1
|
Glänzer D, Pfeiffer M, Ribar A, Zeindl R, Tollinger M, Nidetzky B, Kreutz C. Efficient Synthetic Access to Stable Isotope Labelled Pseudouridine Phosphoramidites for RNA NMR Spectroscopy. Chemistry 2024; 30:e202401193. [PMID: 38652483 DOI: 10.1002/chem.202401193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Here we report the efficient synthetic access to 13C/15N-labelled pseudouridine phosphoramidites, which were incorporated into a binary H/ACA box guide RNA/product complex comprising 77 nucleotides (nts) in total and into a 75 nt E. coli tRNAGly. The stable isotope (SI) labelled pseudouridines were produced via a highly efficient chemo-enzymatic synthesis. 13C/15N labelled uracils were produced via chemical synthesis and enzymatically converted to pseudouridine 5'-monophosphate (ΨMP) by using YeiN, a Ψ-5'-monophosphate C-glycosidase. Removal of the 5'-phosphate group yielded the desired pseudouridine nucleoside (Ψ), which was transformed into a phosphoramidite building suitable for RNA solid phase synthesis. A Ψ -building block carrying both a 13C and a 15N label was incorporated into a product RNA and the complex formation with a 63 nt H/ACA box RNA could be observed via NMR. Furthermore, the SI labelled pseudouridine building block was used to determine imino proton bulk water exchange rates of a 75 nt E. coli tRNAGly CCmnm5U, identifying the TΨC-loop 5-methyluridine as a modifier of the exchange rates. The efficient synthetic access to SI-labelled Ψ building blocks will allow the solution and solid-state NMR spectroscopic studies of Ψ containing RNAs and will facilitate the mass spectrometric analysis of Ψ-modified nucleic acids.
Collapse
Affiliation(s)
- David Glänzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- and Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Andrej Ribar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- and Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Ricarda Zeindl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- and Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Ahmed R, Rangadurai AK, Ruetz L, Tollinger M, Kreutz C, Kay LE. A delayed decoupling methyl-TROSY pulse sequence for atomic resolution studies of folded proteins and RNAs in condensates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107667. [PMID: 38626504 DOI: 10.1016/j.jmr.2024.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
Solution NMR spectroscopy has tremendous potential for providing atomic resolution insights into the interactions between proteins and nucleic acids partitioned into condensed phases of phase-separated systems. However, the highly viscous nature of the condensed phase challenges applications, and in particular, the extraction of quantitative, site-specific information. Here, we present a delayed decoupling-based HMQC pulse sequence for methyl-TROSY studies of 'client' proteins and nucleic acids partitioned into 'scaffold' proteinaceous phase-separated solvents. High sensitivity and excellent quality spectra are recorded of a nascent form of superoxide dismutase and of a small RNA fragment partitioned into CAPRIN1 condensates.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Atul K Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Lisa Ruetz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
3
|
Juen F, Glänzer D, Plangger R, Kugler V, Fleischmann J, Stefan E, Case DA, Kovacs H, Dayie TK, Kreutz C. Enhanced TROSY Effect in [2- 19 F, 2- 13 C] Adenosine and ATP Analogs Facilitates NMR Spectroscopy of Very Large Biological RNAs in Solution. Angew Chem Int Ed Engl 2024; 63:e202316273. [PMID: 38185473 PMCID: PMC10922520 DOI: 10.1002/anie.202316273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Large RNAs are central to cellular functions, but characterizing such RNAs remains challenging by solution NMR. We present two labeling technologies based on [2-19 F, 2-13 C]-adenosine, which allow the incorporation of aromatic 19 F-13 C spin pairs. The labels when coupled with the transverse relaxation optimized spectroscopy (TROSY) enable us to probe RNAs comprising up to 124 nucleotides. With our new [2-19 F, 2-13 C]-adenosine-phosphoramidite, all resonances of the human hepatitis B virus epsilon RNA could be readily assigned. With [2-19 F, 2-13 C]-adenosine triphosphate, the 124 nt pre-miR-17-NPSL1-RNA was produced via in vitro transcription and the TROSY spectrum of this 40 kDa [2-19 F, 2-13 C]-A-labeled RNA featured sharper resonances than the [2-1 H, 2-13 C]-A sample. The mutual cancelation of the chemical-shift-anisotropy and the dipole-dipole-components of TROSY-resonances leads to narrow linewidths over a wide range of molecular weights. With the synthesis of a non-hydrolysable [2-19 F, 2-13 C]-adenosine-triphosphate, we facilitate the probing of co-factor binding in kinase complexes and NMR-based inhibitor binding studies in such systems. Our labels allow a straightforward assignment for larger RNAs via a divide-and-conquer/mutational approach. The new [2-19 F, 2-13 C]-adenosine precursors are a valuable addition to the RNA NMR toolbox and will allow the study of large RNAs/RNA protein complexes in vitro and in cells.
Collapse
Affiliation(s)
- Fabian Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - David Glänzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Valentina Kugler
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Jakob Fleischmann
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Zhao S, Li X, Wen Z, Zou M, Yu G, Liu X, Mao J, Zhang L, Xue Y, Fu R, Wang S. Dynamics of base pairs with low stability in RNA by solid-state nuclear magnetic resonance exchange spectroscopy. iScience 2022; 25:105322. [DOI: 10.1016/j.isci.2022.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
|
5
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Olenginski LT, Kasprzak WK, Bergonzo C, Shapiro BA, Dayie TK. Conformational Dynamics of the Hepatitis B Virus Pre-genomic RNA on Multiple Time Scales: Implications for Viral Replication. J Mol Biol 2022; 434:167633. [PMID: 35595167 DOI: 10.1016/j.jmb.2022.167633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Human hepatitis B virus (HBV) replication is initiated by the binding of the viral polymerase (P) to epsilon (ε), an ≈85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 5'-end of the pre-genomic RNA (pgRNA). This interaction triggers P and pgRNA packaging and protein-primed reverse transcription and is therefore an attractive therapeutic target. Our recent nuclear magnetic resonance (NMR) structure of ε provides a useful starting point toward a detailed understanding of HBV replication, and hints at the functional importance of ε dynamics. Here, we present a detailed description of ε motions on the ps to ns and μs to ms time scales by NMR spin relaxation and relaxation dispersion, respectively. We also carried out molecular dynamics simulations to provide additional insight into ε conformational dynamics. These data outline a series of complex motions on multiple time scales within ε. Moreover, these motions occur in mostly conserved nucleotides from structural regions (i.e., priming loop, pseudo-triloop, and U43 bulge) that biochemical and mutational studies have shown to be essential for P binding, P-pgRNA packaging, protein-priming, and DNA synthesis. Taken together, our work implicates RNA dynamics as an integral feature that governs HBV replication.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wojciech K Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and University of Maryland, Rockville, MD 20850, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Riad M, Hopkins N, Baronti L, Karlsson H, Schlagnitweit J, Petzold K. Mutate-and-chemical-shift-fingerprint (MCSF) to characterize excited states in RNA using NMR spectroscopy. Nat Protoc 2021; 16:5146-5170. [PMID: 34608336 DOI: 10.1038/s41596-021-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
It is important to understand the dynamics and higher energy structures of RNA, called excited states, to achieve better understanding of RNA function. R1ρ relaxation dispersion NMR spectroscopy (RD) determines chemical shift differences between the most stable, ground state and the short-lived, low-populated excited states. We describe a procedure for deducing the excited state structure from these chemical shift differences using the mutate-and-chemical-shift-fingerprint (MCSF) method, which requires ~2-6 weeks and moderate understanding of NMR and RNA structure. We recently applied the MCSF methodology to elucidate the excited state of microRNA 34a targeting the SIRT1 mRNA and use this example to demonstrate the analysis. The protocol comprises the following steps: (i) determination of the secondary structure of the excited state from RD chemical shift data, (ii) design of trapped excited state RNA, (iii) validation of the excited state structure by NMR, and (iv) MCSF analysis comparing the chemical shifts of the trapped excited state with the RD-derived chemical shift differences. MCSF enables observation of the short-lived RNA structures, which can be functionally and structurally characterized by entrapment.
Collapse
Affiliation(s)
- Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Noah Hopkins
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
9
|
Nußbaumer F, Plangger R, Roeck M, Kreutz C. Aromatic
19
F–
13
C TROSY—[
19
F,
13
C]‐Pyrimidine Labeling for NMR Spectroscopy of RNA. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Manuel Roeck
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| |
Collapse
|
10
|
Nußbaumer F, Plangger R, Roeck M, Kreutz C. Aromatic 19 F- 13 C TROSY-[ 19 F, 13 C]-Pyrimidine Labeling for NMR Spectroscopy of RNA. Angew Chem Int Ed Engl 2020; 59:17062-17069. [PMID: 32558232 PMCID: PMC7540360 DOI: 10.1002/anie.202006577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/22/2022]
Abstract
We present the access to [5-19 F, 5-13 C]-uridine and -cytidine phosphoramidites for the production of site-specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5-19 F, 5-13 C]-pyrimidine labels into five RNAs-the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ϵ (hHBV ϵ) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre-microRNA (miRNA) 21 and the 59 nt full length pre-miRNA 21. The main stimulus to introduce the aromatic 19 F-13 C-spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole-dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13 C-19 F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5-19 F, 5-13 C]/[5-19 F] pyrimidine labeling. For the 61 nt hHBV ϵ we find a beneficial 19 F-13 C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19 F, 13 C]-labeling of the SAM VI aptamer domain and the pre-miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.
Collapse
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Manuel Roeck
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
11
|
Nam H, Becette O, LeBlanc RM, Oh D, Case DA, Dayie TK. Deleterious effects of carbon-carbon dipolar coupling on RNA NMR dynamics. JOURNAL OF BIOMOLECULAR NMR 2020; 74:321-331. [PMID: 32363430 DOI: 10.1007/s10858-020-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/18/2020] [Indexed: 06/11/2023]
Abstract
Many regulatory RNAs undergo dynamic exchanges that are crucial for their biological functions and NMR spectroscopy is a versatile tool for monitoring dynamic motions of biomolecules. Meaningful information on biomolecular dynamics requires an accurate measurement of relaxation parameters such as longitudinal (R1) rates, transverse (R2) rates and heteronuclear Overhauser effect (hNOE). However, earlier studies have shown that the large 13C-13C interactions complicate analysis of the carbon relaxation parameters. To investigate the effect of 13C-13C interactions on RNA dynamic studies, we performed relaxation measurements on various RNA samples with different labeling patterns and compared these measurements with the computational simulations. For uniformly labeled samples, contributions of the neighboring carbon to R1 measurements were observed. These contributions increased with increasing magnetic field and overall correlation time ([Formula: see text]) for R1 rates, necessitating more careful analysis for uniformly labeled large RNAs. In addition, the hNOE measurements were also affected by the adjacent carbon nuclei. Unlike R1 rates, R1ρ rates showed relatively good agreement between uniformly- and site-selectively labeled samples, suggesting no dramatic effect from their attached carbon, in agreement with previous observations. Overall, having more accurate rate measurements avoids complex analysis and will be a key for interpreting 13C relaxation rates for molecular motion that can provide valuable insights into cellular molecular recognition events.
Collapse
Affiliation(s)
- Hyeyeon Nam
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Owen Becette
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Regan M LeBlanc
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Daniel Oh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Theodore K Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Asadi-Atoi P, Barraud P, Tisne C, Kellner S. Benefits of stable isotope labeling in RNA analysis. Biol Chem 2020; 400:847-865. [PMID: 30893050 DOI: 10.1515/hsz-2018-0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
RNAs are key players in life as they connect the genetic code (DNA) with all cellular processes dominated by proteins. They contain a variety of chemical modifications and many RNAs fold into complex structures. Here, we review recent progress in the analysis of RNA modification and structure on the basis of stable isotope labeling techniques. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the key tools and many breakthrough developments were made possible by the analysis of stable isotope labeled RNA. Therefore, we discuss current stable isotope labeling techniques such as metabolic labeling, enzymatic labeling and chemical synthesis. RNA structure analysis by NMR is challenging due to two major problems that become even more salient when the size of the RNA increases, namely chemical shift overlaps and line broadening leading to complete signal loss. Several isotope labeling strategies have been developed to provide solutions to these major issues, such as deuteration, segmental isotope labeling or site-specific labeling. Quantification of modified nucleosides in RNA by MS is only possible through the application of stable isotope labeled internal standards. With nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), it is now possible to analyze the dynamic processes of post-transcriptional RNA modification and demodification. The trend, in both NMR and MS RNA analytics, is without doubt shifting from the analysis of snapshot moments towards the development and application of tools capable of analyzing the dynamics of RNA structure and modification profiles.
Collapse
Affiliation(s)
- Paria Asadi-Atoi
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Pierre Barraud
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carine Tisne
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
13
|
Abstract
RNA recognition frequently results in conformational changes that optimize intermolecular binding. As a consequence, the overall binding affinity of RNA to its binding partners depends not only on the intermolecular interactions formed in the bound state but also on the energy cost associated with changing the RNA conformational distribution. Measuring these "conformational penalties" is, however, challenging because bound RNA conformations tend to have equilibrium populations in the absence of the binding partner that fall outside detection by conventional biophysical methods. In this study we employ as a model system HIV-1 TAR RNA and its interaction with the ligand argininamide (ARG), a mimic of TAR's cognate protein binding partner, the transactivator Tat. We use NMR chemical shift perturbations and relaxation dispersion in combination with Bayesian inference to develop a detailed thermodynamic model of coupled conformational change and ligand binding. Starting from a comprehensive 12-state model of the equilibrium, we estimate the energies of six distinct detectable thermodynamic states that are not accessible by currently available methods. Our approach identifies a minimum of four RNA intermediates that differ in terms of the TAR conformation and ARG occupancy. The dominant bound TAR conformation features two bound ARG ligands and has an equilibrium population in the absence of ARG that is below detection limit. Consequently, even though ARG binds to TAR with an apparent overall weak affinity (Kdapp ≈ 0.2 mM), it binds the prefolded conformation with a Kd in the nM range. Our results show that conformational penalties can be major determinants of RNA-ligand binding affinity as well as a source of binding cooperativity, with important implications for a predictive understanding of how RNA is recognized and for RNA-targeted drug discovery.
Collapse
Affiliation(s)
- Nicole I. Orlovsky
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Terrence G. Oas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
14
|
Zhao S, Yang Y, Zhao Y, Li X, Xue Y, Wang S. High-resolution solid-state NMR spectroscopy of hydrated non-crystallized RNA. Chem Commun (Camb) 2019; 55:13991-13994. [PMID: 31687672 DOI: 10.1039/c9cc06552k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We highlight that sufficient hydration of non-crystallized RNA could provide high-resolution solid-state NMR (SSNMR) spectra, with similar spectral quality to the crystallized RNA. This leads to a greatly simplified RNA preparation approach by ethanol precipitation for high-resolution SSNMR studies. It will greatly broaden the scope of SSNMR applications to the characterization of RNAs.
Collapse
Affiliation(s)
- Sha Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | | | | | | | | | | |
Collapse
|
15
|
Marušič M, Schlagnitweit J, Petzold K. RNA Dynamics by NMR Spectroscopy. Chembiochem 2019; 20:2685-2710. [PMID: 30997719 PMCID: PMC6899578 DOI: 10.1002/cbic.201900072] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 12/22/2022]
Abstract
An ever-increasing number of functional RNAs require a mechanistic understanding. RNA function relies on changes in its structure, so-called dynamics. To reveal dynamic processes and higher energy structures, new NMR methods have been developed to elucidate these dynamics in RNA with atomic resolution. In this Review, we provide an introduction to dynamics novices and an overview of methods that access most dynamic timescales, from picoseconds to hours. Examples are provided as well as insight into theory, data acquisition and analysis for these different methods. Using this broad spectrum of methodology, unprecedented detail and invisible structures have been obtained and are reviewed here. RNA, though often more complicated and therefore neglected, also provides a great system to study structural changes, as these RNA structural changes are more easily defined-Lego like-than in proteins, hence the numerous revelations of RNA excited states.
Collapse
Affiliation(s)
- Maja Marušič
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| |
Collapse
|
16
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
17
|
Rangadurai A, Szymaski ES, Kimsey IJ, Shi H, Al-Hashimi HM. Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R 1ρ relaxation dispersion. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:55-102. [PMID: 31481159 PMCID: PMC6727989 DOI: 10.1016/j.pnmrs.2019.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/10/2023]
Abstract
This review describes off-resonance R1ρ relaxation dispersion NMR methods for characterizing microsecond-to-millisecond chemical exchange in uniformly 13C/15N labeled nucleic acids in solution. The review opens with a historical account of key developments that formed the basis for modern R1ρ techniques used to study chemical exchange in biomolecules. A vector model is then used to describe the R1ρ relaxation dispersion experiment, and how the exchange contribution to relaxation varies with the amplitude and frequency offset of an applied spin-locking field, as well as the population, exchange rate, and differences in chemical shifts of two exchanging species. Mathematical treatment of chemical exchange based on the Bloch-McConnell equations is then presented and used to examine relaxation dispersion profiles for more complex exchange scenarios including three-state exchange. Pulse sequences that employ selective Hartmann-Hahn cross-polarization transfers to excite individual 13C or 15N spins are then described for measuring off-resonance R1ρ(13C) and R1ρ(15N) in uniformly 13C/15N labeled DNA and RNA samples prepared using commercially available 13C/15N labeled nucleotide triphosphates. Approaches for analyzing R1ρ data measured at a single static magnetic field to extract a full set of exchange parameters are then presented that rely on numerical integration of the Bloch-McConnell equations or the use of algebraic expressions. Methods for determining structures of nucleic acid excited states are then reviewed that rely on mutations and chemical modifications to bias conformational equilibria, as well as structure-based approaches to calculate chemical shifts. Applications of the methodology to the study of DNA and RNA conformational dynamics are reviewed and the biological significance of the exchange processes is briefly discussed.
Collapse
Affiliation(s)
- Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eric S Szymaski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Nymirum, 4324 S. Alston Avenue, Durham, NC 27713, USA(1)
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Department of Chemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
18
|
NMR Methods of Characterizing Biomolecular Structural Dynamics and Conformational Ensembles. Methods 2018; 148:1-3. [DOI: 10.1016/j.ymeth.2018.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|