1
|
Chen X, Cheng Q, Zhang GF. Elevated propionate and its association with neurological dysfunctions in propionic acidemia. Front Mol Neurosci 2025; 18:1499376. [PMID: 40177291 PMCID: PMC11962025 DOI: 10.3389/fnmol.2025.1499376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Propionate, a short-chain fatty acid (SCFA), has recently attracted attention for its various health benefits. However, elevated levels of propionate in certain pathological conditions can have adverse effects. Propionic acidemia (PA) is a rare metabolic disorder caused by mutations in the propionyl-CoA carboxylase (PCC) gene (PCCA or PCCB), leading to reduced PCC activity and impaired propionyl-CoA metabolism. This metabolic block at the PCC-mediated step results in the accumulation of propionyl-CoA and its metabolites, including propionate, contributing to various complications, such as neurological dysfunction, in patients with PA. This review examines propionate synthesis, its physiological role, its metabolism in healthy individuals and those with PA, and the pathological link between elevated propionate levels and neurological dysfunctions in PA patients. A deeper understanding of propionate metabolism under both normal and pathological conditions will help clarify the full spectrum of its metabolic effects.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
- MD Anderson Cancer Center at Cooper, Camden, NJ, United States
| | - Qing Cheng
- Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
2
|
He W, Marchuk H, Koeberl D, Kasumov T, Chen X, Zhang GF. Fasting alleviates metabolic alterations in mice with propionyl-CoA carboxylase deficiency due to Pcca mutation. Commun Biol 2024; 7:659. [PMID: 38811689 PMCID: PMC11137003 DOI: 10.1038/s42003-024-06362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Propionic acidemia (PA), resulting from Pcca or Pccb gene mutations, impairs propionyl-CoA metabolism and induces metabolic alterations. While speculation exists that fasting might exacerbate metabolic crises in PA patients by accelerating the breakdown of odd-chain fatty acids and amino acids into propionyl-CoA, direct evidence is lacking. Our investigation into the metabolic effects of fasting in Pcca-/-(A138T) mice, a PA model, reveals surprising outcomes. Propionylcarnitine, a PA biomarker, decreases during fasting, along with the C3/C2 (propionylcarnitine/acetylcarnitine) ratio, ammonia, and methylcitrate. Although moderate amino acid catabolism to propionyl-CoA occurs with a 23-h fasting, a significant reduction in microbiome-produced propionate and increased fatty acid oxidation mitigate metabolic alterations by decreasing propionyl-CoA synthesis and enhancing acetyl-CoA synthesis. Fasting-induced gluconeogenesis further facilitates propionyl-CoA catabolism without changing propionyl-CoA carboxylase activity. These findings suggest that fasting may alleviate metabolic alterations in Pcca-/-(A138T) mice, prompting the need for clinical evaluation of its potential impact on PA patients.
Collapse
Affiliation(s)
- Wentao He
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takhar Kasumov
- Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xiaoxin Chen
- Department of Surgery, Surgical Research Lab, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA.
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
3
|
Singh M, Elfrink HL, Harms AC, Hankemeier T. Recent developments in the analytical approaches of acyl-CoAs to assess their role in mitochondrial fatty acid oxidation disorders. Mol Genet Metab 2023; 140:107711. [PMID: 39492074 DOI: 10.1016/j.ymgme.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Fatty acid oxidation disorders (FAOD) are inborn errors of metabolism that occur due to deficiency of specific enzyme activities and transporter proteins involved in the mitochondrial metabolism of fatty acids, causing a deficiency in ATP production. The identification of suitable biomarkers plays a crucial role in predicting the future risk of disease and monitoring responses to therapies. Acyl-CoAs are directly involved in the steps of fatty acid oxidation and are the primary biomarkers associated with FAOD. However, acyl-CoAs are not used as diagnostic biomarkers in hospitals and clinics as they are present intracellularly with low endogenous levels. Additionally, the analytical method development of acyl-CoAs is quite challenging due to diverse physicochemical properties and instability. Hence, secondary biomarkers such as acylcarnitines are used for the identification of FAOD. In this review, the focus is on the analytical techniques that have evolved over the years for the identification and quantitation of acyl-CoAs. Among these techniques, liquid chromatography-mass spectrometry clearly has an advantage in terms of sensitivity and selectivity. Stable isotope labeling by essential nutrients in cell culture (SILEC) enables the generation of labeled internal standards. Each acyl-CoA species has a distinct pattern of instability and degradation, and the use of appropriately matched internal standards can compensate for such issues. Although significant progress has been made in measuring acyl-CoAs, more efforts are needed for bringing these technical advancements to hospitals and clinics. This review also highlights the difficulties involved in the routine use of acyl-CoAs as a diagnostic biomarker and some of the measures that can be adopted by clinics and hospitals for overcoming these limitations.
Collapse
Affiliation(s)
- Madhulika Singh
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Hyung L Elfrink
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Amy C Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
4
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
5
|
Subramanian C, Frank MW, Tangallapally R, Yun MK, White SW, Lee RE, Rock CO, Jackowski S. Relief of CoA sequestration and restoration of mitochondrial function in a mouse model of propionic acidemia. J Inherit Metab Dis 2023; 46:28-42. [PMID: 36251252 PMCID: PMC10092110 DOI: 10.1002/jimd.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023]
Abstract
Propionic acidemia (PA, OMIM 606054) is a devastating inborn error of metabolism arising from mutations that reduce the activity of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). The defects in PCC reduce the concentrations of nonesterified coenzyme A (CoASH), thus compromising mitochondrial function and disrupting intermediary metabolism. Here, we use a hypomorphic PA mouse model to test the effectiveness of BBP-671 in correcting the metabolic imbalances in PA. BBP-671 is a high-affinity allosteric pantothenate kinase activator that counteracts feedback inhibition of the enzyme to increase the intracellular concentration of CoA. Liver CoASH and acetyl-CoA are depressed in PA mice and BBP-671 treatment normalizes the cellular concentrations of these two key cofactors. Hepatic propionyl-CoA is also reduced by BBP-671 leading to an improved intracellular C3:C2-CoA ratio. Elevated plasma C3:C2-carnitine ratio and methylcitrate, hallmark biomarkers of PA, are significantly reduced by BBP-671. The large elevations of malate and α-ketoglutarate in the urine of PA mice are biomarkers for compromised tricarboxylic acid cycle activity and BBP-671 therapy reduces the amounts of both metabolites. Furthermore, the low survival of PA mice is restored to normal by BBP-671. These data show that BBP-671 relieves CoA sequestration, improves mitochondrial function, reduces plasma PA biomarkers, and extends the lifespan of PA mice, providing the preclinical foundation for the therapeutic potential of BBP-671.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| |
Collapse
|
6
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Yang H, Wang Y, Tang MC, Waters P, Wang S, Allard P, Ryan RO, Nuyt AM, Paradis P, Schiffrin EL, Furtos A, Mitchell GA. Cardiac-specific deficiency of 3-hydroxy-3-methylglutaryl coenzyme A lyase in mice causes cardiomyopathy and a distinct pattern of acyl-coenzyme A-related biomarkers. Mol Genet Metab 2022; 137:257-264. [PMID: 36228350 DOI: 10.1016/j.ymgme.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
Abstract
Deficiency of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase (HL) is an autosomal recessive inborn error of acyl-CoA metabolism affecting the last step of leucine degradation. Patients with HL deficiency (HLD) can develop a potentially fatal cardiomyopathy. We created mice with cardiomyocyte-specific HLD (HLHKO mice), inducing Cre recombinase-mediated deletion of exon 2 at two months of age. HLHKO mice survive, but develop left ventricular hypertrophy by 9 months. Also, within minutes after intraperitoneal injection of the leucine metabolite 2-ketoisocaproate (KIC), they show transient left ventricular hypocontractility and dilation. Leucine-related acyl-CoAs were elevated in HLHKO heart (e.g., HMG-CoA, 34.0 ± 4.4 nmol/g versus 0.211 ± 0.041 in controls, p < 0.001; 3-methylcrotonyl-CoA, 5.84 ± 0.69 nmol/g versus 0.282 ± 0.043, p < 0.001; isovaleryl-CoA, 1.86 ± 0.30 nmol/g versus 0.024 ± 0.014, p < 0.01), a similar pattern to that in liver of mice with hepatic HL deficiency. After KIC loading, HMG-CoA levels in HLHKO heart were higher than under basal conditions, as were the ratios of HMG-CoA/acetyl-CoA and of HMG-CoA/succinyl-CoA. In contrast to the high levels of multiple leucine-related acyl-CoAs, biomarkers in urine and plasma of HLHKO mice show isolated hyper-3-methylglutaconic aciduria (700.8 ± 48.4 mmol/mol creatinine versus 37.6 ± 2.4 in controls, p < 0.001), and elevated C5-hydroxyacylcarnitine in plasma (0.248 ± 0.014 μmol/L versus 0.048 ± 0.005 in controls, p < 0.001). Mice with liver-specific HLD were compared, and showed normal echocardiographic findings and normal acyl-CoA profiles in heart. This study of nonhepatic tissue-specific HLD outside of liver reveals organ-specific origins of diagnostic biomarkers for HLD in blood and urine and shows that mouse cardiac HL is essential for myocardial function in a cell-autonomous, organ-autonomous fashion.
Collapse
Affiliation(s)
- Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Québec, Canada
| | - Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Québec, Canada
| | | | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Québec, Canada
| | - Pierre Allard
- Biochemical Genetics Laboratory, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Anne-Monique Nuyt
- Sainte-Justine University Hospital and Research Center, University of Montreal, Montreal, Québec, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montreal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|