collapse
Affiliation(s)
- Sandra Kozak
- SPC Facility, European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Lukas Lercher
- SCB Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Megha N Karanth
- SCB Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Rob Meijers
- SPC Facility, European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Teresa Carlomagno
- SCB Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany.
- Research Group of NMR-based Structural Chemistry, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany.
| | - Stephane Boivin
- SPC Facility, European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
12
|
Owens R. Methods in integrated structural biology. Methods 2016; 95:1-2. [PMID: 26724791 DOI: 10.1016/j.ymeth.2015.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ray Owens
- The Oxford Protein Production Facility-UK, Research Complex at Harwell, Rutherford Appleton Laboratory and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.
| |
Collapse
|