1
|
Tan EC, Chia SY, Rafi'ee K, Lee SX, Kwek ABE, Tan SH, Ng VWL, Wei H, Koo S, Koh AL, Koh MJA. A novel NSDHL variant in CHILD syndrome with gastrointestinal manifestations and localized skin involvement. Mol Genet Genomic Med 2021; 10:e1848. [PMID: 34957706 PMCID: PMC8801147 DOI: 10.1002/mgg3.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022] Open
Abstract
Background CHILD syndrome is an X‐linked dominant disorder associated with pathogenic mutations in the NSDHL gene. The condition is predominantly found in females as it is lethal in males. Most cases present at birth with extensive unilateral ichthyosiform erythroderma involving the trunk and limbs. Milder and less extensive presentations have been reported, leading to misdiagnosis especially during early childhood. Methods and Results We report an adult female of Malay ancestry who presented with minimal skin and limb involvement. She was only diagnosed in adulthood when she presented with gastrointestinal symptoms and worsening of skin manifestations. The clinical diagnosis was suspected after a combination of clinical, pathological and immunohistochemistry correlation, and molecularly confirmed with the discovery of a frameshift variant in NSDHL. The novel variant was inherited from her mother who had some linear hypopigmented patches over the medial aspects of both her arms and right forearm. Conclusion We uncovered a novel frameshift variant associated with presentations that cast a new light on the clinical features of CHILD syndrome.
Collapse
Affiliation(s)
- Ene-Choo Tan
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Shi Yun Chia
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore.,Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Khadijah Rafi'ee
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Shan Xian Lee
- Department of Dermatology, Changi General Hospital, Singapore, Singapore
| | - Andrew Boon Eu Kwek
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore
| | - Sze Hwa Tan
- Department of Laboratory Medicine, Changi General Hospital, Singapore, Singapore
| | - Victor Weng Leong Ng
- Department of Laboratory Medicine, Changi General Hospital, Singapore, Singapore
| | - Heming Wei
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Stephanie Koo
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Ai Ling Koh
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore.,Genetics Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mark Jean-Aan Koh
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore.,Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Yoon SH, Kim HS, Kim RN, Jung SY, Hong BS, Kang EJ, Lee HB, Moon HG, Noh DY, Han W. NAD(P)-dependent steroid dehydrogenase-like is involved in breast cancer cell growth and metastasis. BMC Cancer 2020; 20:375. [PMID: 32366230 PMCID: PMC7197182 DOI: 10.1186/s12885-020-06840-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The cholesterol biosynthesis pathway is typically upregulated in breast cancer. The role of NAD(P)-dependent steroid dehydrogenase-like (NSDHL) gene, which is involved in cholesterol biosynthesis, in breast cancer remains unknown. This study aimed to uncover the role of NSDHL in the growth and metastasis of breast cancer. METHODS After NSDHL knockdown by transfection of short interfering RNA into human breast cancer cell lines (MCF-7, MDA-MB-231 and BT-20) and human breast epithelial cell line (MCF10A), cell proliferation assay, cell cycle analysis, three-dimensional cell culture, clonogenic assay, transwell migration and invasion assays, and wound healing assay were performed. Erlotinib was used as the target drug for epidermal growth factor receptor. Immunodeficient mice (NOD.Cg-Prkdcscid Il2rgtm1wjl /SzJ) were used as orthotropic breast tumor models by injecting them with NSDHL-knockdown MDA-MB-231 cells using lentivirus-carrying NSDHL short hairpin RNA. Clinical data from 3951 breast cancer patients in Gene Expression Omnibus databases were used to investigate the potential prognostic role of NSDHL by survival analysis. RESULTS NSDHL knockdown in BT-20, and MDA-MB-231 resulted in a significant decrease in their viability, colony formation, migration, and invasion abilities (p < 0.05). Total cholesterol levels were observed to be significantly decreased in NSDHL-knockdown BT-20 and MDA-MB-231 (p < 0.0001). NSDHL knockdown significantly increased the rate of erlotinib-induced cell death, especially in MDA-MB-231 (p = 0.01). NSDHL knockdown led to significantly decreased tumor growth and lung metastasis in the MDA-MB-231 xenograft model (p < 0.01). Clinically, high NSDHL expression in tumors of patients with breast cancer was associated with significantly reduced recurrence-free survival (p < 0.0001). CONCLUSIONS NSDHL might have a role in promoting breast cancer progression. The usage of NSDHL as a therapeutic target in breast cancer needs to be clarified in further studies.
Collapse
Affiliation(s)
- So-Hyun Yoon
- Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hoe Suk Kim
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ryong Nam Kim
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - So-Youn Jung
- Center for Breast Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Bok Sil Hong
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eun Ji Kang
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyeong-Gon Moon
- Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Young Noh
- Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Wonshik Han
- Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Preiksaitiene E, Caro A, Benušienė E, Oltra S, Orellana C, Morkūnienė A, Roselló MP, Kasnauskiene J, Monfort S, Kučinskas V, Mayo S, Martinez F. A novel missense mutation in the NSDHL gene identified in a Lithuanian family by targeted next-generation sequencing causes CK syndrome. Am J Med Genet A 2015; 167:1342-8. [PMID: 25900314 DOI: 10.1002/ajmg.a.36999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
The NSDHL gene encodes 3β-hydroxysteroid dehydrogenase involved in one of the later steps of the cholesterol biosynthetic pathway. Mutations in this gene can cause CHILD syndrome (OMIM 308050) and CK syndrome (OMIM 300831). CHILD syndrome is an X-linked dominant, male lethal disorder caused by mutations in the NSDHL gene that result in the loss of the function of the NSDHL protein. CK syndrome is an allelic X-linked recessive disorder. So far, 13 patients with CK syndrome from two families have been reported on. We present a new five-generation family with affected males manifesting clinical features of CK syndrome. Next generation sequencing was targeted to a custom panel of 542 genes with known or putative implication on intellectual disability. Missense mutation p.Gly152Asp was identified in the NSDHL gene in the DNA sample of the affected male. Mutation carrier status was confirmed for all the obligate carriers in the family. The clinical features of the affected males in the family manifested as weak fetal movements, severe intellectual disability, seizures, spasticity, atrophy of optic discs, microcephaly, plagiocephaly, skeletal abnormalities, and minor facial anomalies, including a high nasal bridge, strabismus, and micrognathia. A highly significant preferential transmission of the mutation was observed in this and previous families segregating CK syndrome. Our report expands the clinical spectrum of this syndrome to include weak fetal movements, spasticity, and plagiocephaly, and transmission ratio distortion. The various findings in these patients increase our understanding of the diversity of the clinical presentation of cholesterol biosynthesis disorders.
Collapse
Affiliation(s)
- Egle Preiksaitiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Alfonso Caro
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Eglė Benušienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Silvestre Oltra
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Orellana
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Aušra Morkūnienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Mónica Pilar Roselló
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jurate Kasnauskiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sandra Monfort
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sonia Mayo
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Martinez
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
4
|
Cunningham D, DeBarber AE, Bir N, Binkley L, Merkens LS, Steiner RD, Herman GE. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development. Hum Mol Genet 2015; 24:2808-25. [PMID: 25652406 DOI: 10.1093/hmg/ddv042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
NSDHL is a 3β-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhl(tm1.1Hrm)) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8-10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism.
Collapse
Affiliation(s)
- David Cunningham
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Natalie Bir
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Laura Binkley
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Robert D Steiner
- Department of Pediatrics, Department of Molecular and Medical Genetics and Institute on Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, USA and Marshfield Clinic Research Foundation and the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Marshfield and Madison, WI, USA
| | - Gail E Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA,
| |
Collapse
|
5
|
Lewinska M, Juvan P, Perse M, Jeruc J, Kos S, Lorbek G, Urlep Z, Keber R, Horvat S, Rozman D. Hidden disease susceptibility and sexual dimorphism in the heterozygous knockout of Cyp51 from cholesterol synthesis. PLoS One 2014; 9:e112787. [PMID: 25393872 PMCID: PMC4231084 DOI: 10.1371/journal.pone.0112787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023] Open
Abstract
We examined the genotype-phenotype interactions of Cyp51+/- mice carrying one functional allele of lanosterol 14α-demethylase from cholesterol biosynthesis. No distinct developmental or morphological abnormalities were observed by routine visual inspection of Cyp51+/- and Cyp51+/+ mice and fertility was similar. We further collected a large data-set from female and male Cyp51+/- mice and controls fed for 16 weeks with three diets and applied linear regression modeling. We used 3 predictor variables (genotype, sex, diet), and 39 response variables corresponding to the organ characteristics (7), plasma parameters (7), and hepatic gene expression (25). We observed significant differences between Cyp51+/- and wild-type mice in organ characteristics and blood lipid profile. Hepatomegaly was observed in Cyp51+/- males, together with elevated total and low-density lipoprotein cholesterol. Cyp51+/- females fed high-fat, high-cholesterol diet were leaner and had elevated plasma corticosterone compared to controls. We observed elevated hepatocyte apoptosis, mitosis and lipid infiltration in heterozygous knockouts of both sexes. The Cyp51+/- females had a modified lipid storage homeostasis protecting them from weight-gain when fed high-fat high-cholesterol diet. Malfunction of one Cyp51 allele therefore initiates disease pathways towards cholesterol-linked liver pathologies and sex-dependent response to dietary challenge.
Collapse
Affiliation(s)
- Monika Lewinska
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Peter Juvan
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Perse
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Jera Jeruc
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Spela Kos
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Zaloška cesta 2, SI–1000, Ljubljana, Slovenia
| | - Gregor Lorbek
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Ziga Urlep
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
6
|
Ma K. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians. Am J Med Genet A 2013; 161A:3095-114. [PMID: 24254848 DOI: 10.1002/ajmg.a.36188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/16/2013] [Indexed: 11/08/2022]
Abstract
A fundamental question in developmental biology is how a chimeric animal such as a bilateral gynandromorphic animal can have different phenotypes confined to different lateral body halves, and how mutation-induced phenotypes, such as genetic diseases, can be confined to one lateral body half in patients. Here, I propose that embryos of many, if not all, bilaterian animals are divided into left and right halves at a very early stage (which may vary among different types of animals), after which the descendants of the left-sided and right-sided cells will almost exclusively remain on their original sides, respectively, throughout the remaining development. This embryonic left-right separation mechanism allows (1) mutations and the mutation-induced phenotypes to be strictly confined to one lateral body half in animals and humans; (2) mothers with bilateral hereditary primary breast cancer to transmit their disease to their offspring at twofold of the rate compared to mothers with unilateral hereditary breast cancer; and (3) a mosaic embryo carrying genetic or epigenetic mutations to develop into either an individual with the mutation-induced phenotype confined unilaterally, or a pair of twins displaying complete, partial, or mirror-image discordance for the phenotype. Further, this left-right separation mechanism predicts that the two lateral halves of a patient carrying a unilateral genetic disease can each serve as a case and an internal control, respectively, for genetic and epigenetic comparative studies to identify the disease causations.
Collapse
|
7
|
Herman GE, Kratz L. Disorders of sterol synthesis: beyond Smith-Lemli-Opitz syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:301-21. [PMID: 23042573 DOI: 10.1002/ajmg.c.31340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery in 1993 that Smith-Lemli-Opitz syndrome (SLOS) is a disorder of cholesterol biosynthesis, human disorders associated with additional enzymes involved in the conversion of lanosterol to cholesterol have been identified. This review will focus primarily on the clinical aspects of these disorders, highlighting newly described syndromes, such as SC4MOL deficiency and CK syndrome. We will also provide clinical descriptions of additional cases for extremely rare disorders, such as desmosterolosis. We will compare and contrast the findings with those found in SLOS and briefly discuss possible mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Gail E Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, 700 Children's Dr. Rm W403, Columbus, OH 43205, USA.
| | | |
Collapse
|
8
|
Morimoto M, Souich CD, Trinh J, McLarren KW, Boerkoel CF, Hendson G. Expression profile of NSDHL in human peripheral tissues. J Mol Histol 2011; 43:95-106. [PMID: 22113624 DOI: 10.1007/s10735-011-9375-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
NAD(P) steroid dehydrogenase-like (NSDHL) is an X-linked gene that encodes a 3β-hydroxysteroid dehydrogenase in the cholesterol biosynthetic pathway. Loss-of-function mutations in NSDHL cause Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects (CHILD) and CK syndromes. CHILD syndrome is a male lethal X-linked dominant disorder characterized by asymmetric skin and limb anomalies in affected females. CK syndrome is an intellectual disability disorder characterized by disproportionate short stature, brain malformations, and dysmorphic features in affected males. To understand better the relationship of the expression of mRNA and protein encoded by human NSDHL to the peripheral malformations of these disorders, we characterized the peripheral expression of the mRNA and protein by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunoblotting and immunohistochemistry. We also profiled the mRNA expression of mouse Nsdhl by in situ hybridization. Expression of the mRNA and protein encoded by human NSDHL parallels that of mouse Nsdhl mRNA for most but not all tissues. Furthermore, human NSDHL protein and mouse Nsdhl mRNA were expressed in tissues synthesizing cholesterol and steroids and in all peripheral tissues affected by CHILD or CK syndromes.
Collapse
Affiliation(s)
- Marie Morimoto
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Paller AS, van Steensel MAM, Rodriguez-Martín M, Sorrell J, Heath C, Crumrine D, van Geel M, Cabrera AN, Elias PM. Pathogenesis-based therapy reverses cutaneous abnormalities in an inherited disorder of distal cholesterol metabolism. J Invest Dermatol 2011; 131:2242-8. [PMID: 21753784 PMCID: PMC3193573 DOI: 10.1038/jid.2011.189] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of the underlying genetic, cellular, and biochemical basis of lipid metabolic disorders provides an opportunity to deploy corrective, mechanism-targeted, topical therapy. We assessed this therapeutic approach in two patients with Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects (CHILD) syndrome, an X-linked dominant disorder of distal cholesterol metabolism. On the basis of the putative pathogenic role of both pathway-product deficiency of cholesterol and accumulation of toxic metabolic intermediates, we assessed the efficacy of combined therapy with lovastatin and cholesterol. We also evaluated the basis for the poorly understood, unique lateralization of the cutaneous and bone malformations of CHILD syndrome by analyzing gene activation in abnormal and unaffected skin. Ultrastructural analysis of affected skin showed evidence of both cholesterol depletion and toxic metabolic accumulation. Topical treatment with lovastatin/cholesterol (but not cholesterol alone) virtually cleared skin lesions by 3 months, accompanied by histological and ultrastructural normalization of epidermal structure and lipid secretion. The unusual lateralization of abnormalities in CHILD syndrome reflects selective clearance of keratinocytes and fibroblasts that express the mutant allele from the unaffected side. These findings validate pathogenesis-based therapy that provides the deficient end product and prevents accumulation of toxic metabolites, an approach of potential utility for other syndromic lipid metabolic disorders.
Collapse
Affiliation(s)
- Amy S Paller
- Department of Dermatology and Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
McLarren KW, Severson TM, du Souich C, Stockton DW, Kratz LE, Cunningham D, Hendson G, Morin RD, Wu D, Paul JE, An J, Nelson TN, Chou A, DeBarber AE, Merkens LS, Michaud JL, Waters PJ, Yin J, McGillivray B, Demos M, Rouleau GA, Grzeschik KH, Smith R, Tarpey PS, Shears D, Schwartz CE, Gecz J, Stratton MR, Arbour L, Hurlburt J, Van Allen MI, Herman GE, Zhao Y, Moore R, Kelley RI, Jones SJM, Steiner RD, Raymond FL, Marra MA, Boerkoel CF. Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. Am J Hum Genet 2010; 87:905-14. [PMID: 21129721 DOI: 10.1016/j.ajhg.2010.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/31/2010] [Accepted: 11/10/2010] [Indexed: 12/28/2022] Open
Abstract
CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development.
Collapse
|
11
|
Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BØ. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC SYSTEMS BIOLOGY 2010; 4:140. [PMID: 20959003 PMCID: PMC2978158 DOI: 10.1186/1752-0509-4-140] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND Well-curated and validated network reconstructions are extremely valuable tools in systems biology. Detailed metabolic reconstructions of mammals have recently emerged, including human reconstructions. They raise the question if the various successful applications of microbial reconstructions can be replicated in complex organisms. RESULTS We mapped the published, detailed reconstruction of human metabolism (Recon 1) to other mammals. By searching for genes homologous to Recon 1 genes within mammalian genomes, we were able to create draft metabolic reconstructions of five mammals, including the mouse. Each draft reconstruction was created in compartmentalized and non-compartmentalized version via two different approaches. Using gap-filling algorithms, we were able to produce all cellular components with three out of four versions of the mouse metabolic reconstruction. We finalized a functional model by iterative testing until it passed a predefined set of 260 validation tests. The reconstruction is the largest, most comprehensive mouse reconstruction to-date, accounting for 1,415 genes coding for 2,212 gene-associated reactions and 1,514 non-gene-associated reactions.We tested the mouse model for phenotype prediction capabilities. The majority of predicted essential genes were also essential in vivo. However, our non-tissue specific model was unable to predict gene essentiality for many of the metabolic genes shown to be essential in vivo. Our knockout simulation of the lipoprotein lipase gene correlated well with experimental results, suggesting that softer phenotypes can also be simulated. CONCLUSIONS We have created a high-quality mouse genome-scale metabolic reconstruction, iMM1415 (Mus Musculus, 1415 genes). We demonstrate that the mouse model can be used to perform phenotype simulations, similar to models of microbe metabolism. Since the mouse is an important experimental organism, this model should become an essential tool for studying metabolic phenotypes in mice, including outcomes from drug screening.
Collapse
Affiliation(s)
- Martin I Sigurdsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
12
|
Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 2010; 52:6-34. [PMID: 20929975 DOI: 10.1194/jlr.r009548] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome.
Collapse
Affiliation(s)
- Forbes D Porter
- Program in Developmental Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | |
Collapse
|
13
|
Cunningham D, Talabere T, Bir N, Kennedy M, McBride KL, Herman GE. Significant contributions of the extraembryonic membranes and maternal genotype to the placental pathology in heterozygous Nsdhl deficient female embryos. Hum Mol Genet 2009; 19:364-73. [PMID: 19880419 DOI: 10.1093/hmg/ddp502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mutations in the gene encoding the cholesterol biosynthetic enzyme NSDHL are associated with the X-linked male-lethal bare patches (Bpa) mouse. Mutant male embryos for several Nsdhl alleles die in midgestation with placental insufficiency. We examined here a possible role of the maternal genotype in such placental pathology. Pre-pregnancy plasma cholesterol levels were similar between wild-type (WT) and Bpa(1H)/+ dams fed a standard, cholesterol-free diet. However, there was a marked decrease in cholesterol levels between embryonic day (E)8.5 and E10.5 for both genotypes. Further, there was a significant lag between E11.5 and E13.5 (P = 0.0011) in the recovery of levels in Bpa(1H)/+ dams to their pre-pregnancy values. To investigate possible effects of the maternal genotype on fetal placentation, we generated transgenic mice that expressed human NSDHL and rescued the male lethality of the Bpa(1H) null allele. We then compared placenta area at E10.5 in WT and Bpa(1H)/+ female embryos where the mutant X chromosome was transmitted from a heterozygous mother or a rescued mutant father. In mutant conceptuses, placental areas were approximately 50% less than WT. Surprisingly, expression of Nsdhl in trophoblast lineages of the placenta and yolk sac endoderm, which occurs only from the maternally inherited allele in a female embryo, had the largest effect on placental area (-0.681 mm(2); P < 0.0001). The maternal genotype had a smaller effect, independent of the fetal genotype (-0.283 mm(2); P = 0.024). These data demonstrate significant effects of the mother and fetal membranes on pregnancy outcome, with possible implications for cholesterol homeostasis during human pregnancy.
Collapse
Affiliation(s)
- David Cunningham
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | | | |
Collapse
|