1
|
Sharma S, McKenzie M. The Pathogenesis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. Biomolecules 2025; 15:416. [PMID: 40149952 PMCID: PMC11940467 DOI: 10.3390/biom15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Living systems require energy to maintain their existence and perform tasks such as cell division. This energy is stored in several molecular forms in nature, specifically lipids, carbohydrates, and amino acids. At a cellular level, energy is extracted from these complex molecules and transferred to adenosine triphosphate (ATP) in the cytoplasm and mitochondria. Within the mitochondria, fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are crucial metabolic processes involved in generating ATP, with defects in these pathways causing mitochondrial disease. Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a fatty acid β-oxidation disorder (FAOD) affecting 1 to 2 individuals per 100,000. Similar to other mitochondrial disorders, there is no cure for VLCADD, with symptomatic treatment comprising dietary management and supplementation with medium-chain fatty acids to bypass the enzyme deficiency. While this addresses the primary defect in VLCADD, there is growing evidence that other aspects of mitochondrial function are also affected in VLCADD, including secondary defects in OXPHOS function. Here, we review our current understanding of VLCADD with a focus on the associated biochemical and molecular defects that can disrupt multiple aspects of mitochondrial function. We describe the interactions between FAO proteins and the OXPHOS complexes and how these interactions are critical for maintaining the activity of both metabolic pathways. In particular, we describe what is now known about the protein-protein interactions between VLCAD and the OXPHOS supercomplex and how their disruption contributes to overall VLCADD pathogenesis.
Collapse
Affiliation(s)
- Shashwat Sharma
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
- Institute for Physical Activity and Nutrition, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Szrok-Jurga S, Turyn J, Hebanowska A, Swierczynski J, Czumaj A, Sledzinski T, Stelmanska E. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13977. [PMID: 37762279 PMCID: PMC10531288 DOI: 10.3390/ijms241813977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This review highlights the complex role of fatty acid β-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Julian Swierczynski
- Institute of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| |
Collapse
|
3
|
Nikam V, Mohammad NS. Tissue-specific DNase I footprint analysis confirms the association of GATAD2B Q470* variant with intellectual disability. J Genet 2021. [DOI: 10.1007/s12041-021-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Mitochondrial Fatty Acid β-Oxidation and Resveratrol Effect in Fibroblasts from Patients with Autism Spectrum Disorder. J Pers Med 2021; 11:jpm11060510. [PMID: 34199819 PMCID: PMC8229571 DOI: 10.3390/jpm11060510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Patients with autism spectrum disorder (ASD) may have an increase in blood acyl-carnitine (AC) concentrations indicating a mitochondrial fatty acid β-oxidation (mtFAO) impairment. However, there are no data on systematic mtFAO analyses in ASD. We analyzed tritiated palmitate oxidation rates in fibroblasts from patients with ASD before and after resveratrol (RSV) treatment, according to methods used for the diagnosis of congenital defects in mtFAO. ASD participants (N = 10, 60%; male; mean age (SD) 7.4 (3.2) years) were divided in two age-equivalent groups based on the presence (N = 5) or absence (N = 5) of elevated blood AC levels. In addition, electron transport chain (ETC) activity in fibroblasts and muscle biopsies and clinical characteristics were compared between the ASD groups. Baseline fibroblast mtFAO was not significantly different in patients in comparison with control values. However, ASD patients with elevated AC exhibited significantly decreased mtFAO rates, muscle ETC complex II activity, and fibroblast ETC Complex II/III activity (p < 0.05), compared with patients without an AC signature. RSV significantly increased the mtFAO activity in all study groups (p = 0.001). The highest mtFAO changes in response to RSV were observed in fibroblasts from patients with more severe symptoms on the Social Responsiveness Scale total (p = 0.001) and Awareness, Cognition, Communication and Motivation subscales (all p < 0.01). These findings suggested recognition of an ASD patient subset characterized by an impaired mtFAO flux associated with abnormal blood AC. The study elucidated that RSV significantly increased fibroblast mtFAO irrespective of plasma AC status, and the highest changes to RSV effects on mtFAO were observed in the more severely affected patients.
Collapse
|
5
|
Schizophrenic Psychosis Symptoms in a Background of Mild-To-Moderate Carnitine Palmitoyltransferase II Deficiency: A Case Report. REPORTS 2020. [DOI: 10.3390/reports3040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a multifaceted mental illness characterized by cognitive and neurobehavioral abnormalities. Carnitine palmitoyltransferase II (CPT II) deficiency is a metabolic disorder resulting in impaired transport of long-chain fatty acids from the cytosol to the mitochondrial inner membrane, where fatty acid β-oxidation takes place. Here, we present an interesting clinical case of an adolescent male that presented with psychosis and a history of mild-to-moderate CPT II deficiency. To identify germline genetic variation that may contribute to the phenotypes observed, we performed whole-exome sequencing on DNA from the proband, unaffected fraternal twin, and biological parents. The proband was identified to be homozygous for the p.Val368Ile and heterozygous for the p.Met647Val variant in CPT2. Each of these variants are benign on their own; however, their combined effect is unclear. Further, variation was identified in the dopamine β-hydroxylase (DBH) gene (c.339+2T>C), which may contribute to decreased activity of DBH; however, based on the patient’s presentation, severe DBH deficiency is unlikely. In conclusion, the variants identified in this study do not clearly explain the observed patient phenotypes, indicating that the complex phenotypes are likely caused by an interplay of genetic and environmental factors that warrant further investigation.
Collapse
|
6
|
Bankaitis VA, Xie Z. The neural stem cell/carnitine malnutrition hypothesis: new prospects for effective reduction of autism risk? J Biol Chem 2019; 294:19424-19435. [PMID: 31699893 DOI: 10.1074/jbc.aw119.008137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorders (ASDs) are developmental neuropsychiatric disorders with heterogeneous etiologies. As the incidence of these disorders is rising, such disorders represent a major human health problem with escalating social cost. Although recent years witnessed advances in our understanding of the genetic basis of some dysmorphic ASDs, little progress has been made in translating the improved understanding into effective strategies for ASD management or minimization of general ASD risk. Here we explore the idea, described in terms of the neural stem cell (NSC)/carnitine malnutrition hypothesis, that an unappreciated risk factor for ASD is diminished capacity for carnitine-dependent long-chain fatty acid β-oxidation in neural stem cells of the developing mammalian brain. The basic premise is that fetal carnitine status is a significant metabolic component in determining NSC vulnerability to derangements in their self-renewal program and, therefore, to fetal ASD risk. As fetal carnitine status exhibits a genetic component that relates to de novo carnitine biosynthesis and is sensitive to environmental and behavioral factors that affect maternal circulating carnitine levels, to which the fetus is exposed, we propose that reduced carnitine availability during gestation is a common risk factor that lurks beneath the genetically complex ASD horizon. One major prediction of the NSC/carnitine malnutrition hypothesis is that a significant component of ASD risk might be effectively managed from a public policy perspective by implementing a carnitine surveillance and dietary supplementation strategy for women planning pregnancies and for women in their first trimester of pregnancy. We argue that this prediction deserves serious clinical interrogation.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843-1114 .,Department of Biochemistry and Biophysics, Texas A&M University Health Science Center, College Station, Texas 77843-1114.,Department of Chemistry, Texas A&M University Health Science Center, College Station, Texas 77843-1114
| | - Zhigang Xie
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843-1114
| |
Collapse
|
7
|
Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20081878. [PMID: 30995737 PMCID: PMC6515064 DOI: 10.3390/ijms20081878] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by defective social communication and interaction and restricted, repetitive behavior with a complex, multifactorial etiology. Despite an increasing worldwide prevalence of ASD, there is currently no pharmacological cure to treat core symptoms of ASD. Clinical evidence and molecular data support the role of impaired mitochondrial fatty acid oxidation (FAO) in ASD. The recognition of defects in energy metabolism in ASD may be important for better understanding ASD and developing therapeutic intervention. The nuclear peroxisome proliferator-activated receptors (PPAR) α, δ, and γ are ligand-activated receptors with distinct physiological functions in regulating lipid and glucose metabolism, as well as inflammatory response. PPAR activation allows a coordinated up-regulation of numerous FAO enzymes, resulting in significant PPAR-driven increases in mitochondrial FAO flux. Resveratrol (RSV) is a polyphenolic compound which exhibits metabolic, antioxidant, and anti-inflammatory properties, pointing to possible applications in ASD therapeutics. In this study, we review the evidence for the existing links between ASD and impaired mitochondrial FAO and review the potential implications for regulation of mitochondrial FAO in ASD by PPAR activators, including RSV.
Collapse
|
8
|
Barone R, Alaimo S, Messina M, Pulvirenti A, Bastin J, Ferro A, Frye RE, Rizzo R. A Subset of Patients With Autism Spectrum Disorders Show a Distinctive Metabolic Profile by Dried Blood Spot Analyses. Front Psychiatry 2018; 9:636. [PMID: 30581393 PMCID: PMC6292950 DOI: 10.3389/fpsyt.2018.00636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is currently diagnosed according to behavioral criteria. Biomarkers that identify children with ASD could lead to more accurate and early diagnosis. ASD is a complex disorder with multifactorial and heterogeneous etiology supporting recognition of biomarkers that identify patient subsets. We investigated an easily testable blood metabolic profile associated with ASD diagnosis using high throughput analyses of samples extracted from dried blood spots (DBS). A targeted panel of 45 ASD analytes including acyl-carnitines and amino acids extracted from DBS was examined in 83 children with ASD (60 males; age 6.06 ± 3.58, range: 2-10 years) and 79 matched, neurotypical (NT) control children (57 males; age 6.8 ± 4.11 years, range 2.5-11 years). Based on their chronological ages, participants were divided in two groups: younger or older than 5 years. Two-sided T-tests were used to identify significant differences in measured metabolite levels between groups. Näive Bayes algorithm trained on the identified metabolites was used to profile children with ASD vs. NT controls. Of the 45 analyzed metabolites, nine (20%) were significantly increased in ASD patients including the amino acid citrulline and acyl-carnitines C2, C4DC/C5OH, C10, C12, C14:2, C16, C16:1, C18:1 (P: < 0.001). Näive Bayes algorithm using acyl-carnitine metabolites which were identified as significantly abnormal showed the highest performances for classifying ASD in children younger than 5 years (n: 42; mean age 3.26 ± 0.89) with 72.3% sensitivity (95% CI: 71.3;73.9), 72.1% specificity (95% CI: 71.2;72.9) and a diagnostic odds ratio 11.25 (95% CI: 9.47;17.7). Re-test analyses as a measure of validity showed an accuracy of 73% in children with ASD aged ≤ 5 years. This easily testable, non-invasive profile in DBS may support recognition of metabolic ASD individuals aged ≤ 5 years and represents a potential complementary tool to improve diagnosis at earlier stages of ASD development.
Collapse
Affiliation(s)
- Rita Barone
- Child Neurology and Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Referral Centre for Inherited Metabolic Disorders, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marianna Messina
- Referral Centre for Inherited Metabolic Disorders, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Jean Bastin
- Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
- INSERM, UMR-S 1124, Toxicologie, Pharmacologie et Signalisation Cellulaire, Paris, France
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Richard E. Frye
- University of Arizona College of Medicine, Phoenix, AZ, United States
- Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Renata Rizzo
- Child Neurology and Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion 2018; 46:73-90. [PMID: 29551309 DOI: 10.1016/j.mito.2018.02.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 12/30/2022]
Abstract
Mitochondrial β-oxidation of fatty acids generates acetyl-coA, NADH and FADH2. Acyl-coA synthetases catalyze the binding of fatty acids to coenzyme A to form fatty acyl-coA thioesters, the first step in the intracellular metabolism of fatty acids. l-carnitine system facilitates the transport of fatty acyl-coA esters across the mitochondrial membrane. Carnitine palmitoyltransferase-1 transfers acyl groups from coenzyme A to l-carnitine, forming acyl-carnitine esters at the outer mitochondrial membrane. Carnitine acyl-carnitine translocase exchanges acyl-carnitine esters that enter the mitochondria, by free l-carnitine. Carnitine palmitoyltransferase-2 converts acyl-carnitine esters back to acyl-coA esters at the inner mitochondrial membrane. The β-oxidation pathway of fatty acyl-coA esters includes four reactions. Fatty acyl-coA dehydrogenases catalyze the introduction of a double bond at the C2 position, producing 2-enoyl-coA esters and reducing equivalents that are transferred to the respiratory chain via electron transferring flavoprotein. Enoyl-coA hydratase catalyzes the hydration of the double bond to generate a 3-l-hydroxyacyl-coA derivative. 3-l-hydroxyacyl-coA dehydrogenase catalyzes the formation of a 3-ketoacyl-coA intermediate. Finally, 3-ketoacyl-coA thiolase catalyzes the cleavage of the chain, generating acetyl-coA and a fatty acyl-coA ester two carbons shorter. Mitochondrial trifunctional protein catalyzes the three last steps in the β-oxidation of long-chain and medium-chain fatty acyl-coA esters while individual enzymes catalyze the β-oxidation of short-chain fatty acyl-coA esters. Clinical phenotype of fatty acid oxidation disorders usually includes hypoketotic hypoglycemia triggered by fasting or infections, skeletal muscle weakness, cardiomyopathy, hepatopathy, and neurological manifestations. Accumulation of non-oxidized fatty acids promotes their conjugation with glycine and l-carnitine and alternate ways of oxidation, such as ω-oxidation.
Collapse
|
10
|
Benke PJ, Duchowny M, McKnight D. Biotin and Acetazolamide for Treatment of an Unusual Child With Autism Plus Lack of Nail and Hair Growth. Pediatr Neurol 2018; 79:61-64. [PMID: 29413639 DOI: 10.1016/j.pediatrneurol.2017.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients with autism spectrum disorder and developmental delay or encephalopathy rarely demonstrate no or negligible hair and nail growth, suggesting a biotin-responsive clinical disorder. METHODS A ten-year-old girl presented with features of autism spectrum disorder, isolated headaches, and episodes of headaches and limb shaking. Her medical history revealed that her hair and nails did not grow. Administration of biotin restored her nail and hair growth and improved intellectual ability and school performance. Her episodes of headaches, single limb shaking, and loss of consciousness responded to administration of acetazolamide, and her school performance and social skills further improved. RESULTS A de novo c.1091 C > T, p.T364M pathogenic variant was found in the ATP1A2 gene by whole-exome sequencing, but a genetic etiology in the biotin-responsive metabolic pathways was not identified. CONCLUSIONS The combination of biotin and acetazolamide treatment was successful in restoring normal mental function and school performance. Poor or no clinical nail and hair growth in any child with a developmental delay-autism spectrum disorder presentation should be considered as evidence for a biotin-responsive genetic disorder even when exome testing is negative.
Collapse
Affiliation(s)
- Paul J Benke
- Genetics Division, Joe DiMaggio Children's Hospital, and Charles E. Schmidt College of Medicine, Hollywood, Florida.
| | - Michael Duchowny
- Neurology Division, Nicklaus Children's Hospital, Miami, Florida
| | | |
Collapse
|
11
|
Evans M, Andresen BS, Nation J, Boneh A. VLCAD deficiency: Follow-up and outcome of patients diagnosed through newborn screening in Victoria. Mol Genet Metab 2016; 118:282-7. [PMID: 27246109 DOI: 10.1016/j.ymgme.2016.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/15/2016] [Accepted: 05/15/2016] [Indexed: 12/31/2022]
Abstract
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inherited metabolic disorder of fatty acid oxidation. Treatment practices of the disorder have changed over the past 10-15years since this disorder was included in newborn screening programs and patients were diagnosed pre-symptomatically. A genotype-phenotype correlation has been suggested but the discovery of novel mutations make this knowledge limited. Herein, we describe our experience in treating patients (n=22) diagnosed through newborn screening and mutational confirmation and followed up over a median period of 104months. We report five novel mutations. In 2013 we formalised our treatment protocol, which essentially follows a European consensus paper from 2009 and our own experience. The prescribed low natural fat diet is relaxed for patients who are asymptomatic when reaching age 5years but medium-chain triglyceride oil is recommended before and after physical activity regardless of age. Metabolic stability, growth, development and cardiac function are satisfactory in all patients. There were no episodes of encephalopathy or hypoglycaemia but three patients had episodes of muscle pain with our without rhabdomyolysis. Body composition studies showed a negative association between dietary protein intake and percent body fat. Larger patient cohort and longer follow up time are required for further elucidation of genotype-phenotype correlations and for establishing the role of dietary protein in metabolic stability and long-term healthier body composition in patients with VLCAD deficiency.
Collapse
Affiliation(s)
- Maureen Evans
- Department of Metabolic Medicine, Royal Children's Hospital Melbourne, Australia
| | - Brage S Andresen
- Research Unit for Molecular Medicine, Skejby Sygehus, Aarhus, Denmark; The Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Judy Nation
- Department of Metabolic Medicine, Royal Children's Hospital Melbourne, Australia
| | - Avihu Boneh
- Department of Metabolic Medicine, Royal Children's Hospital Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia; Metabolic research, Murdoch Childrens Research Institute, Australia.
| |
Collapse
|
12
|
Strandqvist A, Haglind CB, Zetterström RH, Nemeth A, von Döbeln U, Stenlid MH, Nordenström A. Neuropsychological Development in Patients with Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase (LCHAD) Deficiency. JIMD Rep 2015; 28:75-84. [PMID: 26545880 DOI: 10.1007/8904_2015_505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Reports on cognitive outcomes in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) are scarce. We present results from neuropsychological assessments of eight patients diagnosed with LCHADD prior to newborn screening with regard to clinical disease severity. METHODS Intellectual ability and adaptive and executive functions were assessed using age-appropriate Wechsler Scales, Adaptive Behavior Assessment Scales (ABAS), and Behavior Rating Inventory of Executive Function (BRIEF). RESULTS Five patients performed in the normal range on IQ tests but with lower scores on verbal working memory. In addition, they had lower parent-rated adaptive and executive functions.Three patients had intellectual disabilities with IQs below normal and/or autism spectrum disorders. In addition, they had low results on parent-rated adaptive functions. (Two of these patients had epilepsy.) Conclusions: Patients with LCHADD seem to have a specific cognitive pattern, with presentation as intellectual disability and specific autistic deficiencies or a normal IQ with weaknesses in auditive verbal memory and adaptive and executive functions. Future studies are warranted to investigate whether newborn screening programs and early treatment may promote improved neuropsychological development and outcomes.
Collapse
Affiliation(s)
- A Strandqvist
- Department of Women and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.,Department of Psychology, Karolinska University Hospital, Stockholm, Sweden
| | - C Bieneck Haglind
- Department of Women and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden. .,Department of Pediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - R H Zetterström
- Departments of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - A Nemeth
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - U von Döbeln
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Laboratory Medicine, Division for Metabolic Diseases, Karolinska Institutet, Stockholm, Sweden
| | - M Halldin Stenlid
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - A Nordenström
- Department of Women and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.,Department of Pediatric Endocrinology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|