1
|
Marinella G, Pascarella F, Vetro A, Bonuccelli A, Pochiero F, Santangelo A, Alessandrì MG, Pasquariello R, Orsini A, Battini R. Hyperlysinemia, an ultrarare inborn error of metabolism: Review and update. Seizure 2024; 120:135-141. [PMID: 38991296 DOI: 10.1016/j.seizure.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Familial hyperlysinemia is a rare autosomal recessive disorder due to defects of the AASS (α-aminoadipate δ-semialdehyde synthase) gene, which encodes for a bifunctional enzyme. Two types of hyperlysinemia have been identified namely type 1, due to the deficit of the alfa-ketoglutarate activity, and type 2, due to the deficit of the saccharopine dehydrogenase activity. METHODS To better characterize the phenotypic spectrum of familial hyperlysinemia type 1, we conducted a systematic review of cases in the literature following PRISMA guidelines. We selected 16 articles describing 23 patients with hyperlysinemia type 1, twelve of whom with homozygous or compound heterozygous mutations in AASS gene. We also included a novel patient with a homozygous c.799C>T; p.(Arg267Cys) mutation in AASS gene. We collected genetic, clinical, brain imaging and electroencephalogram (EEG) features when available. RESULTS The phenotype of this disease is heterogeneous, ranging from more severe forms with spastic tetraparesis, intellectual disability and epilepsy and mild-moderate forms with only intellectual disability or behavioural problem and/or epilepsy to normal clinical conditions. Only our patient has neuropathy unrelated to infectious event. CONCLUSIONS We described the heterogeneous phenotypic spectrum of familial hyperlysinemia type 1 and we identified a new symptom, axonal neuropathy, never before described in this condition.
Collapse
Affiliation(s)
- G Marinella
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - F Pascarella
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - A Vetro
- Medical Genetics Unit, AOOR Villa Sofia Cervello, PO "V. Cervello", Via Trabucco 180 - 90146, Palermo, Italy
| | - A Bonuccelli
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100, Pisa, Italy
| | - F Pochiero
- Metabolic Disease Unit, Neuroscience Department, Meyer Children Hospital, 50139 Florence, Italy
| | - A Santangelo
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - M G Alessandrì
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - R Pasquariello
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - A Orsini
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56100, Pisa, Italy.
| | - R Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Yeganeh M, Auray‐Blais C, Maranda B, Sabovic A, DeVita RJ, Lazarus MB, Houten SM. A case of hyperlysinemia identified by urine newborn screening. JIMD Rep 2023; 64:440-445. [PMID: 37927488 PMCID: PMC10623103 DOI: 10.1002/jmd2.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Hyperlysinemia is a rare autosomal recessive deficiency of 2-aminoadipic semialdehyde synthase (AASS) affecting the initial step in lysine degradation. It is thought to be a benign biochemical abnormality, but reports on cases remain scarce. The description of additional cases, in particular, those identified without ascertainment bias, may help counseling of new cases in the future. It may also help to establish the risks associated with pharmacological inhibition of AASS, a potential therapeutic strategy that is under investigation for other inborn errors of lysine degradation. We describe the identification of a hyperlysinemia case identified in the Provincial Neonatal Urine Screening Program in Sherbrooke, Quebec. This case presented with a profile of cystinuria but with a very high increase in urinary lysine. A diagnosis of hyperlysinemia was confirmed through biochemical testing and the identification of biallelic variants in AASS. The p.R146W and p.T371I variants are novel and affect the folding of the lysine-2-oxoglutarate domain of AASS. The 11-month-old boy is currently doing well without any therapeutic interventions. The identification of this case through newborn urine screening further establishes that hyperlysinemia is a biochemical abnormality with limited clinical consequences and may not require any intervention.
Collapse
Affiliation(s)
- Mehdi Yeganeh
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Centre Hospitalier Universitaire de Québec, Centre Mère‐Enfant SoleilUniversité LavalQuébec CityQuébecCanada
| | - Christiane Auray‐Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de recherche—CIUSSS de l'Estrie‐CHUSUniversité de SherbrookeSherbrookeQuébecCanada
| | - Bruno Maranda
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de recherche—CIUSSS de l'Estrie‐CHUSUniversité de SherbrookeSherbrookeQuébecCanada
| | - Amanda Sabovic
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robert J. DeVita
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael B. Lazarus
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sander M. Houten
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
3
|
Chang FM. Update current understanding of neurometabolic disorders related to lysine metabolism. Epilepsy Behav 2023; 146:109363. [PMID: 37499576 DOI: 10.1016/j.yebeh.2023.109363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Lysine, as an essential amino acid, predominantly undergoes metabolic processes through the saccharopine pathway, whereas a smaller fraction follows the pipecolic acid pathway. Although the liver is considered the primary organ for lysine metabolism, it is worth noting that lysine catabolism also takes place in other tissues and organs throughout the body, including the brain. Enzyme deficiency caused by pathogenic variants in its metabolic pathway may lead to a series of neurometabolic diseases, among which glutaric aciduria type 1 and pyridoxine-dependent epilepsy have the most significant clinical manifestations. At present, through research, we have a deeper understanding of the multiple pathophysiological mechanisms related to these diseases, including intracerebral accumulation of neurotoxic metabolites, imbalance between GABAergic and glutamatergic neurotransmission, energy deprivation due to metabolites, and the dysfunction of antiquitin. Because of the complexity of these diseases, their clinical manifestations are also diverse. The early implementation of lysine-restricted diets and supplementation with arginine and carnitine has reported positive impacts on the neurodevelopmental outcomes of patients. Presently, there is more robust evidence supporting the effectiveness of these treatments in glutaric aciduria type 1 compared with pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Fu-Man Chang
- Department of Pediatrics, Taitung MacKay Memorial Hospital, Taitung, Taiwan.
| |
Collapse
|
4
|
Cognitive and neurological outcome of patients in the Dutch pyridoxine-dependent epilepsy (PDE-ALDH7A1) cohort, a cross-sectional study. Eur J Paediatr Neurol 2021; 33:112-120. [PMID: 34153871 DOI: 10.1016/j.ejpn.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pyridoxine monotherapy in PDE-ALDH7A1 often results in adequate seizure control, but neurodevelopmental outcome varies. Detailed long-term neurological outcome is unknown. Here we present the cognitive and neurological features of the Dutch PDE-ALDH7A1 cohort. METHODS Neurological outcome was assessed in 24 patients (age 1-26 years); classified as normal, complex minor neurological dysfunction (complex MND) or abnormal. Intelligence quotient (IQ) was derived from standardized IQ tests with five severity levels of intellectual disability (ID). MRI's and treatments were assessed. RESULTS Ten patients (42%) showed unremarkable neurological examination, 11 (46%) complex MND, and 3 (12%) cerebral palsy (CP). Minor coordination problems were identified in 17 (71%), fine motor disability in 11 (46%), posture/muscle tone deviancies in 11 (46%) and abnormal reflexes in 8 (33%). Six patients (25%) had an IQ > 85, 7 (29%) borderline, 7 (29%) mild, 3 (13%) moderate, and 1 severe ID. Cerebral ventriculomegaly on MRI was progressive in 11. Three patients showed normal neurologic exam, IQ, and MRI. Eleven patients were treated with pyridoxine only and 13 by additional lysine reduction therapy (LRT). LRT started at age <3 years demonstrated beneficial effect on IQ results in 3 patients. DISCUSSION Complex MND and CP occurred more frequently in PDE-ALDH7A1 (46% and 12%) than in general population (7% and 0.2%, Peters et al., 2011, Schaefer et al., 2008). Twenty-five percent had a normal IQ. Although LRT shows potential to improve outcomes, data are heterogeneous in small patient numbers. More research with longer follow-up via the International PDE Registry (www.pdeonline.org) is needed.
Collapse
|
5
|
Leandro J, Dodatko T, DeVita RJ, Chen H, Stauffer B, Yu C, Houten SM. Deletion of 2-aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1. J Inherit Metab Dis 2020; 43:1154-1164. [PMID: 32567100 DOI: 10.1002/jimd.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by acute encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. We investigated the efficacy of substrate reduction through inhibition of 2-aminoadipic semialdehyde synthase (AASS), an enzyme upstream of the defective glutaryl-CoA dehydrogenase (GCDH), in a cell line and mouse model of GA1. We show that loss of AASS function in GCDH-deficient HEK-293 cells leads to an approximately fivefold reduction in the established GA1 clinical biomarker glutarylcarnitine. In the GA1 mouse model, deletion of Aass leads to a 4.3-, 3.8-, and 3.2-fold decrease in the glutaric acid levels in urine, brain, and liver, respectively. Parallel decreases were observed in urine and brain 3-hydroxyglutaric acid levels, and plasma, urine, and brain glutarylcarnitine levels. These in vivo data demonstrate that the saccharopine pathway is the main source of glutaric acid production in the brain and periphery of a mouse model for GA1, and support the notion that pharmacological inhibition of AASS may represent an attractive strategy to treat GA1.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai New York, New York, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Naseer MI, Abdulkareem AA, Jan MM, Chaudhary AG, Alharazy S, AlQahtani MH. Next generation sequencing reveals novel homozygous frameshift in PUS7 and splice acceptor variants in AASS gene leading to intellectual disability, developmental delay, dysmorphic feature and microcephaly. Saudi J Biol Sci 2020; 27:3125-3131. [PMID: 33100873 PMCID: PMC7569139 DOI: 10.1016/j.sjbs.2020.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Intellectual developmental disorder with abnormal behavior, microcephaly and short stature (IDDABS), (OMIM# 618342) is an autosomal recessive condition described as developmental delay, poor or absent speech, intellectual disability, short stature, mild to progressive microcephaly, delayed psychomotor development, hyperactivity, seizure, along with mild to swear aggressive behavior. Homozygous frameshift mutation in Pseudouridine Synthase 7, Putative; (PUS7) OMIM# 616,261 NM_019042.3 and splice acceptor variants in Alpha-Aminoadipic Semialdehyde Synthase; (AASS) OMIM# 605,113 NM_005763.3 was funded. Whole exome sequencing (WES) technique was used as tool to identify the molecular diagnostic test. Different bioinformatics analysis done for WES data and we identified two novel mutations one as frameshift mutation c.606_607delGA, p.Ser282CysfsTer9 in the PUS7 gene and splice acceptor variants c.1767–1 G > A in the AASS gene has been reported. The pattern of family segregation maintained the pathogenicity of this variation associated with abnormal behavior, intellectual developmental disorder, microcephaly along with short stature IDDABS. Further, the WES data was validated in the family having other affected individuals and healthy controls (n = 100) was done using Sanger sequencing. Finally, our results further explained the role of WES in the disease diagnosis and elucidated that the mutation in PUS7 and AASS genes may lead an important role for the development of IDDABS in Saudi family.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | | | - Mohammed M Jan
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Box 80215, Jeddah 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Genetics, King Fahad General Hospital, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Shatha Alharazy
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad H AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Laboratory diagnosis of disorders of peroxisomal biogenesis and function: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2019; 22:686-697. [PMID: 31822849 DOI: 10.1038/s41436-019-0713-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023] Open
Abstract
Peroxisomal disorders are a clinically and genetically heterogeneous group of diseases caused by defects in peroxisomal biogenesis or function, usually impairing several metabolic pathways. Peroxisomal disorders are rare; however, the incidence may be underestimated due to the broad spectrum of clinical presentations. The inclusion of X-linked adrenoleukodystrophy to the Recommended Uniform Screening Panel for newborn screening programs in the United States may increase detection of this and other peroxisomal disorders. The current diagnostic approach relies heavily on biochemical genetic tests measuring peroxisomal metabolites, including very long-chain and branched-chain fatty acids in plasma and plasmalogens in red blood cells. Molecular testing can confirm biochemical findings and identify the specific genetic defect, usually utilizing a multiple-gene panel or exome/genome approach. When next-generation sequencing is used as a first-tier test, evaluation of peroxisome metabolism is often necessary to assess the significance of unknown variants and establish the extent of peroxisome dysfunction. This document provides a resource for laboratories developing and implementing clinical biochemical genetic testing for peroxisomal disorders, emphasizing technical considerations for sample collection, test performance, and result interpretation. Additionally, considerations on confirmatory molecular testing are discussed.
Collapse
|
8
|
Value of genetic analysis for confirming inborn errors of metabolism detected through the Spanish neonatal screening program. Eur J Hum Genet 2019; 27:556-562. [PMID: 30626930 DOI: 10.1038/s41431-018-0330-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
The present work describes the value of genetic analysis as a confirmatory measure following the detection of suspected inborn errors of metabolism in the Spanish newborn mass spectrometry screening program. One hundred and forty-one consecutive DNA samples were analyzed by next-generation sequencing using a customized exome sequencing panel. When required, the Illumina extended clinical exome panel was used, as was Sanger sequencing or transcriptional profiling. Biochemical tests were used to confirm the results of the genetic analysis. Using the customized panel, the metabolic disease suspected in 83 newborns (59%) was confirmed. In three further cases, two monoallelic variants were detected for two genes involved in the same biochemical pathway. In the remainder, either a single variant or no variant was identified. Given the persistent absence of biochemical alterations, carrier status was assigned in 39 cases. False positives were recorded for 11. In five cases in which the biochemical pattern was persistently altered, further genetic analysis allowed the detection of two variants affecting the function of BCAT2, ACSF3, and DNAJC12, as well as a second, deep intronic variant in ETFDH or PTS. The present results suggest that genetic analysis using extended next-generation sequencing panels can be used as a confirmatory test for suspected inborn errors of metabolism detected in newborn screening programs. Biochemical tests can be very helpful when a diagnosis is unclear. In summary, simultaneous genomic and metabolomic analyses can increase the number of inborn errors of metabolism that can be confirmed following suggestive newborn screening results.
Collapse
|
9
|
Boczonadi V, King MS, Smith AC, Olahova M, Bansagi B, Roos A, Eyassu F, Borchers C, Ramesh V, Lochmüller H, Polvikoski T, Whittaker RG, Pyle A, Griffin H, Taylor RW, Chinnery PF, Robinson AJ, Kunji ERS, Horvath R. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease. Genet Med 2018. [PMID: 29517768 PMCID: PMC6004311 DOI: 10.1038/gim.2017.251] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Members of the mitochondrial carrier family (SLC25) transport metabolites, nucleotides, co-factors and inorganic ions across the mitochondrial inner membrane. Methods We identified a pathogenic variant in a novel mitochondrial carrier gene in a patient by whole exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modelling followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons. Results The patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid and quinolinic acid, which was confirmed in the patient’s urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis. Conclusion Mitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Anthony C Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Monika Olahova
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Boglarka Bansagi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Leibniz Institute of Analytic Sciences (ISAS), Dortmund, Germany
| | - Filmon Eyassu
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Venkateswaran Ramesh
- Department of Paediatric Neurology, Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Tuomo Polvikoski
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Roger G Whittaker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
10
|
Estève E, Krug P, Hummel A, Arnoux JB, Boyer O, Brassier A, de Lonlay P, Vuiblet V, Gobin S, Salomon R, Piètrement C, Bonnefont JP, Servais A, Galmiche L. Renal involvement in lysinuric protein intolerance: contribution of pathology to assessment of heterogeneity of renal lesions. Hum Pathol 2017; 62:160-169. [PMID: 28087478 DOI: 10.1016/j.humpath.2016.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/25/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal recessive disease caused by mutations in the SLC7A7 gene encoding the light subunit of a cationic amino acid transporter. Symptoms mimic primary urea cycle defects but dysimmune symptoms are also described. Renal involvement in LPI was first described in the 1980s. In 2007, it appeared that it could concern as much as 75% of LPI patients and could lead to end-stage renal disease. The most common feature is proximal tubular dysfunction and nephrocalcinosis but glomerular lesions are also reported. However, very little is known regarding histological lesions associated with LPI. We gathered every kidney biopsy of LPI-proven patients in our highly specialized pediatric and adult institution. Clinical, biological, and histological information was analyzed. Five LPI patients underwent kidney biopsy in our institution between 1986 and 2015. Clinically, 4/5 presented with proximal tubular dysfunction and 3/5 with nephrotic range proteinuria. Histology showed unspecific tubulointerstitial lesions and nephrocalcinosis in 3/5 biopsies and marked peritubular capillaritis in one child. Glomerular lesions were heterogeneous: lupus-like-full house membranoproliferative glomerulonephritis (MPGN) in one child evolved towards monotypic IgG1κ MPGN sensitive to immunomodulators. One patient presented with glomerular non-AA non-AL amyloidosis. Renal biopsy is particularly relevant in LPI presenting with glomerular symptoms for which variable histological lesions can be responsible, implying specific treatment and follow-up.
Collapse
Affiliation(s)
- Emmanuel Estève
- Pathology Department Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Pauline Krug
- Pediatric Nephrology Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Aurélie Hummel
- Nephrology Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Jean-Baptiste Arnoux
- Metabolic Diseases Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Olivia Boyer
- Pediatric Nephrology Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Anais Brassier
- Metabolic Diseases Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Pascale de Lonlay
- Metabolic Diseases Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Vincent Vuiblet
- Nephrology and Renal Transplantation Department and Pathology Department, Centre Hospitalier et Universitaire de Reims, Reims, France.
| | - Stéphanie Gobin
- Molecular Genetics Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France
| | - Rémi Salomon
- Pediatric Nephrology Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Christine Piètrement
- Department of Paediatrics, Nephrology Paediatric Unit, Centre Hospitalier et Universitaire de Reims, Reims, France.
| | - Jean-Paul Bonnefont
- Molecular Genetics Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France
| | - Aude Servais
- Nephrology Department, Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| | - Louise Galmiche
- Pathology Department Hôpital Necker-Enfants Malades, Assistance Publique, Hôpitaux de Paris, Université Sorbonne Paris Cité, 75015, Paris, France.
| |
Collapse
|
11
|
Faherty SL, Villanueva-Cañas JL, Klopfer PH, Albà MM, Yoder AD. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius. Genome Biol Evol 2016; 8:2413-26. [PMID: 27412611 PMCID: PMC5010898 DOI: 10.1093/gbe/evw163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2016] [Indexed: 12/24/2022] Open
Abstract
Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators-Madagascar's dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators.
Collapse
Affiliation(s)
| | - José Luis Villanueva-Cañas
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | |
Collapse
|
12
|
Wan PJ, Yuan SY, Tang YH, Li KL, Yang L, Fu Q, Li GQ. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH). PLoS One 2015; 10:e0127789. [PMID: 26000452 PMCID: PMC4441501 DOI: 10.1371/journal.pone.0127789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/19/2015] [Indexed: 12/14/2022] Open
Abstract
Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens.
Collapse
Affiliation(s)
- Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - San-Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao-Hua Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Kai-Long Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lu Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|