1
|
Quelhas D, Jaeken J. Treatment of congenital disorders of glycosylation: An overview. Mol Genet Metab 2024; 143:108567. [PMID: 39236565 DOI: 10.1016/j.ymgme.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
While the identification and diagnosis of congenital disorders of glycosylation (CDG) have rapidly progressed, the available treatment options are still quite limited. Mostly, we are only able to manage the disease symptoms rather than to address the underlying cause. However, recent years have brought about remarkable advances in treatment approaches for some CDG. Innovative therapies, targeting both the root cause and resulting manifestations, have transitioned from the research stage to practical application. The present paper aims to provide a detailed overview of these exciting developments and the rising concepts that are used to treat these ultra-rare diseases.
Collapse
Affiliation(s)
- Dulce Quelhas
- Unidade de Bioquímica Genética, Serviço de Genética Laboratorial, Centro de Genética Médica, Clínica de Genética e Patologia, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal; Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal.
| | - Jaak Jaeken
- Center for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Lam C, Scaglia F, Berry GT, Larson A, Sarafoglou K, Andersson HC, Sklirou E, Tan QKG, Starosta RT, Sadek M, Wolfe L, Horikoshi S, Ali M, Barone R, Campbell T, Chang IJ, Coles K, Cook E, Eklund EA, Engelhardt NM, Freeman M, Friedman J, Fu DYT, Botzo G, Rawls B, Hernandez C, Johnsen C, Keller K, Kramer S, Kuschel B, Leshinski A, Martinez-Duncker I, Mazza GL, Mercimek-Andrews S, Miller BS, Muthusamy K, Neira J, Patterson MC, Pogorelc N, Powers LN, Ramey E, Reinhart M, Squire A, Thies J, Vockley J, Vreugdenhil H, Witters P, Youbi M, Zeighami A, Zemet R, Edmondson AC, Morava E. Frontiers in congenital disorders of glycosylation consortium, a cross-sectional study report at year 5 of 280 individuals in the natural history cohort. Mol Genet Metab 2024; 142:108509. [PMID: 38959600 PMCID: PMC11299528 DOI: 10.1016/j.ymgme.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.
Collapse
Affiliation(s)
- Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong KongSAR, China
| | - Gerard T Berry
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Larson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, USA
| | - Kyriakie Sarafoglou
- Divisions of Endocrinology and Genetics-Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Hans C Andersson
- Hayward Genetics Center, Dept Pediatrics Tulane School of Medicine, USA
| | - Evgenia Sklirou
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Queenie K G Tan
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Rodrigo T Starosta
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, USA
| | - Mustafa Sadek
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Lynne Wolfe
- Medical Genetic Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Seishu Horikoshi
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute, IRCCS, Troina, Italy
| | - Teresa Campbell
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Irene J Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Kiaira Coles
- Child Health Research Enterprise, Children's Hospital Colorado, USA
| | - Edward Cook
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Erik A Eklund
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Nicole M Engelhardt
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Mary Freeman
- Division of Medical Genetics and Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA
| | - Jennifer Friedman
- Division of Neurosciences and Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA, USA; Rady Children's Hospital, San Diego, CA, USA
| | - Debbie Y T Fu
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace Botzo
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Christin Johnsen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | - Kierstin Keller
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Sara Kramer
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Kuschel
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Angela Leshinski
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ivan Martinez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Gina L Mazza
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley S Miller
- Division of Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Juanita Neira
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Marc C Patterson
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Natalie Pogorelc
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Lex N Powers
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Elizabeth Ramey
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Michaela Reinhart
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Audrey Squire
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny Thies
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Hayden Vreugdenhil
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Peter Witters
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Mehdi Youbi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Aziza Zeighami
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Eva Morava
- Division of Medical Genetics and Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
3
|
Budhraja R, Radenkovic S, Jain A, Muffels IJJ, Ismaili MHA, Kozicz T, Pandey A, Morava E. Liposome-encapsulated mannose-1-phosphate therapy improves global N-glycosylation in different congenital disorders of glycosylation. Mol Genet Metab 2024; 142:108487. [PMID: 38733638 PMCID: PMC11166087 DOI: 10.1016/j.ymgme.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.
Collapse
Affiliation(s)
- Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Irena J J Muffels
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Tamas Kozicz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Anatomy, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biophysics, University of Pécs Medical School, 7624 Pécs, Hungary.
| |
Collapse
|
4
|
Garapati K, Budhraja R, Saraswat M, Kim J, Joshi N, Sachdeva GS, Jain A, Ligezka AN, Radenkovic S, Ramarajan MG, Udainiya S, Raymond K, He M, Lam C, Larson A, Edmondson AC, Sarafoglou K, Larson NB, Freeze HH, Schultz MJ, Kozicz T, Morava E, Pandey A. A complement C4-derived glycopeptide is a biomarker for PMM2-CDG. JCI Insight 2024; 9:e172509. [PMID: 38587076 PMCID: PMC7615924 DOI: 10.1172/jci.insight.172509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/15/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).
Collapse
Affiliation(s)
- Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neha Joshi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Gunveen S. Sachdeva
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Madan Gopal Ramarajan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Savita Udainiya
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christina Lam
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Andrew C. Edmondson
- Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyriakie Sarafoglou
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota School of Pharmacy, Minneapolis, Minnesota, USA
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Hudson H. Freeze
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew J. Schultz
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Kozicz
- Department of Clinical Genomics and
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Eva Morava
- Department of Clinical Genomics and
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Wicker C, Roux CJ, Goujon L, de Feraudy Y, Hully M, Brassier A, Bérat CM, Chemaly N, Wiedemann A, Damaj L, Abi-Warde MT, Dobbelaere D, Roubertie A, Cano A, Arion A, Kaminska A, Da Costa S, Bruneel A, Vuillaumier-Barrot S, Boddaert N, Pascreau T, Borgel D, Kossorotoff M, Harroche A, de Lonlay P. Association between acute complications in PMM2-CDG patients and haemostasis anomalies: Data from a multicentric study and suggestions for acute management. Mol Genet Metab 2023; 140:107674. [PMID: 37542768 DOI: 10.1016/j.ymgme.2023.107674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVES Patients with PMM2-CDG develop acute events (stroke-like episodes (SLEs), thromboses, haemorrhages, seizures, migraines) associated with both clotting factors (factor XI) and coagulation inhibitors (antithrombin, protein C and protein S) deficiencies. The aim of the study was to correlate acute events to haemostasis and propose practical guidelines. METHODS In this multicentric retrospective study, we evaluated clinical, radiological, haemostasis and electroencephalography data for PMM2-CDG patients hospitalized for acute events. Cerebral events were classified as thrombosis, haemorrhage, SLE, or "stroke mimic" (SM: normal brain imaging or evoking a migraine). RESULTS Thirteen patients had a total of 31 acute episodes: 27 cerebral events with 7 SLEs, 4 venous thromboses, 4 haemorrhages (3 associated with thrombosis), 15 SMs at a mean age of 7.7 years; 4 non-cerebral thromboses, one of which included bleeding. A trigger was frequently involved (infection, head trauma). Although sometimes normal at baseline state, factor XI, antithrombin and protein C levels decreased during these episodes. No correlation between haemostasis anomalies and type of acute event was found. DISCUSSION Acute events in PMM2-CDG are not negligible and are associated with haemostasis anomalies. An emergency protocol is proposed for their prevention and treatment (https://www.filiere-g2m.fr/urgences). For cerebral events, brain Magnetic Resonance Imaging with perfusion weight imaging and diffusion sequences, electroencephalogram and haemostasis protein levels guide the treatment: anticoagulation, antithrombin or fresh frozen plasma supplementation, antiepileptic therapy. Preventing bleeding and thrombosis is required in cases of surgery, prolonged immobilization, hormone replacement therapy. CONCLUSION Acute events in PMM2-CDG are associated with abnormal haemostasis, requiring practical guidance.
Collapse
Affiliation(s)
- Camille Wicker
- Centre de Référence des Maladies Héréditaires du Métabolisme, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, G2M, MetabERN, Paris, France; Centre de Compétence des Maladies Héréditaires du Métabolisme, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Charles-Joris Roux
- Université Paris Cité, Paris, France; Service de Radiologie Pédiatrique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, Paris, France
| | - Louise Goujon
- Centre de Référence des Maladies Héréditaires du Métabolisme, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, G2M, MetabERN, Paris, France
| | - Yvan de Feraudy
- Service de Neurologie Pédiatrique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Marie Hully
- Service de Neurologie Pédiatrique, Médecine physique et réadaptation de l'enfant, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, Paris, France
| | - Anais Brassier
- Centre de Référence des Maladies Héréditaires du Métabolisme, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, G2M, MetabERN, Paris, France
| | - Claire-Marine Bérat
- Centre de Référence des Maladies Héréditaires du Métabolisme, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, G2M, MetabERN, Paris, France
| | - Nicole Chemaly
- Service de Neurologie Pédiatrique, Médecine physique et réadaptation de l'enfant, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, Paris, France
| | - Arnaud Wiedemann
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Universitaire de Nancy, Nancy, France
| | - Lena Damaj
- Centre de Compétence des Maladies Héréditaires du Métabolisme, Hôpital Universitaire de Rennes, Renne, France
| | - Marie-Thérèse Abi-Warde
- Centre de Compétence des Maladies Héréditaires du Métabolisme, Hôpital Universitaire de Strasbourg, Strasbourg, France; Service de Neurologie Pédiatrique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Universitaire Jeanne de Flandre de Lille, MetabERN, Lille, France
| | - Agathe Roubertie
- Centre de Compétence des Maladies Héréditaires du Métabolisme, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme, service de Neurologie pédiatrique, Hôpital Universitaire d'enfants La Timone de Marseille, MetabERN, Marseille, France
| | - Alina Arion
- Centre de Compétence des Maladies Héréditaires du Métabolisme, Hôpital Universitaire de Caen, Caen, France
| | - Anna Kaminska
- Service d'Exploration Fonctionnelle, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, G2M, MetabERN, Paris, France
| | - Sabrina Da Costa
- Centre de Référence d'Endocrinologie des Maladies Rares, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, Paris, France
| | - Arnaud Bruneel
- Département de Biochimie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Bichat, Paris, France
| | - Sandrine Vuillaumier-Barrot
- Département de Biochimie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Bichat, Paris, France
| | - Nathalie Boddaert
- Université Paris Cité, Paris, France; Service de Radiologie Pédiatrique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, Paris, France
| | - Tiffany Pascreau
- Laboratoire d'Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Paris, France
| | - Delphine Borgel
- Laboratoire d'Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Paris, France
| | - Manoelle Kossorotoff
- Centre national de référence de l'AVC de l'enfant, Service de Neurologie Pédiatrique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Inserm U1266, Paris, France
| | - Annie Harroche
- Centre de Référence Maladies Hémorragiques constitutionnelles, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, Paris, France
| | - P de Lonlay
- Centre de Référence des Maladies Héréditaires du Métabolisme, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants-Malades, Institut Imagine, G2M, MetabERN, Paris, France; Université Paris Cité, Paris, France; INSERM, Institut Necker-Enfants Malades, France.
| |
Collapse
|