1
|
Jarić S, Schobesberger S, Velicki L, Milovančev A, Nikolić S, Ertl P, Bobrinetskiy I, Knežević NŽ. Direct electrochemical reduction of graphene oxide thin film for aptamer-based selective and highly sensitive detection of matrix metalloproteinase 2. Talanta 2024; 274:126079. [PMID: 38608631 DOI: 10.1016/j.talanta.2024.126079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Simple and low-cost biosensing solutions are suitable for point-of-care applications aiming to overcome the gap between scientific concepts and technological production. To compete with sensitivity and selectivity of golden standards, such as liquid chromatography, the functionalization of biosensors is continuously optimized to enhance the signal and improve their performance, often leading to complex chemical assay development. In this research, the efforts are made on optimizing the methodology for electrochemical reduction of graphene oxide to produce thin film-modified gold electrodes. Under the employed specific conditions, 20 cycles of cyclic voltammetry (CV) are shown to be optimal for superior electrical activation of graphene oxide into electrochemically reduced graphene oxide (ERGO). This platform is further used to develop a matrix metalloproteinase 2 (MMP-2) biosensor, where specific anti-MMP2 aptamers are utilized as a biorecognition element. MMP-2 is a protein which is typically overexpressed in tumor tissues, with important roles in tumor invasion, metastasis as well as in tumor angiogenesis. Based on impedimetric measurements, we were able to detect as low as 3.32 pg mL-1 of MMP-2 in PBS with a dynamic range of 10 pg mL-1 - 10 ng mL-1. Further experiments with real blood samples revealed a promising potential of the developed sensor for direct measurement of MMP-2 in complex media. High specificity of detection is demonstrated - even to the closely related enzyme MMP-9. Finally, the potential of reuse was demonstrated by signal restoration after experimental detection of MMP-2.
Collapse
Affiliation(s)
- Stefan Jarić
- Biosense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | | | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia; Institute of Cardiovascular Diseases of Vojvodina, Put Doktora Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Aleksandra Milovančev
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia; Institute of Cardiovascular Diseases of Vojvodina, Put Doktora Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Stanislava Nikolić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia; Center of Laboratory Medicine, Clinical Center of Vojvodina, Hajduk Veljkova 1, 21000, Novi Sad, Serbia
| | - Peter Ertl
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Ivan Bobrinetskiy
- Biosense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nikola Ž Knežević
- Biosense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
2
|
Torregrosa D, Jauset-Rubio M, Serrano R, Svobodová M, Grindlay G, O'Sullivan CK, Mora J. Ultrasensitive determination of β-conglutin food allergen by means an aptamer assay based on inductively coupled plasma mass spectrometry detection. Anal Chim Acta 2023; 1252:341042. [PMID: 36935136 DOI: 10.1016/j.aca.2023.341042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The overall objective of this work is the evaluation of different competitive aptamer assays based on inductively coupled plasma mass spectrometry (ICP-MS) detection for the determination of β-conglutin (food protein allergen from lupin) in flour samples. To this end, two competitive aptamer assay schemes were developed using either thiolated aptamers chemisorbed onto gold nanoparticles (AuNPs) or biotinylated aptamers linked to streptavidin-AuNPs. The influence of ICP-MS detection mode (i.e., conventional vs single particle) on assay performance was explored. In the case of the thiolated aptamer, the limit of detection (LoD) obtained using the single particle mode was improved 2-fold as compared to the LoD provided by the conventional mode. With regards to the biotinylated aptamer, the use of the conventional mode provided a 5-fold improvement of LoD as compared to that obtained for the single particle one. Using the optimized conditions, the best LoD of 2 pM was obtained with the biotinylated aptamer operating with conventional ICP-MS detection. When compared to previous reports using the same aptamer in a competitive assay, the developed method significantly improved the LoD by at least an order of magnitude. Different flour samples containing lupin were successfully analyzed according to European Conformity guidelines for the analysis of food contaminants.
Collapse
Affiliation(s)
- Daniel Torregrosa
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Raquel Serrano
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| | - Marketa Svobodová
- INTERFIBIO Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Guillermo Grindlay
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain.
| | - Ciara K O'Sullivan
- INTERFIBIO Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain; Institució Catalana de Recerca i Estudis Avancats (ICREA), 08010, Barcelona, Spain
| | - Juan Mora
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| |
Collapse
|
3
|
Jauset-Rubio M, Ortiz M, O’Sullivan CK. Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification. BIOSENSORS 2022; 12:972. [PMID: 36354481 PMCID: PMC9688535 DOI: 10.3390/bios12110972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen β-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where β-conglutin was immobilized on the wells of a microtiter plate, competing with β-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits.
Collapse
Affiliation(s)
- Miriam Jauset-Rubio
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira I Virgili, 43007 Tarragona, Spain
| | - Mayreli Ortiz
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira I Virgili, 43007 Tarragona, Spain
| | - Ciara K. O’Sullivan
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
O’ Sullivan CK, Mairal T, Jauset-Rubio M, Svobodova M, Skouridou V, Esposito V, Virgilio A, Galeone A. Aptamers against the β-Conglutin Allergen: Insights into the Behavior of the Shortest Multimeric (Intra)Molecular DNA G-Quadruplex. Int J Mol Sci 2021; 22:ijms22031150. [PMID: 33498970 PMCID: PMC7865891 DOI: 10.3390/ijms22031150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
In previous work, a 93-mer aptamer was selected against the anaphylactic allergen, β-conglutin and truncated to an 11-mer, improving the affinity by two orders of magnitude, whilst maintaining the specificity. This 11-mer was observed to fold in a G-quadruplex, and preliminary results indicated the existence of a combination of monomeric and higher-order structures. Building on this previous work, in the current study, we aimed to elucidate a deeper understanding of the structural forms of this 11-mer and the effect of the structure on its binding ability. A battery of techniques including polyacrylamide gel electrophoresis, high-performance liquid chromatography in combination with electrospray ionization time-of-flight mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight, thermal binding analysis, circular dichroism and nuclear magnetic resonance were used to probe the structure of both the 11-mer and the 11-mer flanked with TT- at either the 5′ or 3′ end or at both ends. The TT-tail at the 5′ end hinders stacking effects and effectively enforces the 11-mer to maintain a monomeric form. The 11-mer and the TT- derivatives of the 11-mer were also evaluated for their ability to bind its cognate target using microscale thermophoresis and surface plasmon resonance, and biolayer interferometry confirmed the nanomolar affinity of the 11-mer. All the techniques utilized confirmed that the 11-mer was found to exist in a combination of monomeric and higher-order structures, and that independent of the structural form present, nanomolar affinity was observed.
Collapse
Affiliation(s)
- Ciara K. O’ Sullivan
- INTERFIBIO Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; (T.M.); (M.J.-R.); (M.S.); (V.S.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence:
| | - Teresa Mairal
- INTERFIBIO Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; (T.M.); (M.J.-R.); (M.S.); (V.S.)
| | - Miriam Jauset-Rubio
- INTERFIBIO Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; (T.M.); (M.J.-R.); (M.S.); (V.S.)
| | - Marketa Svobodova
- INTERFIBIO Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; (T.M.); (M.J.-R.); (M.S.); (V.S.)
| | - Vasso Skouridou
- INTERFIBIO Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; (T.M.); (M.J.-R.); (M.S.); (V.S.)
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.E.); (A.V.); (A.G.)
| | - Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.E.); (A.V.); (A.G.)
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.E.); (A.V.); (A.G.)
| |
Collapse
|
5
|
Simon L, Bognár Z, Gyurcsányi RE. Finding the Optimal Surface Density of Aptamer Monolayers by SPR Imaging Detection‐based Aptamer Microarrays. ELECTROANAL 2020. [DOI: 10.1002/elan.201900736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- László Simon
- BME “Lendület” Chemical Nanosensors Research Group, Department of Inorganic and Analytical ChemistryBudapest University of Technology and Economics, Szent Gellért tér 4 H-1111 Budapest Hungary
| | - Zsófia Bognár
- BME “Lendület” Chemical Nanosensors Research Group, Department of Inorganic and Analytical ChemistryBudapest University of Technology and Economics, Szent Gellért tér 4 H-1111 Budapest Hungary
| | - Róbert E. Gyurcsányi
- BME “Lendület” Chemical Nanosensors Research Group, Department of Inorganic and Analytical ChemistryBudapest University of Technology and Economics, Szent Gellért tér 4 H-1111 Budapest Hungary
| |
Collapse
|
6
|
Aptamer-Based Nanoporous Anodic Alumina Interferometric Biosensor for Real-Time Thrombin Detection. SENSORS 2019; 19:s19204543. [PMID: 31635027 PMCID: PMC6833485 DOI: 10.3390/s19204543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
Aptamer biosensors are one of the most powerful techniques in biosensing. Achieving the best platform to use in aptamer biosensors typically includes crucial chemical modifications that enable aptamer immobilization on the surface in the most efficient manner. These chemical modifications must be well defined. In this work we propose nanoporous anodic alumina (NAA) chemically modified with streptavidin as a platform for aptamer immobilization. The immobilization of biotinylated thrombin binding aptamer (TBA) was monitored in real time by means of reflective interferometric spectroscopy (RIfS). The study has permitted to characterize in real time the path to immobilize TBA on the inner pore walls of NAA. Furthermore, this study provides an accurate label-free method to detect thrombin in real-time with high affinity and specificity.
Collapse
|
7
|
Bocková M, Slabý J, Špringer T, Homola J. Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:151-176. [PMID: 30822102 DOI: 10.1146/annurev-anchem-061318-115106] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Surface plasmon resonance microscopy and imaging are optical methods that enable observation and quantification of interactions of nano- and microscale objects near a metal surface in a temporally and spatially resolved manner. This review describes the principles of surface plasmon resonance microscopy and imaging and discusses recent advances in these methods, in particular, in optical platforms and functional coatings. In addition, the biological applications of these methods are reviewed. These include the detection of a broad variety of analytes (nucleic acids, proteins, bacteria), the investigation of biological systems (bacteria and cells), and biomolecular interactions (drug-receptor, protein-protein, protein-DNA, protein-cell).
Collapse
Affiliation(s)
- Markéta Bocková
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Tomáš Špringer
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| |
Collapse
|
8
|
Mairal Lerga T, Jauset-Rubio M, Skouridou V, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O'Sullivan CK. High Affinity Aptamer for the Detection of the Biogenic Amine Histamine. Anal Chem 2019; 91:7104-7111. [PMID: 31042376 DOI: 10.1021/acs.analchem.9b00075] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The importance of histamine in various physiological functions and its involvement in allergenic responses make this small molecule one of the most studied biogenic amines. Even though a variety of chromatography-based methods have been described for its analytical determination, the disadvantages they present in terms of cost, analysis time, and low portability limit their suitability for in situ routine testing. In this work, we sought to identify histamine-binding aptamers that could then be exploited for the development of rapid, facile, and sensitive assays for histamine detection suitable for point-of-need analysis. A classic SELEX process was designed employing magnetic beads for target immobilization and the selection was completed after ten rounds. Following Next Generation Sequencing of the last selection rounds from both positive and counter selection magnetic beads, several sequences were identified and initially screened using an apta-PCR affinity assay (APAA). Structural and functional characterization of the candidates resulted in the identification of the H2 aptamer. The high binding affinity of the H2 aptamer to histamine was validated using four independent assays ( KD of 3-34 nM). Finally, the H2 aptamer was used for the development of a magnetic beads-based competitive assay for the detection of histamine in both buffer and synthetic urine, achieving very low limits of detection of 18 pM and 76 pM, respectively, while no matrix effects were observed. These results highlight the suitability of the strategy followed for identifying small molecule-binding aptamers and the compatibility of the selected H2 aptamer with the analysis of biological samples, thus facilitating the development of point-of-care devices for routine testing. Ongoing work is focused on extending the application of the H2 aptamer to the detection of spoilage in meat, fish, and beverages, as well as evaluating the affinity of truncated forms of the aptamer.
Collapse
Affiliation(s)
- Teresa Mairal Lerga
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain
| | - Miriam Jauset-Rubio
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain
| | - Vasso Skouridou
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science , King Abdulaziz University , P.O. Box 80203, 21589 Jeddah , Saudi Arabia
| | - Mohammad S El-Shahawi
- Department of Chemistry, Faculty of Science , King Abdulaziz University , P.O. Box 80203, 21589 Jeddah , Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science , King Abdulaziz University , P.O. Box 80203, 21589 Jeddah , Saudi Arabia
| | - Ciara K O'Sullivan
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) , Passeig Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
9
|
Real-Time Monitoring of Biotinylated Molecules Detection Dynamics in Nanoporous Anodic Alumina for Bio-Sensing. NANOMATERIALS 2019; 9:nano9030478. [PMID: 30909598 PMCID: PMC6474190 DOI: 10.3390/nano9030478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
The chemical modification, or functionalization, of the surfaces of nanomaterials is a key step to achieve biosensors with the best sensitivity and selectivity. The surface modification of biosensors usually comprises several modification steps that have to be optimized. Real-time monitoring of all the reactions taking place during such modification steps can be a highly helpful tool for optimization. In this work, we propose nanoporous anodic alumina (NAA) functionalized with the streptavidin-biotin complex as a platform towards label-free biosensors. Using reflective interferometric spectroscopy (RIfS), the streptavidin-biotin complex formation, using biotinylated thrombin as a molecule model, was monitored in real-time. The study compared the performance of different NAA pore sizes in order to achieve the highest response. Furthermore, the optimal streptavidin concentration that enabled the efficient detection of the biotinylated thrombin attachment was estimated. Finally, the ability of the NAA-RIfS system to quantify the concentration of biotinylated thrombin was evaluated. This study provides an optimized characterization method to monitor the chemical reactions that take place during the biotinylated molecules attachment within the NAA pores.
Collapse
|
10
|
Shao C, Liu Y, Qi J, Su Y, Chen Y, Xu H, Lin Z, Guan H. Real-time detection of the interaction between alpha-fetoprotein and its ssDNA aptamer by dual polarization interferometry. NEW J CHEM 2018. [DOI: 10.1039/c8nj04200d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A real-time and label-free strategy to understand the interaction between biomarkers and ssDNA aptamers.
Collapse
Affiliation(s)
- Chenggang Shao
- The Department of Gastroenterology and Hepatology
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
- Center of Scientific Research
| | - Yuxin Liu
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Jinxia Qi
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Yu Su
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Yonghui Chen
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Huaguo Xu
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Zhenkun Lin
- Center of Scientific Research
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Huaqin Guan
- The Department of Gastroenterology and Hepatology
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou
- P. R. China
| |
Collapse
|
11
|
Toulmé JJ, Azéma L, Darfeuille F, Dausse E, Durand G, Paurelle O. Aptamers in Bordeaux 2017: An exceptional "millésime". Biochimie 2017; 145:2-7. [PMID: 29180020 DOI: 10.1016/j.biochi.2017.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023]
Abstract
About 150 participants attended the symposium organised at the Palais de la Bourse in Bordeaux, France on September 22-23, 2017. Thirty speakers from all over the world delivered lectures covering selection processes, aptamer chemistry and innovative applications of these powerful tools that display major advantages over antibodies. Beyond the remarkable science presented, lively discussion and fruitful exchange between participants made this meeting a great success. A series of lectures were focused on synthetic biology (riboswitches, new synthetic base pairs, mutated polymerases). Innovative selection procedures including functional screening of oligonucleotide pools were described. Examples of aptasensors for the detection of pathogens were reported. The potential of aptamers for the diagnostic and the treatment of diseases was also presented. Brief summaries of the lectures presented during the symposium are given in this report. The third edition of this symposium will take place in Boulder, Colorado in Summer 2018 (information available at http://www.aptamers-in-bordeaux.com/).
Collapse
Affiliation(s)
- Jean-Jacques Toulmé
- ARNA Laboratory, University of Bordeaux, 33076 Bordeaux, France; Novaptech, 2 Allée du Doyen George Brus, 33600 Pessac, France.
| | - Laurent Azéma
- ARNA Laboratory, University of Bordeaux, 33076 Bordeaux, France
| | | | - Eric Dausse
- ARNA Laboratory, University of Bordeaux, 33076 Bordeaux, France
| | - Guillaume Durand
- Department Feed and Food, Bordeaux Sciences Agro, 1 cours du Général de Gaulle, 33175 Gradignan, France
| | | |
Collapse
|
12
|
|
13
|
Ultrasensitive and rapid detection of β-conglutin combining aptamers and isothermal recombinase polymerase amplification. Anal Bioanal Chem 2016; 409:143-149. [PMID: 27766362 DOI: 10.1007/s00216-016-9973-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Lupin is increasingly being used in a variety of food products due to its nutritional, functional and nutraceutical properties. However, several examples of severe and even fatal food-associated anaphylaxis due to lupin inhalation or ingestion have been reported, resulting in the lupin subunit β-conglutin, being defined as the Lup an 1 allergen by the International Union of Immunological Societies (IUIS) in 2008. Here, we report an innovative method termed aptamer-recombinase polymerase amplification (Apta-RPA) exploiting the affinity and specificity of a DNA aptamer selected against the anaphylactic β-conglutin allergen termed β-conglutin binding aptamer II (β-CBA II), facilitating ultrasensitive detection via isothermal amplification. Combining magnetic beads as the solid phase with Apta-RPA detection, the total assay time was reduced from 210 min to just 25 min, with a limit of detection of 3.5 × 10-11 M, demonstrating a rapid and ultrasensitive generic methodology that can be used with any aptamer. Future work will focus on further simplification of the assay to a lateral flow format. Graphical Abstract Schematic representation of the rapid and novel bead-based Apta-RPA assay.
Collapse
|