1
|
Schürmann PJL, van Breda Vriesman SPE, Castro-Alpízar JA, Kooijmans SAA, Nieuwenhuis EES, Schiffelers RM, Fuchs SA. Therapeutic Application of mRNA for Genetic Diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70019. [PMID: 40415711 DOI: 10.1002/wnan.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
While gene therapy has been at the center of an active research field for decades, messenger RNA (mRNA) has long been considered unsuited for therapeutic application due to challenges with stability, immunogenicity, and delivery. Where gene therapy focuses on providing the desired genetic code, mRNA can directly provide the instructions encoded in the corresponding gene. This review aims to explore recent advances in mRNA therapies, building on the success of mRNA COVID-19 vaccines, and extend these insights to the potential treatment of rare genetic diseases. We follow the "outside-in" trajectory of mRNA therapies from administration to intracellular function, focusing on carrier systems such as lipid nanoparticles and virus-like particles, mRNA modifications, and the potential and challenges for clinical applications. To treat rare diseases, different approaches can be envisioned, including chronic or acute delivery of mRNAs encoding functional enzymes for enzyme deficiencies and delivery of CRISPR/Cas9-based gene-editing tools for gene correction. These different approaches determine safety and immunological considerations. By exploring genetic, technical, and therapeutic aspects, this review highlights the potential and current challenges of mRNA therapies to address the large unmet needs in rare genetic disorders.
Collapse
Affiliation(s)
- Paul J L Schürmann
- Division of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - Stijn P E van Breda Vriesman
- Division of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - Jose A Castro-Alpízar
- Division of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - Sander A A Kooijmans
- Division of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - Edward E S Nieuwenhuis
- Erasmus MC Rare Disease Center, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
- Nanocell Therapeutics, Utrecht, the Netherlands
| | - Sabine A Fuchs
- Division of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Zhang W, Wang C, Meng Y, He L, Dong M. EBV Vaccines in the Prevention and Treatment of Nasopharyngeal Carcinoma. Vaccines (Basel) 2025; 13:478. [PMID: 40432090 PMCID: PMC12115577 DOI: 10.3390/vaccines13050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, has been robustly linked to the pathogenesis of nasopharyngeal carcinoma (NPC). The mechanism of EBV-induced NPC involves complex interactions between viral proteins and host cell pathways. This review aims to comprehensively outline the mechanism of EBV-induced NPC and the latest advances in targeted EBV vaccines for prophylaxis and treatment. This review explores the intricate molecular mechanisms by which EBV contributes to NPC pathogenesis, highlighting viral latency, genetic and epigenetic alterations, and immune evasion strategies. It emphasizes the pivotal role of key viral proteins, including EBNA1, LMP1, and LMP2A, in carcinogenesis. Subsequently, the discussion shifts towards the development of targeted EBV vaccines, including preventive vaccines aimed at preventing primary EBV infection and therapeutic vaccines aimed at treating diagnosed EBV-related NPC. The review underscores the challenges and future directions in the field, stressing the importance of developing innovative vaccine strategies and combination therapies to improve efficacy. This review synthesizes current insights into the molecular mechanisms of EBV-induced NPC and the development of EBV-targeted vaccines, highlighting the potential use of mRNA vaccines for NPC treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Chuang Wang
- Chengdu Yunce Medical Biotechnology Co., Ltd., Chengdu 611135, China;
| | - Yousheng Meng
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Lang He
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Mingqing Dong
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou 325000, China
| |
Collapse
|
3
|
Faustini B, Lettner T, Wagner A, Tempfer H, Cesur NP, Lehner C, Brouwer C, Roelofs K, Mykhailyk O, Plank C, Rip J, Gehwolf R, Traweger A. Improved tendon repair with optimized chemically modified mRNAs: Combined delivery of Pdgf-BB and IL-1Ra using injectable nanoparticles. Acta Biomater 2025; 195:451-466. [PMID: 39938707 DOI: 10.1016/j.actbio.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Tendon injuries, common in both athletic and non-athletic populations, present significant challenges due to their slow healing and the formation of scar tissue, which impairs function and potentially increases the risk of (re-)rupture. Conventional treatments often yield suboptimal functional and structural repair. This study investigates the potential of mRNA-based therapeutics to enhance tendon healing by targeting 2 distinct pathways via the delivery of chemically modified ARCA-capped mRNAs (cmRNAs) encoding Interleukin-1 receptor antagonist (IL1RA) and Platelet-Derived Growth Factor-BB (PDGF-BB) using injectable nanoparticle (NP) carriers. In vitro experiments demonstrate successful cmRNA delivery and translation, resulting in increased tendon cell proliferation, migration, and anti-inflammatory responses. In vivo, cmRNA treatment notably enhances tendon repair in a rat patellar tendon defect model, by reducing pro-inflammatory cytokines and fibrotic markers while enhancing repair tissue structure. These findings suggest that NP-based cmRNA delivery represents a promising therapeutic strategy for improving tendon healing, offering better outcomes over existing treatments by targeting both inflammatory and regenerative pathways. STATEMENT OF SIGNIFICANCE: In this study, we investigate an mRNA-based therapeutic approach aimed at enhancing tendon healing in a small animal model. Utilizing bioreducible poly(amidoamine)-based polymeric nanoparticles (PAA PNPs) for the delivery of cmRNAs encoding Interleukin-1 receptor antagonist (IL1RA) and Platelet-Derived Growth Factor-BB (PDGF-BB), we demonstrate effective delivery and protein translation in vitro and ex vivo, resulting in enhanced tendon cell proliferation, migration, and robust anti-inflammatory responses. By combining these therapeutic cmRNAs, we show improved tendon repair in vivo, with accelerated tissue regeneration, better collagen fiber organization, and signs of reduced fibrotic scarring. These findings highlight the potential of nanoparticle-mediated cmRNA delivery targeting two distinct pathways to improve tendon healing, offering a promising alternative to current treatments that often yield suboptimal results.
Collapse
Affiliation(s)
- Bettina Faustini
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Lettner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Nevra Pelin Cesur
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Christine Lehner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | | | - Karin Roelofs
- 20Med Therapeutics B.V., 2333BD Leiden, the Netherlands
| | | | | | - Jaap Rip
- 20Med Therapeutics B.V., 2333BD Leiden, the Netherlands
| | - Renate Gehwolf
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| |
Collapse
|
4
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
5
|
Javidanbardan A, Messerian KO, Zydney AL. Membrane technology for the purification of RNA and DNA therapeutics. Trends Biotechnol 2024; 42:714-727. [PMID: 38212210 DOI: 10.1016/j.tibtech.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Nucleic acid therapeutics have the potential to revolutionize the biopharmaceutical industry, providing highly effective vaccines and novel treatments for cancers and genetic disorders. The successful commercialization of these therapeutics will require development of manufacturing strategies specifically tailored to the purification of nucleic acids. Membrane technologies already play a critical role in the downstream processing of nucleic acid therapeutics, ranging from clarification to concentration to selective purification. This review provides an overview of how membrane systems are currently used for nucleic acid purification, while highlighting areas of future need and opportunity, including adoption of membranes in continuous bioprocessing.
Collapse
Affiliation(s)
- Amin Javidanbardan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevork Oliver Messerian
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Romey A, Ularamu HG, Bulut A, Jamal SM, Khan S, Ishaq M, Eschbaumer M, Belsham GJ, Bernelin-Cottet C, Relmy A, Gondard M, Benfrid S, Wungak YS, Hamers C, Hudelet P, Zientara S, Bakkali Kassimi L, Blaise-Boisseau S. Field Evaluation of a Safe, Easy, and Low-Cost Protocol for Shipment of Samples from Suspected Cases of Foot-and-Mouth Disease to Diagnostic Laboratories. Transbound Emerg Dis 2023; 2023:9555213. [PMID: 40303790 PMCID: PMC12016716 DOI: 10.1155/2023/9555213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 05/02/2025]
Abstract
Identification and characterization of the foot-and-mouth disease virus (FMDV) strains circulating in endemic countries and their dynamics are essential elements of the global FMD control strategy. Characterization of FMDV is usually performed in reference laboratories (RL). However, shipping of FMD samples to RL is a challenge due to the cost and biosafety requirements of transportation, resulting in a lack of knowledge about the strains circulating in some endemic areas. In order to simplify this step and to encourage sample submission to RL, we have previously developed a low-cost protocol for the shipment of FMD samples based on the use of lateral flow devices (LFDs) combined with a simple virus inactivation step using 0.2% citric acid. The present study aimed to evaluate this inactivation protocol in the field. For this purpose, 60 suspected FMD clinical samples were collected in Nigeria, Pakistan, and Turkey, three countries where FMD is endemic. Sample treatment, testing on LFDs, and virus inactivation steps were performed in the field when possible. The effectiveness of the virus inactivation was confirmed at the RL. After RNA extraction from the 60 inactivated LFDs, all were confirmed as FMDV positive by real-time reverse transcription polymerase chain reaction (RT-PCR). The serotype was identified by conventional RT-PCR for 86% of the samples. The topotype and/or lineage was successfully determined for 60% of the samples by Sanger sequencing and sequence analyses. After chemical transfection of RNA extracted from inactivated LFDs, into permissive cells, infectious virus was rescued from 15% of the samples. Implementation of this user-friendly protocol can substantially reduce shipping costs, which should increase the submission of field samples and therefore improve knowledge of the circulating FMDV strains.
Collapse
Affiliation(s)
- Aurore Romey
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Hussaini G. Ularamu
- FMD Research Centre, National Veterinary Research Institute (NVRI), PMB 01 Vom, Lagos, Nigeria
| | - Abdulnaci Bulut
- SAP/FMD Institute, Dumlupinar Bulvard 35, Ankara 06510, Turkey
| | - Syed M. Jamal
- Department of Biotechnology, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Salman Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ishaq
- Department of Biotechnology, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald 17489, Germany
| | - Graham J. Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave DK-4771, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark
| | - Cindy Bernelin-Cottet
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Anthony Relmy
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Mathilde Gondard
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Souheyla Benfrid
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Yiltawe S. Wungak
- FMD Research Centre, National Veterinary Research Institute (NVRI), PMB 01 Vom, Lagos, Nigeria
| | - Claude Hamers
- The Veterinary Public Health Center, Boehringer Ingelheim Animal Health, 29 Avenue Tony Garnier, Lyon, 69007, France
| | - Pascal Hudelet
- The Veterinary Public Health Center, Boehringer Ingelheim Animal Health, 29 Avenue Tony Garnier, Lyon, 69007, France
| | - Stéphan Zientara
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Labib Bakkali Kassimi
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Sandra Blaise-Boisseau
- Animal Health Laboratory, Foot-and-Mouth Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| |
Collapse
|
8
|
Ravichandran AJ, Romeo FJ, Mazurek R, Ishikawa K. Barriers in Heart Failure Gene Therapy and Approaches to Overcome Them. Heart Lung Circ 2023; 32:780-789. [PMID: 37045653 PMCID: PMC10440286 DOI: 10.1016/j.hlc.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 04/14/2023]
Abstract
With the growing prevalence and incidence of heart failure worldwide, investigation and development of new therapies to address disease burden are of great urgency. Gene therapy is one promising approach for the management of heart failure, but several barriers currently exclude safe and efficient gene delivery to the human heart. These barriers include the anatomical and biological difficulty of specifically targeting cardiomyocytes, the vascular endothelium, and immunogenicity against administered vectors and the transgene. We review approaches taken to overcome these barriers with a focus on vector modification, evasion of immune responses, and heart-targeted delivery techniques. While various modifications proposed to date show promise in managing some barriers, continued investigation into improvements to existing therapies is required to address transduction efficiency, duration of transgene expression, and immune response.
Collapse
Affiliation(s)
- Anjali J Ravichandran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francisco J Romeo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. https://twitter.com/FJRomeoMD
| | - Renata Mazurek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Zhang HL. Current Status and Patent Prospective of Lipid Nanoparticle for mRNA Delivery. Expert Opin Ther Pat 2023; 33:125-131. [PMID: 36958374 DOI: 10.1080/13543776.2023.2195541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
INTRODUCTION mRNA-LNP delivery is currently a research hotspot in pharmaceutics. Lipid nanoparticle has emerged in pharmaceutical industry as popular and effective vehicles for mRNA delivery. It is therefore significant to understand current landscape and recent development of lipid nanoparticle for mRNA delivery. AREAS COVERED This article provides patent landscape and recent development for mRNA-LNP delivery by US-granted patent analysis. The US-granted patents from January 2003 to December 2022 were retrieved and analyzed by using patsnap. EXPERT OPINION Globally, the present article was the first one which showed that mRNA-LNP delivery system demonstrated three therapeutic applications including vaccines, anticancer, and diseases associated with protein or enzyme deficiencies. Modernatx is most powerful company, and leads almost all technologies in mRNA-LNP field. In addition, the technologies related to lipid nanoparticle for mRNA delivery are virtually controlled by top three assignees. mRNA-LNP delivery in therapy of diseases associated with enzyme deficiencies may be a future trend. The article provides recent advances in lipid nanoparticle for mRNA delivery.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co. Ltd. Baotou, China
| |
Collapse
|
10
|
Shin S, Lee P, Han J, Kim SN, Lim J, Park DH, Paik T, Min J, Park CG, Park W. Nanoparticle-Based Chimeric Antigen Receptor Therapy for Cancer Immunotherapy. Tissue Eng Regen Med 2023; 20:371-387. [PMID: 36867402 PMCID: PMC9983528 DOI: 10.1007/s13770-022-00515-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 03/04/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) has emerged as an innovative immunotherapy for hematological cancer treatment. However, the limited effect on solid tumors, complex processes, and excessive manufacturing costs remain as limitations of CAR-T therapy. Nanotechnology provides an alternative to the conventional CAR-T therapy. Owing to their unique physicochemical properties, nanoparticles can not only serve as a delivery platform for drugs but also target specific cells. Nanoparticle-based CAR therapy can be applied not only to T cells but also to CAR-natural killer and CAR-macrophage, compensating for some of their limitations. This review focuses on the introduction of nanoparticle-based advanced CAR immune cell therapy and future perspectives on immune cell reprogramming.
Collapse
Affiliation(s)
- Seungyong Shin
- grid.264381.a0000 0001 2181 989XDepartment of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Pyunghwajun Lee
- grid.264381.a0000 0001 2181 989XDepartment of Global Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Jieun Han
- grid.264381.a0000 0001 2181 989XDepartment of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XInstitute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Se-Na Kim
- grid.31501.360000 0004 0470 5905Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jaesung Lim
- grid.264381.a0000 0001 2181 989XDepartment of Global Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Dae-Hwan Park
- grid.254229.a0000 0000 9611 0917Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Taejong Paik
- grid.254224.70000 0001 0789 9563School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Chun Gwon Park
- Department of Global Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
11
|
Li CY, Liang Z, Hu Y, Zhang H, Setiasabda KD, Li J, Ma S, Xia X, Kuang Y. Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:300-310. [PMID: 36320322 PMCID: PMC9614650 DOI: 10.1016/j.omtn.2022.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Synthetic mRNAs are rising rapidly as alternative therapeutic agents for delivery of proteins. However, the practical use of synthetic mRNAs has been restricted by their low cellular stability as well as poor protein production efficiency. The key roles of poly(A) tail on mRNA biology inspire us to explore the optimization of tail sequence to overcome the aforementioned limitations. Here, the systematic substitution of non-A nucleotides in the tails revealed that cytidine-containing tails can substantially enhance the protein production rate and duration of synthetic mRNAs both in vitro and in vivo. Such C-containing tails shield synthetic mRNAs from deadenylase CCR4-NOT transcription complex, as the catalytic CNOT proteins, especially CNOT6L and CNOT7, have lower efficiency in trimming of cytidine. Consistently, these enhancement effects of C-containing tails were observed on all synthetic mRNAs tested and were independent of transfection reagents and cell types. As the C-containing tails can be used along with other mRNA enhancement technologies to synergically boost protein production, we believe that these tails can be broadly used on synthetic mRNAs to directly promote their clinical applications.
Collapse
Affiliation(s)
- Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Kharis Daniel Setiasabda
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiawei Li
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China,HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China,Corresponding author Yi Kuang, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies (Basel) 2022; 11:antib11030049. [PMID: 35892709 PMCID: PMC9326752 DOI: 10.3390/antib11030049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. For targeting TAAs or neoantigens, adoptive T-cell therapies with activated autologous T cells from cancer patients transduced with novel recombinant TCRs or chimeric antigen receptors have been successfully applied. Many TAAs and most neoantigens are expressed in the cytoplasm or nucleus of tumor cells. As alternative to adoptive T-cell therapy, the mRNA of intracellular tumor antigens can be depleted by RNAi, the corresponding genes or proteins deleted by CRISPR-Cas or inactivated by kinase inhibitors or by intrabodies, respectively. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. For specifically delivering intrabodies into tumor cells, the usage of new capsid-modified adeno-associated viruses and lipid nanoparticles coupled with specific ligands to cell surface receptors can be used and might bring cancer intrabodies into the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
13
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, Del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:207-293. [PMID: 36064265 DOI: 10.1016/bs.ircmb.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain.
| |
Collapse
|
14
|
Morreel K, t’Kindt R, Debyser G, Jonckheere S, Sandra P. Diving into the Structural Details of In Vitro Transcribed mRNA Using Liquid Chromatography–Mass Spectrometry-Based Oligonucleotide Profiling. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.jk3969w4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The production process of in vitro transcribed messenger RNA (IVT-mRNA)-based vaccines has matured in recent years, partly due to the fight against infectious diseases such as COVID-19. One key to success has been the use of modified, next to canonical, nucleotides and the efficient addition of a Cap-structure and poly A tail to the 5’ and 3’ end, respectively, of this massive biomolecule. These important features affect mRNA stability and impact translation efficiency, consequently boosting the optimization and implementation of liquid chromatography–mass spectrometry (LC–MS)-based oligonucleotide profiling methods for their characterization. This article will provide an overview of these LC–MS methods at a fundamental and application level. It will be shown how LC–MS is implemented in mRNA-based vaccine analysis to determine the capping efficiency and the poly A tail length, and how it allows, via RNA mapping, (i) to determine the mRNA sequence, (ii) to screen the fidelity of the manufactured modifications, and (iii) to identify and quantify unwanted modifications resulting from manufacturing or storage, and sequence variants resulting from mutation or transcription errors.
Collapse
|
15
|
De La Vega RE, van Griensven M, Zhang W, Coenen MJ, Nagelli CV, Panos JA, Peniche Silva CJ, Geiger J, Plank C, Evans CH, Balmayor ER. Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. SCIENCE ADVANCES 2022; 8:eabl6242. [PMID: 35171668 PMCID: PMC8849297 DOI: 10.1126/sciadv.abl6242] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Large segmental osseous defects heal poorly. Recombinant, human bone morphogenetic protein-2 (rhBMP-2) is used clinically to promote bone healing, but it is applied at very high doses that cause adverse side effects and raise costs while providing only incremental benefit. We describe a previously unexplored, alternative approach to bone regeneration using chemically modified messenger RNA (cmRNA). An optimized cmRNA encoding BMP-2 was delivered to critical-sized femoral osteotomies in rats. The cmRNA remained orthotopically localized and generated BMP locally for several days. Defects healed at doses ≥25 μg of BMP-2 cmRNA. By 4 weeks, all animals treated with 50 μg of BMP-2 cmRNA had bridged bone defects without forming the massive callus seen with rhBMP-2. Moreover, such defects recovered normal mechanical strength quicker and initiated bone remodeling faster. cmRNA regenerated bone via endochondral ossification, whereas rhBMP-2 drove intramembranous osteogenesis; cmRNA provides an innovative, safe, and highly translatable technology for bone healing.
Collapse
Affiliation(s)
- Rodolfo E. De La Vega
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | | | - Michael J. Coenen
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph A. Panos
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - Carlos J. Peniche Silva
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Elizabeth R. Balmayor
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
- IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Corresponding author.
| |
Collapse
|
16
|
Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through. Biomedicines 2022; 10:biomedicines10010107. [PMID: 35052787 PMCID: PMC8773317 DOI: 10.3390/biomedicines10010107] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.
Collapse
Affiliation(s)
- Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
- Correspondence:
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Malaysia;
| | | | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| |
Collapse
|
17
|
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2021; 10:50. [PMID: 35052730 PMCID: PMC8773365 DOI: 10.3390/biomedicines10010050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the quest for a formidable weapon against the SARS-CoV-2 pandemic, mRNA therapeutics have stolen the spotlight. mRNA vaccines are a prime example of the benefits of mRNA approaches towards a broad array of clinical entities and druggable targets. Amongst these benefits is the rapid cycle "from design to production" of an mRNA product compared to their peptide counterparts, the mutability of the production line should another target be chosen, the side-stepping of safety issues posed by DNA therapeutics being permanently integrated into the transfected cell's genome and the controlled precision over the translated peptides. Furthermore, mRNA applications are versatile: apart from vaccines it can be used as a replacement therapy, even to create chimeric antigen receptor T-cells or reprogram somatic cells. Still, the sudden global demand for mRNA has highlighted the shortcomings in its industrial production as well as its formulation, efficacy and applicability. Continuous, smart mRNA manufacturing 4.0 technologies have been recently proposed to address such challenges. In this work, we examine the lab and upscaled production of mRNA therapeutics, the mRNA modifications proposed that increase its efficacy and lower its immunogenicity, the vectors available for delivery and the stability considerations concerning long-term storage.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evdokia Mandala
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Davidopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine K Markopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
18
|
Linares-Fernández S, Moreno J, Lambert E, Mercier-Gouy P, Vachez L, Verrier B, Exposito JY. Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:945-956. [PMID: 34692232 PMCID: PMC8523304 DOI: 10.1016/j.omtn.2021.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 01/07/2023]
Abstract
mRNA is a blooming technology for vaccination and has gained global attention during the SARS-CoV-2 pandemic. However, the recent clinical trials have highlighted increased reactogenicity when using high mRNA doses. Intending to increase the potency of mRNA therapeutics and to decrease the therapeutic dose, we designed a mRNA backbone and optimized the mRNA purification process. We used the enhanced green fluorescent protein (eGFP) reporter gene flanked by one 5′ untranslated region (UTR) and two 3′ UTRs of the human β-globin as a reference mRNA and identified the most promising mRNA sequence using in vitro and in vivo models. First, we assessed the impact of different poly(A) sizes on translation and selected the most optimal sequence. Then, we selected the best 5′ UTR among synthetic sequences displaying a high ribosome loading. Finally, we evaluated the transfection efficiency of our standard mRNA template after two capping strategies and purification using either double-stranded RNA (dsRNA) depletion or dephosphorylation of 5′PPP RNA or both combined. Double purification was shown to give the best results. Altogether, the use of a newly defined 5′ UTR coupled to post-transcriptional treatments will be of great interest in the mRNA vaccine field, by limiting the amount of the antigen-coding transcript and subsequently the formulation components needed for an efficient vaccination.
Collapse
Affiliation(s)
- Sergio Linares-Fernández
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Julien Moreno
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Perrine Mercier-Gouy
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Laetitia Vachez
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Jean-Yves Exposito
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| |
Collapse
|
19
|
Balmayor ER. Synthetic mRNA - emerging new class of drug for tissue regeneration. Curr Opin Biotechnol 2021; 74:8-14. [PMID: 34749063 DOI: 10.1016/j.copbio.2021.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
mRNA has the potential to be the next generation drug for tissue restoration in regenerative medicine. The variety of mRNAs that could be synthesized with the aim of increasing the expression of any required protein offers new opportunities. However, the intrinsic immunogenicity and lack of stability of mRNA has long restricted the potential of mRNA therapeutics. Fortunately, considerable progress has been made on synthetic mRNA modifications and relevant purification steps that have overcome these limitations. However, there remains a lack of efficient mRNA delivery strategies. Additionally, mRNA may need to be administered in situ via three-dimensional biomaterials. These materials, also known as transcript-activated matrices, require further consideration in terms of mRNA loading and release, immunogenicity, and other features. In this article, various limiting factors in mRNA synthesis, vector formulation, and local delivery to tissues are highlighted together with current developments and the future outlook for mRNA therapeutics in tissue regeneration.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- IBE, MERLN Institute for Technology - Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 2021; 16:1307-1317. [PMID: 34058918 DOI: 10.1080/17460441.2021.1935859] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Messenger RNA (mRNA)-based therapeutics and vaccines have emerged as a disruptive new drug class for various applications, including regenerative medicine, cancer treatment, and prophylactic and therapeutic vaccinations. AREAS COVERED This review provides an update about the rational structure-based design of various formats of mRNA-based therapeutics. The authors discuss the recent advances in the mRNA modifications that have been used to enhance stability, promote translation efficiency and regulate immunogenicity for specific applications. EXPERT OPINION Extensive research efforts have been made to optimize mRNA constructs and preparation procedures to unleash the full potential of mRNA-based therapeutics and vaccines. Sequence optimization (untranslated region and codon usage), chemical engineering of nucleotides and modified 5'cap, and optimization of in vitro transcription and mRNA purification protocols have overcome the major obstacles (instability, delivery, immunogenicity and safety) hindering the clinical applications of mRNA therapeutics and vaccines. The optimized design parameters should not be applied as default to different biological systems, but rather individually optimized for each mRNA sequence and intended application. Further advancement in the mRNA design and delivery technologies for achieving cell type- and organ site-specificity will broaden the scope and usefulness of this new class of drugs.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
21
|
Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine 2021; 39:5719-5726. [PMID: 34426024 PMCID: PMC8354792 DOI: 10.1016/j.vaccine.2021.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
In an effort to control the COVID-19 pandemic, large-scale vaccination is being implemented in various countries using anti-SARS-CoV-2 vaccines based on mRNAs, adenovirus vectors, and inactivated viruses. However, there are concerns regarding adverse effects, such as the induction of fever attributed to mRNA vaccines and pre-existing immunity against adenovirus vectored vaccines or their possible involvement in the development of thrombosis. The induction of antibodies against the adenovirus vector itself constitutes another hindrance, rendering boosting vaccinations ineffective. Additionally, it has been questioned whether inactivated vaccines that predominantly induce humoral immunity are effective against newly arising variants, as some isolated strains were found to be resistant to the serum from COVID-19-recovered patients. Although the number of vaccinated people is steadily increasing on a global scale, it is still necessary to develop vaccines to address the difficulties and concerns mentioned above. Among the various vaccine modalities, live attenuated vaccines have been considered the most effective, since they closely replicate a natural infection without the burden of the disease. In our attempt to provide an additional option to the repertoire of COVID-19 vaccines, we succeeded in isolating temperature-sensitive strains with unique phenotypes that could serve as seeds for a live attenuated vaccine. In this review article, we summarize the characteristics of the currently approved SARS-CoV-2 vaccines and discuss their advantages and disadvantages. In particular, we focus on the novel temperature-sensitive variants of SARS-CoV-2 that we have recently isolated, and their potential application as live-attenuated vaccines. Based on a thorough evaluation of the different vaccine modalities, we argue that it is important to optimize usage not only based on efficacy, but also on the phases of the pandemic. Our findings can be used to inform vaccination practices and improve global recovery from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
22
|
Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ 2021; 9:e11165. [PMID: 33976969 PMCID: PMC8067914 DOI: 10.7717/peerj.11165] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
23
|
Park JW, Lagniton PN, Liu Y, Xu RH. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci 2021; 17:1446-1460. [PMID: 33907508 PMCID: PMC8071766 DOI: 10.7150/ijbs.59233] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
The Coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2), has impacted human lives in the most profound ways with millions of infections and deaths. Scientists and pharmaceutical companies have been in race to produce vaccines against SARS-CoV-2. Vaccine generation usually demands years of developing and testing for efficacy and safety. However, it only took less than one year to generate two mRNA vaccines from their development to deployment. The rapid production time, cost-effectiveness, versatility in vaccine design, and clinically proven ability to induce cellular and humoral immune response have crowned mRNA vaccines with spotlights as most promising vaccine candidates in the fight against the pandemic. In this review, we discuss the general principles of mRNA vaccine design and working mechanisms of the vaccines, and provide an up-to-date summary of pre-clinical and clinical trials on seven anti-COVID-19 mRNA candidate vaccines, with the focus on the two mRNA vaccines already licensed for vaccination. In addition, we highlight the key strategies in designing mRNA vaccines to maximize the expression of immunogens and avoid intrinsic innate immune response. We also provide some perspective for future vaccine development against COVID-19 and other pathogens.
Collapse
Affiliation(s)
| | | | | | - Ren-He Xu
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
24
|
Kucharski M, Mrowiec P, Ocłoń E. Current standards and pitfalls associated with the transfection of primary fibroblast cells. Biotechnol Prog 2021; 37:e3152. [PMID: 33774920 DOI: 10.1002/btpr.3152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
Cultured fibroblast cells, especially dermal cells, are used for various types of scientific research, particularly within the medical field. Desirable features of the cells include their ease of isolation, rapid cellular growth, and high degree of robustness. Currently, fibroblasts are mainly used to obtain pluripotent cells via a reprogramming process. Dermal fibroblasts, are particularly useful for gene therapies used for promoting wound healing or minimizing skin aging. In recent years, fibroblast transfection efficiencies have significantly improved. In order to introduce molecules (most often DNA or RNA) into cells, viral-based systems (transduction) or non-viral methods (transfection) that include physical/mechanical processes or lipid reagents may be used. In this article, we describe critical points that should be considered when selecting a method for transfecting fibroblasts. The most effective methods used for the transfection of fibroblasts include both viral-based and non-viral nucleofection systems. These methods result in a high level of transgene expression and are superior in terms of transfection efficacy and viability.
Collapse
Affiliation(s)
- Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Patrycja Mrowiec
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| | - Ewa Ocłoń
- Centre for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
25
|
Abstract
mRNA vaccines have become a promising platform for cancer immunotherapy. During vaccination, naked or vehicle loaded mRNA vaccines efficiently express tumor antigens in antigen-presenting cells (APCs), facilitate APC activation and innate/adaptive immune stimulation. mRNA cancer vaccine precedes other conventional vaccine platforms due to high potency, safe administration, rapid development potentials, and cost-effective manufacturing. However, mRNA vaccine applications have been limited by instability, innate immunogenicity, and inefficient in vivo delivery. Appropriate mRNA structure modifications (i.e., codon optimizations, nucleotide modifications, self-amplifying mRNAs, etc.) and formulation methods (i.e., lipid nanoparticles (LNPs), polymers, peptides, etc.) have been investigated to overcome these issues. Tuning the administration routes and co-delivery of multiple mRNA vaccines with other immunotherapeutic agents (e.g., checkpoint inhibitors) have further boosted the host anti-tumor immunity and increased the likelihood of tumor cell eradication. With the recent U.S. Food and Drug Administration (FDA) approvals of LNP-loaded mRNA vaccines for the prevention of COVID-19 and the promising therapeutic outcomes of mRNA cancer vaccines achieved in several clinical trials against multiple aggressive solid tumors, we envision the rapid advancing of mRNA vaccines for cancer immunotherapy in the near future. This review provides a detailed overview of the recent progress and existing challenges of mRNA cancer vaccines and future considerations of applying mRNA vaccine for cancer immunotherapies.
Collapse
Affiliation(s)
- Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
28
|
Carballo-Pedrares N, Fuentes-Boquete I, Díaz-Prado S, Rey-Rico A. Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches-An Overview. Pharmaceutics 2020; 12:E752. [PMID: 32785171 PMCID: PMC7464633 DOI: 10.3390/pharmaceutics12080752] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogel-based nonviral gene delivery constitutes a powerful strategy in various regenerative medicine scenarios, as those concerning the treatment of musculoskeletal, cardiovascular, or neural tissues disorders as well as wound healing. By a minimally invasive administration, these systems can provide a spatially and temporarily defined supply of specific gene sequences into the target tissue cells that are overexpressing or silencing the original gene, which can promote natural repairing mechanisms to achieve the desired effect. In the present work, we provide an overview of the most avant-garde approaches using various hydrogels systems for controlled delivery of therapeutic nucleic acid molecules in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| |
Collapse
|
29
|
Moradian H, Roch T, Lendlein A, Gossen M. mRNA Transfection-Induced Activation of Primary Human Monocytes and Macrophages: Dependence on Carrier System and Nucleotide Modification. Sci Rep 2020; 10:4181. [PMID: 32144280 PMCID: PMC7060354 DOI: 10.1038/s41598-020-60506-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications.
Collapse
Affiliation(s)
- Hanieh Moradian
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Toralf Roch
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
- Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Manfred Gossen
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany.
| |
Collapse
|
30
|
Linares-Fernández S, Lacroix C, Exposito JY, Verrier B. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol Med 2020; 26:311-323. [PMID: 31699497 DOI: 10.1016/j.molmed.2019.10.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
mRNA vaccine platforms present numerous advantages, such as versatility, rapid production, and induction of cellular and humoral responses. Moreover, mRNAs have inherent adjuvant properties due to their complex interaction with pattern recognition receptors (PRRs). This recognition can be either beneficial in activating antigen-presenting cells (APCs) or detrimental by indirectly blocking mRNA translation. To decipher this Janus effect, we describe the different innate response mechanisms triggered by mRNA molecules and how each element from the 5' cap to the poly-A tail interferes with innate/adaptive immune responses. Then, we emphasize the importance of some critical steps such as production, purification, and formulation as key events to further improve the quality of immune responses and balance innate and adaptive immunity.
Collapse
Affiliation(s)
- Sergio Linares-Fernández
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Céline Lacroix
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Jean-Yves Exposito
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Bernard Verrier
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France.
| |
Collapse
|
31
|
Efficient reduction of synthetic mRNA induced immune activation by simultaneous delivery of B18R encoding mRNA. J Biol Eng 2019; 13:40. [PMID: 31168319 PMCID: PMC6509845 DOI: 10.1186/s13036-019-0172-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022] Open
Abstract
The application of synthetic modified messenger RNA (mRNA) is a promising approach for the treatment of a variety of diseases and vaccination. In the past few years, different modifications of synthetic mRNA were applied to render the mRNA more stable and less immunogenic. However, the repeated application of synthetic mRNA still requires the suppression of immune activation to avoid cell death and to allow a sufficient production of exogenous proteins. Thus, the addition of type I interferon (IFN) inhibiting recombinant protein B18R is often required to avoid IFN response. In this study, the ability of B18R encoding mRNA to prevent the immune response of cells to the delivered synthetic mRNA was analyzed. The co-transfection of enhanced green fluorescent protein (eGFP) mRNA transfected fibroblasts with B18R encoding mRNA over 7-days resulted in comparable cell viability and eGFP protein expression as in the cells transfected with eGFP mRNA and incubated with B18R protein. Using qRT-PCR, significantly reduced expression of interferon-stimulated gene Mx1 was detected in the cells transfected with B18R mRNA and stimulated with IFNβ compared to the cells without B18R mRNA transfection. Thereby, it was demonstrated that the co-transfection of synthetic mRNA transfected cells with B18R encoding mRNA can reduce the IFN response-related cell death and thus, improve the protein expression.
Collapse
|
32
|
Suknuntha K, Tao L, Brok-Volchanskaya V, D'Souza SS, Kumar A, Slukvin I. Optimization of Synthetic mRNA for Highly Efficient Translation and its Application in the Generation of Endothelial and Hematopoietic Cells from Human and Primate Pluripotent Stem Cells. Stem Cell Rev Rep 2018. [PMID: 29520567 DOI: 10.1007/s12015-018-9805-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of transcription factors that directly convert pluripotent stem cells (PSCs) into endothelial and blood cells and advances in the chemical modifications of messenger RNA (mRNA) offer alternative nucleic acid-based transgene-free approach for scalable production of these cells for drug screening and therapeutic purposes. Here we evaluated the effect of 5' and 3' RNA untranslated regions (UTRs) on translational efficiency of chemically-modified synthetic mRNA (modRNA) in human PSCs and showed that an addition of 5'UTR indeed enhanced protein expression. With the optimized modRNAs expressing ETV2 or ETV2 and GATA2, we are able to produce VE-cadherin+ endothelial cells and CD34+CD43+ hematopoietic progenitors, respectively, from human PSCs as well as non-human primate (NHP) PSCs. Overall, our findings provide valuable information on the design of in vitro transcription templates being used in PSCs and its broad applicability for basic research, disease modeling, and regenerative medicine.
Collapse
Affiliation(s)
- Kran Suknuntha
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA.
| | - Lihong Tao
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Vera Brok-Volchanskaya
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Saritha S D'Souza
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Igor Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53792, USA
| |
Collapse
|
33
|
Schwartz PH. Neural stem cells in health and disease. Methods 2018; 133:1-2. [PMID: 29425545 DOI: 10.1016/j.ymeth.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Philip H Schwartz
- National Human Neural Stem Cell Resource, Children's Hospital of Orange County Research Institute, 1201 West La Veta Avenue, Orange, CA 92868-4203, United States.
| |
Collapse
|