1
|
Hu S, Zhou C, Zhang Y, Li L, Yu X. OVA-Induced Food Allergy Leads to Neurobehavioral Changes in Mice and the Potential Role of Gut Microbiota and Metabolites Dysbiosis. Int J Mol Sci 2025; 26:4760. [PMID: 40429903 DOI: 10.3390/ijms26104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
The neurobehavioral changes in food allergy mice have not been comprehensively studied, and the mechanism underlying them remains unclear. Our study aims to fully investigate neurobehavioral changes in OVA (ovalbumin)-sensitized food allergy mice and explore the potential mechanism via the gut microbiota-brain axis. We established the food allergy mouse (C57BL/6J male) model with OVA, evaluating the anaphylactic symptoms and the levels of Th2 signature cytokine and allergy-related antibodies in serum. Using behavioral tests, we measured anxiety, depression, social behavior, repetitive behavior, attention, and spatial memory in control and OVA mice. In addition, we analyzed the prefrontal cortex for measuring inflammation-related indicators and gathered serum for untargeted metabolomics analysis and feces for 16S rDNA sequencing. OVA mice exhibited anaphylactic symptoms and significantly elevated serum IgE and Th2 signature cytokine levels. In addition to anxiety-like, depression-like, and repetitive behaviors, OVA mice also displayed less social interest and damaged attention. TNF-α, IL-1β, and IL-6 levels and the activation of microglia in the prefrontal cortex of OVA mice were significantly increased, which might explain the neuronal damage. Using multi-omics technology, amino acid metabolism disruption, particularly carboxylic acids and derivatives, was observed in OVA mice, which was remarkably correlated with the altered abundance of gut microbiota related to food allergy. Behaviors in OVA-induced food allergy mice were extensively impaired. The disruption of amino acid metabolism associated with gut microbiota dysbiosis in OVA mice might play a pivotal role in impairing neural immune homeostasis and neuronal damage, which could be responsible for behavioral abnormalities.
Collapse
Affiliation(s)
- Shouxun Hu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunyan Zhou
- Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yue Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Luanluan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Venturoni LE, Venditti CP. Treatment of metabolic disorders using genomic technologies: Lessons from methylmalonic acidemia. J Inherit Metab Dis 2022; 45:872-888. [PMID: 35766386 DOI: 10.1002/jimd.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
Hereditary methylmalonic acidemia (MMA) caused by deficiency of the enzyme methylmalonyl-CoA mutase (MMUT) is a relatively common and severe organic acidemia. The recalcitrant nature of the condition to conventional dietary and medical management has led to the use of elective liver and combined liver-kidney transplantation in some patients. However, liver transplantation is intrinsically limited by organ availability, the risks of surgery, procedural and life-long management costs, transplant comorbidities, and a remaining underlying risk of complications related to MMA despite transplantation. Here, we review pre-clinical studies that present alternative approaches to solid organ transplantation as a treatment for MMUT MMA, including adeno-associated viral gene addition therapy, mRNA therapy, and genome editing, with and without nuclease enhancement.
Collapse
Affiliation(s)
- Leah E Venturoni
- Metabolic Medicine Branch, Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Metabolic Medicine Branch, Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Physical and Neurological Development of a Girl Born to a Mother with Methylmalonic Acidemia and Kidney Transplantation and Review of the Literature. CHILDREN 2021; 8:children8111013. [PMID: 34828726 PMCID: PMC8619094 DOI: 10.3390/children8111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
Background: actual literature suggests that children of methylmalonic acidemia patients are mostly healthy, but data are only partial, especially regarding long-term outcome. Therefore, our aim was to evaluate the possible long-term neurological effects of fetal exposure to high levels of methylmalonic acid in a child of a renal transplant recipient. Methods: we retrospectively evaluated the clinical and neurological records of a girl whose mother is a kidney transplant recipient affected by methylmalonic acidemia. Subsequently, we compared our results with the ones already published. Results: the girl’s weight and stature were within the normal range in the first years of life but, starting from 4 years of age, she became progressively overweight. Regarding the neurodevelopment aspects, for the first time we performed a complete and seriated neuropsychological evaluation, highlighting a mild but significant weakness in the verbal domain, with a worsening trend at three-year revaluation. Conclusions: since children of MMA patients are exposed to methylmalonic acid, the efforts of the physicians caring for these children should be directed on careful evaluation of growth, prevention of obesity and regular neurological examination together with structured neuropsychological tests to achieve a better insight in possible complications of pregnancy in patients suffering from this condition.
Collapse
|
4
|
Vernon HJ, Manoli I. Milestones in treatments for inborn errors of metabolism: Reflections on Where chemistry and medicine meet. Am J Med Genet A 2021; 185:3350-3358. [PMID: 34165242 DOI: 10.1002/ajmg.a.62385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.
Collapse
Affiliation(s)
- Hilary J Vernon
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
5
|
Li Q, Jin H, Liu Y, Rong Y, Yang T, Nie X, Song W. Determination of Cytokines and Oxidative Stress Biomarkers in Cognitive Impairment Induced by Methylmalonic Acidemia. Neuroimmunomodulation 2021; 28:178-186. [PMID: 34340239 DOI: 10.1159/000511590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/06/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Methylmalonic acidemia (MMA) is the most common organic acidemia in children. Many patients with MMA suffered from cognitive impairments. The aim of this study was to identify the significance of cytokines and oxidative stress biomarkers in MMA-induced cognitive impairment. METHODS We enrolled 64 children with combined MMA and homocystinuria and 64 age- and sex-matched healthy volunteers. Participants were subsequently classified as with or without cognitive impairments using a uniform neuropsychological assessment test. Serum samples were collected. The serum levels of cytokines and oxidative stress biomarkers were measured using the ELISA or chemical methods. RESULTS Compared to control group, the serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, malondialdehyde (MDA), and nitric oxide (NO) in the MMA patients increased markedly (p < 0.05); glutathione (GSH) and superoxide dismutase (SOD) decreased obviously (p < 0.01). The levels of IL-6, TNF-α, NO, and MDA in the serum were negatively associated with DQ or IQ scores. The levels of GSH and SOD in the serum were positively correlated with DQ or IQ scores. After receiver operating characteristic curve analysis, NO was the most useful individual marker for distinguishing the cognitive dysfunction, corresponding to the area under ROC curve (AUC) of 0.82 (95% CI, 0.74-0.91), sensitivity of 76.60%, and specificity of 80.25%. GSH and MDA were also useful for diagnosis of MMA-induced cognitive dysfunction, corresponding to the AUC of 0.80 (95% CI, 0.70-0.89), and 0.73 (95% CI, 0.63-0.82), respectively. The sensitivity and specificity of GSH were 72.34 and 80.25%, respectively. The sensitivity and specificity of MDA were 85.11 and 51.85%, respectively. CONCLUSIONS The high-concentration methylmalonic acid in the blood induced immune cells to release pro-inflammatory cytokines such as TNF-α and IL-6. These cytokines and high-concentration methylmalonic acid stimulated the immune cells to produce reactive oxygen species (ROS) and reactive nitrogen species (RNS). The serum methylmalonic acid, cytokines, ROS, and RNS were across the blood-brain barrier and induced cognitive impairment. The small molecule substances such as serum NO, MDA, and GSH participated in the process of neuroinflammation and oxidative stress injury induced by MMA and could be useful for distinguishing the cognitive impairment.
Collapse
Affiliation(s)
- Qiliang Li
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hong Jin
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Liu
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yu Rong
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tana Yang
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaolu Nie
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenqi Song
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
6
|
Luciani A, Schumann A, Berquez M, Chen Z, Nieri D, Failli M, Debaix H, Festa BP, Tokonami N, Raimondi A, Cremonesi A, Carrella D, Forny P, Kölker S, Diomedi Camassei F, Diaz F, Moraes CT, Di Bernardo D, Baumgartner MR, Devuyst O. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency. Nat Commun 2020; 11:970. [PMID: 32080200 PMCID: PMC7033137 DOI: 10.1038/s41467-020-14729-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2020] [Indexed: 01/09/2023] Open
Abstract
Deregulation of mitochondrial network in terminally differentiated cells contributes to a broad spectrum of disorders. Methylmalonic acidemia (MMA) is one of the most common inherited metabolic disorders, due to deficiency of the mitochondrial methylmalonyl-coenzyme A mutase (MMUT). How MMUT deficiency triggers cell damage remains unknown, preventing the development of disease-modifying therapies. Here we combine genetic and pharmacological approaches to demonstrate that MMUT deficiency induces metabolic and mitochondrial alterations that are exacerbated by anomalies in PINK1/Parkin-mediated mitophagy, causing the accumulation of dysfunctional mitochondria that trigger epithelial stress and ultimately cell damage. Using drug-disease network perturbation modelling, we predict targetable pathways, whose modulation repairs mitochondrial dysfunctions in patient-derived cells and alleviate phenotype changes in mmut-deficient zebrafish. These results suggest a link between primary MMUT deficiency, diseased mitochondria, mitophagy dysfunction and epithelial stress, and provide potential therapeutic perspectives for MMA.
Collapse
Affiliation(s)
- Alessandro Luciani
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland.
| | - Anke Schumann
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland
- Division of Metabolism and Children's Research Center, University Children's Hospital, 8032, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland
| | - Zhiyong Chen
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland
| | - Daniela Nieri
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland
| | - Mario Failli
- Department of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Huguette Debaix
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland
| | - Beatrice Paola Festa
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland
| | - Natsuko Tokonami
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland
| | - Andrea Raimondi
- San Raffaele Scientific Institute, Experimental Imaging Center, 20132, Milan, Italy
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Naples, Italy
| | - Patrick Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital, 8032, Zurich, Switzerland
| | - Stefan Kölker
- Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, 69120, Heidelberg, Germany
| | | | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 33136, Miami, FL, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 33136, Miami, FL, USA
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Naples, Italy
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, 8032, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland.
- Division of Nephrology, Cliniques Universitaires Saint-Luc, 1040, Brussels, Belgium.
| |
Collapse
|