1
|
Tsykunova G, Kristensen E, Stray-Pedersen A, Bruserud Ø, Sørensen IW, Bruserud Ø, Tvedt THA. Adult presentation of ornithine transcarbamylase deficiency: a possible cause of hyperammonemia after high-dose chemotherapy and stem cell transplantation. Hematology 2023; 28:2265187. [PMID: 38078487 DOI: 10.1080/16078454.2023.2265187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/26/2023] [Indexed: 12/18/2023] Open
Abstract
Hyperammonemia is a rare and often fatal complication following the conditioning therapy in autologous and allogeneic stem cell transplant recipients. It is characterized by anorexia, vomiting, lethargy and coma without any other apparent cause. The diagnosis is often delayed because symptoms can be subtle and ammonia is usually not included among the routine analyzes. Previous reports have not identified the molecular mechanisms behind hyperammonemia in stem cell transplant recipients. Urea cycle disorders (UCDs) are inborn errors of metabolism leading to hyperammonemia that usually presents in early childhood, whereas first presentation in adults is less common. Here we describe an adult woman with hyperammonemia following autologous stem cell transplantation for multiple myeloma. No apparent cause of hyperammonemia was identified, including portosystemic shunting, liver dysfunction or recent hyperammonemia-inducing chemotherapy. Hyperammonemia, normal blood glucose as well as anion gap and a previous history of two male newborns that died early after birth, prompted biochemical and genetic investigations for a UCD. A heterozygous variant in the X-linked gene encoding ornithine transcarbamylase (OTC) was identified and was regarded as a cause of UCD. The patient improved after treatment with nitrogen scavengers and high caloric intake according to a UCD protocol. This case report suggests that UCD should be considered as a possible cause of hyperammonemia following stem cell transplantation.
Collapse
Affiliation(s)
- Galina Tsykunova
- Department of Medicine Haukeland University Hospital, Bergen, Norway
| | - Erle Kristensen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Asbjørg Stray-Pedersen
- The National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Bruserud
- Department of Anesthesiology and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Ida Wiig Sørensen
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Medicine Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tor Henrik Anderson Tvedt
- Department of Medicine Haukeland University Hospital, Bergen, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Laemmle A, Poms M, Hsu B, Borsuk M, Rüfenacht V, Robinson J, Sadowski MC, Nuoffer J, Häberle J, Willenbring H. Aquaporin 9 induction in human iPSC-derived hepatocytes facilitates modeling of ornithine transcarbamylase deficiency. Hepatology 2022; 76:646-659. [PMID: 34786702 PMCID: PMC9295321 DOI: 10.1002/hep.32247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/30/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Patient-derived human-induced pluripotent stem cells (hiPSCs) differentiated into hepatocytes (hiPSC-Heps) have facilitated the study of rare genetic liver diseases. Here, we aimed to establish an in vitro liver disease model of the urea cycle disorder ornithine transcarbamylase deficiency (OTCD) using patient-derived hiPSC-Heps. APPROACH AND RESULTS Before modeling OTCD, we addressed the question of why hiPSC-Heps generally secrete less urea than adult primary human hepatocytes (PHHs). Because hiPSC-Heps are not completely differentiated and maintain some characteristics of fetal PHHs, we compared gene-expression levels in human fetal and adult liver tissue to identify genes responsible for reduced urea secretion in hiPSC-Heps. We found lack of aquaporin 9 (AQP9) expression in fetal liver tissue as well as in hiPSC-Heps, and showed that forced expression of AQP9 in hiPSC-Heps restores urea secretion and normalizes the response to ammonia challenge by increasing ureagenesis. Furthermore, we proved functional ureagenesis by challenging AQP9-expressing hiPSC-Heps with ammonium chloride labeled with the stable isotope [15 N] (15 NH4 Cl) and by assessing enrichment of [15 N]-labeled urea. Finally, using hiPSC-Heps derived from patients with OTCD, we generated a liver disease model that recapitulates the hepatic manifestation of the human disease. Restoring OTC expression-together with AQP9-was effective in fully correcting OTC activity and normalizing ureagenesis as assessed by 15 NH4 Cl stable-isotope challenge. CONCLUSION Our results identify a critical role for AQP9 in functional urea metabolism and establish the feasibility of in vitro modeling of OTCD with hiPSC-Heps. By facilitating studies of OTCD genotype/phenotype correlation and drug screens, our model has potential for improving the therapy of OTCD.
Collapse
Affiliation(s)
- Alexander Laemmle
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of PediatricsUniversity Children's HospitalBernSwitzerland,University Institute of Clinical ChemistryUniversity of BernBernSwitzerland
| | - Martin Poms
- Division of Clinical Chemistry and BiochemistryUniversity Children’s Hospital ZurichZurichSwitzerland
| | - Bernadette Hsu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mariia Borsuk
- University Institute of Clinical ChemistryUniversity of BernBernSwitzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children`s Research CenterUniversity Children’s HospitalZurichSwitzerland
| | - Joshua Robinson
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Center for Reproductive SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of PediatricsMedical GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Jean‐Marc Nuoffer
- Department of PediatricsUniversity Children's HospitalBernSwitzerland,University Institute of Clinical ChemistryUniversity of BernBernSwitzerland
| | - Johannes Häberle
- Division of Metabolism and Children`s Research CenterUniversity Children’s HospitalZurichSwitzerland,Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Holger Willenbring
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of SurgeryDivision of Transplant SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Liver CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Vakunenkova OA. Secondary Dysfunction of the Intestinal Barrier in the Pathogenesis of Complications of Acute Poisoning. J EVOL BIOCHEM PHYS+ 2022; 58:1075-1098. [PMID: 36061072 PMCID: PMC9420239 DOI: 10.1134/s0022093022040123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
The last decade has been marked by an exponential increase
in the number of publications on the physiological role of the normal
human gut microbiota. The idea of a symbiotic relationship between
the human organism and normal microbiota of its gastrointestinal
tract has been firmly established as an integral part of the current
biomedical paradigm. However, the type of this symbiosis varies
from mutualism to parasitism and depends on the functional state
of the host organism. Damage caused to the organism by external
agents can lead to the emergence of conditionally pathogenic properties
in the normal gut microbiota, mediated by humoral factors and affecting
the outcome of exogenous exposure. Among the substances produced
by symbiotic microbiota, there are an indefinite number of compounds
with systemic toxicity. Some occur in the intestinal chyme in potentially
lethal amounts in the case they enter the bloodstream quickly. The quick
entry of potential toxicants is prevented by the intestinal barrier
(IB), a set of structural elements separating the intestinal chyme
from the blood. Hypothetically, severe damage to the IB caused by
exogenous toxicants can trigger a leakage and subsequent systemic
redistribution of toxic substances of bacterial origin. Until recently,
the impact of such a redistribution on the outcome of acute exogenous
poisoning remained outside the view of toxicology. The present review
addresses causal relationships between the secondary dysfunction
of the IB and complications of acute poisoning. We characterize
acute systemic toxicity of such waste products of the normal gut microflora
as ammonia and endotoxins, and demonstrate their involvement in
the formation of such complications of acute poisoning as shock,
sepsis, cerebral insufficiency and secondary lung injuries. The
principles of assessing the functional state of the IB and the approaches
to its protection in acute poisoning are briefly considered.
Collapse
Affiliation(s)
- Ju. Ju. Ivnitsky
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| | - T. V. Schäfer
- State Scientific Research Test Institute of Military Medicine, Ministry of Defense of the Russian Federation, St. Petersburg, Russia
| | - V. L. Rejniuk
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| | - O. A. Vakunenkova
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| |
Collapse
|
4
|
Eguchi H, Kakiuchi T, Nishi M, Kojima-Ishii K, Nishiyama K, Koga Y, Matsuo M. Case Report: Juvenile Myelomonocytic Leukemia Underlying Ornithine Transcarbamylase Deficiency Safely Treated Using Hematopoietic Stem Cell Transplantation. Front Pediatr 2022; 10:898531. [PMID: 35601422 PMCID: PMC9120833 DOI: 10.3389/fped.2022.898531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Juvenile myelomonocytic leukemia (JMML), which is predominantly found in infants, is a clonal abnormality of pluripotent hematopoietic stem cells and presents with the symptoms of both myeloproliferative tumors and myelodysplastic syndromes. Estimates have shown that ~20 cases of JMML occur annually in Japan. Ornithine transcarbamylase deficiency (OTCD), the most common among all urea cycle disorders (UCDs), occurs in 1 of 80,000 people in Japan. CASE PRESENTATION A 10-month-old infant who had fever, vomiting, and diarrhea for 2 days was referred to our hospital for the following abnormalities in blood tests: white blood cell count, 48,200/μL; hemoglobin, 9.0 g/dL; and platelet count, 135,000/μL. Bone marrow examination showed a nucleated cell count of 396,000/mm3 and blast cell count of 5.0%, as well as decreased mature granulocyte count and slightly myeloperoxidase stain-negative blasts but no monoclonal cell proliferation on May-Giemsa staining. Colony assay showed the proliferation of spontaneous colony and high sensitivity to granulocyte-macrophage colony-stimulating factor. Genetic analysis of peripheral blood mononuclear cells showed that the patient was positive for neuroblastoma RAS (NRAS) mutation. The patient was ultimately diagnosed with JMML. Approximately 170 days after his first hematopoietic stem cell transplantation (HSCT), the patient's JMML relapsed. Shortly after the recurrence, nausea, vomiting, hyperventilation, and decreased vitality were observed, followed by a decrease in the level of consciousness. The patient's ammonia level was 472 μmol/L. A test for seven different genetic mutations for the UCD showed the presence of c. 119G>A (amino acid change p. Arg40His). As such, late-onset OTCD was added to his diagnosis. Administration of sodium phenylacetate, l-arginine hydrochloride, and carnitine was continued following the diagnosis of OTCD, after which hyperammonemia was not observed. Regarding JMML relapse, HSCT was performed on day 405 after the first transplantation. CONCLUSION Hyperammonemia should be considered a differential diagnosis when unexplained and non-specific symptoms occur during the treatment of hematologic malignancies. Patients should be tested for UCD as a cause of hyperammonemia, and treatment for hyperammonemia should be continued until the cause is identified. The patient shows normal developmental progress, has an intact neurological status, and has not experienced another hyperammonemia attack. His JMML has remained in remission for over 3 years.
Collapse
Affiliation(s)
- Hiroi Eguchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Masanori Nishi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medicine Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Nishiyama
- Department of Pediatrics, Graduate School of Medicine Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medicine Sciences, Kyushu University, Fukuoka, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
5
|
Makris G, Lauber M, Rüfenacht V, Gemperle C, Diez-Fernandez C, Caldovic L, Froese DS, Häberle J. Clinical and structural insights into potential dominant negative triggers of proximal urea cycle disorders. Biochimie 2020; 183:89-99. [PMID: 33309754 DOI: 10.1016/j.biochi.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.
Collapse
Affiliation(s)
- Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Matthias Lauber
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Corinne Gemperle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Nextech Invest, Bahnhofstrasse 18, 8001, Zurich, Switzerland
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Marciniec K, Chrobak E, Dąbrowska A, Bębenek E, Kadela-Tomanek M, Pęcak P, Boryczka S. Phosphate Derivatives of 3-Carboxyacylbetulin: SynThesis, In Vitro Anti-HIV and Molecular Docking Study. Biomolecules 2020; 10:E1148. [PMID: 32764519 PMCID: PMC7464173 DOI: 10.3390/biom10081148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Lupane-type pentacyclic triterpenes such as betulin and betulinic acid play an important role in the search for new therapies that would be effective in controlling viral infections. The aim of this study was the synthesis and evaluation of in vitro anti-HIV-1 activity for phosphate derivatives of 3-carboxyacylbetulin 3-5 as well as an in silico study of new compounds as potential ligands of the C-terminal domain of the HIV-1 capsid-spacer peptide 1 (CA-CTD-SP1) as a molecular target of HIV-1 maturation inhibitors. In vitro studies showed that 28-diethoxyphosphoryl-3-O-(3',3'-dimethylsuccinyl)betulin (compound 3), the phosphate analog of bevirimat (betulinic acid derivative, HIV-1 maturation inhibitor), has IC50 (half maximal inhibitory concentration) equal to 0.02 μM. Compound 3 inhibits viral replication at a level comparable to bevirimat and is also more selective (selectivity indices = 1250 and 967, respectively). Molecular docking was used to examine the probable interaction between the phosphate derivatives of 3-carboxyacylbetulin and C-terminal domain (CTD) of the HIV-1 capsid (CA)-spacer peptide 1 (SP1) fragment of Gag protein, designated as CTD-SP1. Compared with interactions between bevirimat (BVM) and the protein, an increased number of strong interactions between ligand 3 and the protein, generated by the phosphate group, were observed. These compounds might have the potential to also inhibit SARS-CoV2 proteins, in as far as the intrinsically imprecise docking scores suggest.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.B.); (M.K.-T.); (P.P.); (S.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.B.); (M.K.-T.); (P.P.); (S.B.)
| | | | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.B.); (M.K.-T.); (P.P.); (S.B.)
| | - Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.B.); (M.K.-T.); (P.P.); (S.B.)
| | - Paweł Pęcak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.B.); (M.K.-T.); (P.P.); (S.B.)
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.B.); (M.K.-T.); (P.P.); (S.B.)
| |
Collapse
|
7
|
Ceccacci S, Deitersen J, Mozzicafreddo M, Morretta E, Proksch P, Wesselborg S, Stork B, Monti MC. Carbamoyl-Phosphate Synthase 1 as a Novel Target of Phomoxanthone A, a Bioactive Fungal Metabolite. Biomolecules 2020; 10:biom10060846. [PMID: 32498414 PMCID: PMC7356042 DOI: 10.3390/biom10060846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Phomoxanthone A, a bioactive xanthone dimer isolated from the endophytic fungus Phomopsis sp., is a mitochondrial toxin weakening cellular respiration and electron transport chain activity by a fast breakup of the mitochondrial assembly. Here, a multi-disciplinary strategy has been developed and applied for identifying phomoxanthone A target(s) to fully address its mechanism of action, based on drug affinity response target stability and targeted limited proteolysis. Both approaches point to the identification of carbamoyl-phosphate synthase 1 as a major phomoxanthone A target in mitochondria cell lysates, giving also detailed insights into the ligand/target interaction sites by molecular docking and assessing an interesting phomoxanthone A stimulating activity on carbamoyl-phosphate synthase 1. Thus, phomoxanthone A can be regarded as an inspiring molecule for the development of new leads in counteracting hyperammonemia states.
Collapse
Affiliation(s)
- Sara Ceccacci
- Department of Pharmacy, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy; (S.C.); (E.M.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Jana Deitersen
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (J.D.); (S.W.); (B.S.)
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Elva Morretta
- Department of Pharmacy, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy; (S.C.); (E.M.)
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany;
| | - Sebastian Wesselborg
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (J.D.); (S.W.); (B.S.)
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (J.D.); (S.W.); (B.S.)
| | - Maria Chiara Monti
- Department of Pharmacy, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy; (S.C.); (E.M.)
- Correspondence:
| |
Collapse
|
8
|
Palka-Kotlowska M, Cabezón-Gutiérrez L, Custodio-Cabello S, Quijada-Fraile PI, Chumillas-Calzada S. Chemotherapy in a Breast Cancer Patient Heterozygous Carrier of Ornithine Transcarbamylase Deficiency. Cureus 2020; 12:e8301. [PMID: 32601573 PMCID: PMC7317123 DOI: 10.7759/cureus.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022] Open
Abstract
Urea cycle disorders (UCDs) are an unusual genetic condition that may lead to hyperammonemia in catabolic situations such as surgery, infections or chemotherapy administration. Without specific treatment, it causes life-threatening encephalopathy. We present the case of a young woman, heterozygous carrier of ornithine transcarbamylase deficiency (OTCD) with breast cancer, who was treated with surgery, chemotherapy, radiotherapy and hormone therapy while following a protocol to minimize the risk of metabolic decompensation due to her condition.
Collapse
Affiliation(s)
| | | | | | - PIlar Quijada-Fraile
- Unidad Pediátrica De Enfermedades Raras, Metabólicas-Hereditarias Y Mitocondriales, Hospital Universitario 12 de Octubre, Madrid, ESP
| | - Silvia Chumillas-Calzada
- Unidad Pediátrica De Enfermedades Raras, Metabólicas-Hereditarias Y Mitocondriales, Hospital Universitario 12 de Octubre, Madrid, ESP
| |
Collapse
|
9
|
Abstract
Idiopathic hyperammonemia is a rare, poorly understood, and often lethal condition that has been described in immunocompromised patients. This report describes an immunocompromised patient with acute myelogenous leukemia who developed persistent hyperammonemia up to 705 µmol/L (normal, 0 to 47 µmol/L) refractory to multiple different therapies. However, after beginning azithromycin and then doxycycline therapy for Ureaplasma species infection, the patient showed immediate and sustained clinical improvement and resolution of ammonia levels. Recognizing disseminated Ureaplasma species infection as a potential cause of idiopathic hyperammonemia, an unexplained, often fatal condition in immunocompromised patients, and empirically treating for this infection could potentially be lifesaving.
Collapse
|
10
|
Fatal Idiopathic Hyperammonemia after Induction Chemotherapy for Acute Myeloid Leukemia. Case Rep Hematol 2020; 2020:3136074. [PMID: 32089907 PMCID: PMC7031708 DOI: 10.1155/2020/3136074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/03/2022] Open
Abstract
Idiopathic hyperammonemia is a rare but potentially fatal complication occurring in patients with acute leukemia or bone marrow transplantation. The role of some specific anticancer drugs may be discussed, but the etiology of hyperammonemia is often multifactorial. We report the case of a 40-year-old woman who developed fatal idiopathic hyperammonemia two weeks after induction chemotherapy with idarubicin-aracytine for acute myeloid leukemia. Despite intensive care management and extrarenal epuration, the patient was declared brain dead two days after hyperammonemia onset.
Collapse
|
11
|
Su Y, Chen Z, Yan L, Lian F, You J, Wang X, Tang N. Optimizing combination of liver-enriched transcription factors and nuclear receptors simultaneously favors ammonia and drug metabolism in liver cells. Exp Cell Res 2018; 362:504-514. [PMID: 29253535 DOI: 10.1016/j.yexcr.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
The HepG2 cell line is widely used in studying liver diseases because of its immortalization, but its clinical application is limited by its low expression of the urea synthesis key enzymes and cytochromes P450 (CYPs). On the basis of our previous work, we investigated the transcriptional regulation of arginase 1 (Arg1) and ornithine transcarbamylase (OTC) in HepG2 cells. We also screened for the optimal combination of liver enrichment transcription factors (LETFs) and xenobiotic nuclear receptors that can promote the expression of key urea synthases and five major CYPs in HepG2 cells. Thus, recombinant HepG2 cells were established. Results showed that C/EBPβ, not C/EBPα, could upregulate expression of Arg1 and PGC1α and HNF4α cooperatively regulate the expression of OTC. The two optimal combinations C/EBPβ+HNF4α+HNF6+PXR and C/EBPβ+HNF4α+HNF6+CAR were selected. Compared with the control cells, the recombinant HepG2 cells modified by the two optimal combinations exhibited enhanced ammonia metabolism and CYP enzyme activity. Moreover, the HepG2/(C/EBPβ+HNF4α+HNF6+PXR) cells more strongly reduced ammonia than any other combination tested in this study. The present work indicated that optimizing the combination of transcription factors will simultaneously promote hepatocyte ammonia metabolism and drug metabolism. The recombinant HepG2 liver cell line constructed by the optimal combination provided an improved alternative means for bioartificial liver applications and drug toxicity testing.
Collapse
Affiliation(s)
- Yongfa Su
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linlin Yan
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fen Lian
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhua You
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|