1
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Fabra MA, Paredes-Fuentes AJ, Torralba Carnerero M, Moreno Férnandez de Ayala DJ, Arroyo Luque A, Sánchez Cuesta A, Staiano C, Sanchez-Pintos P, Luz Couce M, Tomás M, Marco-Hernández AV, Orellana C, Martínez F, Roselló M, Caro A, Oltra Soler JS, Monfort S, Sánchez A, Rausell D, Vitoria I, Del Toro M, Garcia-Cazorla A, Julia-Palacios NA, Jou C, Yubero D, López LC, Hernández Camacho JD, López Lluch G, Ballesteros Simarro M, Rodríguez Aguilera JC, Calvo GB, Cascajo Almenara MV, Artuch R, Santos-Ocaña C. New variants expand the neurological phenotype of COQ7 deficiency. J Inherit Metab Dis 2024; 47:1047-1068. [PMID: 38973597 DOI: 10.1002/jimd.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.
Collapse
Affiliation(s)
- María Alcázar Fabra
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Abraham J Paredes-Fuentes
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel Torralba Carnerero
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
| | - Daniel J Moreno Férnandez de Ayala
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Antonio Arroyo Luque
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ana Sánchez Cuesta
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Carmine Staiano
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Paula Sanchez-Pintos
- Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Hospital de Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
- GCV14/ER/5 CIBERER, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - María Luz Couce
- Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Hospital de Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
- GCV14/ER/5 CIBERER, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Miguel Tomás
- Hospital Universitari i Politècnic La Fe, Servicio de Neuropediatría, Valencia, Spain
| | | | - Carmen Orellana
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Francisco Martínez
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Mónica Roselló
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Alfonso Caro
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | | | - Sandra Monfort
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Alejandro Sánchez
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Dolores Rausell
- Hospital Universitari i Politècnic La Fe, Servicio de Análisis Clínicos, Valencia, Spain
| | - Isidro Vitoria
- Hospital Universitari i Politècnic La Fe, Unidad de Metabolopatías, Valencia, Spain
| | - Mireia Del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d'Hebron, CIBERER, MetabERN, Barcelona, Spain
- Instituto de Salud Carlos III, Barcelona, Spain
| | - Angels Garcia-Cazorla
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Natalia A Julia-Palacios
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Jou
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Delia Yubero
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Luis Carlos López
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Juan Diego Hernández Camacho
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Guillermo López Lluch
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Manuel Ballesteros Simarro
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan Carlos Rodríguez Aguilera
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Gloria Brea Calvo
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - María Victoria Cascajo Almenara
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Rafael Artuch
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlos Santos-Ocaña
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
3
|
Pettenuzzo I, Carli S, Sánchez-Cuesta A, Isidori F, Montanari F, Grippa M, Lanzoni G, Ambrosetti I, Di Pisa V, Cordelli DM, Mondardini MC, Pippucci T, Ragni L, Cenacchi G, Costa R, Lima M, Capristo MA, Tropeano CV, Caporali L, Carelli V, Brunelli E, Maffei M, Ahmed Sheikhmaye H, Fetta A, Brea-Calvo G, Garone C. COQ7 defect causes prenatal onset of mitochondrial CoQ 10 deficiency with cardiomyopathy and gastrointestinal obstruction. Eur J Hum Genet 2024; 32:938-946. [PMID: 38702428 PMCID: PMC11291740 DOI: 10.1038/s41431-024-01615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
COQ7 pathogenetic variants cause primary CoQ10 deficiency and a clinical phenotype of encephalopathy, peripheral neuropathy, or multisystemic disorder. Early diagnosis is essential for promptly starting CoQ10 supplementation. Here, we report novel compound heterozygous variants in the COQ7 gene responsible for a prenatal onset (20 weeks of gestation) of hypertrophic cardiomyopathy and intestinal dysmotility in a Bangladesh consanguineous family with two affected siblings. The main clinical findings were dysmorphisms, recurrent intestinal occlusions that required ileostomy, left ventricular non-compaction cardiomyopathy, ascending aorta dilation, arterial hypertension, renal dysfunction, diffuse skin desquamation, axial hypotonia, neurodevelopmental delay, and growth retardation. Exome sequencing revealed compound heterozygous rare variants in the COQ7 gene, c.613_617delGCCGGinsCAT (p.Ala205HisfsTer48) and c.403A>G (p.Met135Val). In silico analysis and functional in vitro studies confirmed the pathogenicity of the variants responsible for abolished activities of complexes I + III and II + III in muscle homogenate, severe decrease of CoQ10 levels, and reduced basal and maximal respiration in patients' fibroblasts. The first proband deceased at 14 months of age, whereas supplementation with a high dose of CoQ10 (30 mg/kg/day) since the first days of life modified the clinical course in the second child, showing a recovery of milestones acquirement at the last follow-up (18 months of age). Our study expands the clinical spectrum of primary CoQ10 deficiency due to COQ7 gene defects and highlights the essential role of multidisciplinary and combined approaches for a timely diagnosis.
Collapse
Affiliation(s)
- Ilaria Pettenuzzo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy
| | - Sara Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | - Federica Isidori
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Francesca Montanari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Mina Grippa
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Giulia Lanzoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Irene Ambrosetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Veronica Di Pisa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy
| | - Maria Cristina Mondardini
- Pediatric Anesthesia and Intensive Care Unit, Department of Woman's and Child's Health, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Luca Ragni
- Pediatric Cardiology and Adult Congenital Heart Disease Program, Department of Cardio-Thoracic and Vascular Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mario Lima
- Pediatric Surgery Department, IRCCS Sant'Orsola-Malpighi Polyclinic, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | | | | | - Leonardo Caporali
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Elena Brunelli
- Obstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna University of Bologna, Bologna, Italia
| | - Monica Maffei
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di neuroradiologia con tecniche ad elevata complessità, Bologna, Italia
| | - Hodman Ahmed Sheikhmaye
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di neuroradiologia con tecniche ad elevata complessità, Bologna, Italia
| | - Anna Fetta
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | - Caterina Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy.
- Center for Applied Biomedical Research, Alma Mater Studiorum, University of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
4
|
Qiu Y, Xiong Y, Wang L, Zhu M, Tan D, Hong D. Homozygous variant in COQ7 causes autosomal recessive hereditary spastic paraplegia. Ann Clin Transl Neurol 2024; 11:1067-1074. [PMID: 38439593 PMCID: PMC11021622 DOI: 10.1002/acn3.52037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/06/2024] Open
Abstract
Biallelic mutations in the coenzyme Q7 (COQ7) encoding gene were recently identified as a genetic cause of distal hereditary motor neuropathy. Here, we explored the clinical, electrophysiological, pathological, and genetic characteristics of a Chinese patient with spastic paraplegia associated with recessive variants in COQ7. This patient carried a novel c.322C>A (p.Pro108Thr) homozygous variant. Sural biopsy revealed mild mixed axonal and demyelinating degeneration. Immunoblotting showed a significant decrease in the COQ7 protein level in the patient's fibroblasts. This study confirmed that COQ7 variant as a genetic cause of HSP, and further extended spastic paraplegia to the phenotypic spectrum of COQ7-related disorders.
Collapse
Affiliation(s)
- Yusen Qiu
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Rare Disease CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Ying Xiong
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Lulu Wang
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Min Zhu
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Rare Disease CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Dandan Tan
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Rare Disease CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Daojun Hong
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Rare Disease CenterThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
5
|
Wongkittichote P, Pantano C, He M, Hong X, Demczko MM. Clinical, biochemical and molecular characterization of a new case with FDX2-related mitochondrial disorder: Potential biomarkers and treatment options. JIMD Rep 2024; 65:102-109. [PMID: 38444577 PMCID: PMC10910223 DOI: 10.1002/jmd2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 03/07/2024] Open
Abstract
Ferredoxin-2 (FDX2) is an electron transport protein required for iron-sulfur clusters biosynthesis. Pathogenic variants in FDX2 have been associated with autosomal recessive FDX2-related disorder characterized by mitochondrial myopathy with or without optic atrophy and leukoencephalopathy. We described a new case harboring compound heterozygous variants in FDX2 who presented with recurrent rhabdomyolysis with severe episodes affecting respiratory muscle. Biochemical analysis of the patients revealed hyperexcretion of 2-hydroxyadipic acid, along with previously reported biochemical abnormalities. The proband demonstrated increased lactate and creatine kinase (CK) with increased amount of glucose infusion. Lactate and CK drastically decreased when parenteral nutrition containing high protein and lipid contents with low glucose was initiated. Overall, we described a new case of FDX2-related disorder and compare clinical, biochemical and molecular findings with previously reported cases. We demonstrated that 2-hydroxyadipic acid biomarker could be used as an adjunct biomarker for FDX2-related disorder and the use of parenteral nutrition as a treatment option for the patient with FDX2-related disorder during rhabdomyolysis episode. Highlights 2-Hydroxyadipic acid can serve as a potential adjunct biomarker for iron-sulfur assembly defects and lipoic acid biosynthesis disorders. Parenteral nutrition containing high lipid and protein content could be used to reverse acute rhabdomyolysis episodes in the patients with FDX2-related disorder.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Cassandra Pantano
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Miao He
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Xinying Hong
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Matthew M. Demczko
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Hayashi S, Iwamoto K, Yoshihisa T. A non-canonical Puf3p-binding sequence regulates CAT5/COQ7 mRNA under both fermentable and respiratory conditions in budding yeast. PLoS One 2023; 18:e0295659. [PMID: 38100455 PMCID: PMC10723686 DOI: 10.1371/journal.pone.0295659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The Saccharomyces cerevisiae uses a highly glycolytic metabolism, if glucose is available, through appropriately suppressing mitochondrial functions except for some of them such as Fe/S cluster biogenesis. Puf3p, a Pumillio family protein, plays a pivotal role in modulating mitochondrial activity, especially during fermentation, by destabilizing its target mRNAs and/or by repressing their translation. Puf3p preferentially binds to 8-nt conserved binding sequences in the 3'-UTR of nuclear-encoded mitochondrial (nc-mitochondrial) mRNAs, leading to broad effects on gene expression under fermentable conditions. To further explore how Puf3p post-transcriptionally regulates nc-mitochondrial mRNAs in response to cell growth conditions, we initially focused on nc-mitochondrial mRNAs known to be enriched in monosomes in a glucose-rich environment. We unexpectedly found that one of the monosome-enriched mRNAs, CAT5/COQ7 mRNA, directly interacts with Puf3p through its non-canonical Puf3p binding sequence, which is generally less considered as a Puf3p binding site. Western blot analysis showed that Puf3p represses translation of Cat5p, regardless of culture in fermentable or respiratory medium. In vitro binding assay confirmed Puf3p's direct interaction with CAT5 mRNA via this non-canonical Puf3p-binding site. Although cat5 mutants of the non-canonical Puf3p-binding site grow normally, Cat5p expression is altered, indicating that CAT5 mRNA is a bona fide Puf3p target with additional regulatory factors acting through this sequence. Unlike other yeast PUF proteins, Puf3p uniquely regulates Cat5p by destabilizing mRNA and repressing translation, shedding new light on an unknown part of the Puf3p regulatory network. Given that pathological variants of human COQ7 lead to CoQ10 deficiency and yeast cat5Δ can be complemented by hCOQ7, our findings may also offer some insights into clinical aspects of COQ7-related disorders.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Kazumi Iwamoto
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Tohru Yoshihisa
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| |
Collapse
|
7
|
Desbats MA, Salviati L. Distal hereditary motor neuropathy caused by coenzyme Q deficiency due to COQ7 variants. Brain 2023; 146:3958-3959. [PMID: 37671546 DOI: 10.1093/brain/awad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
This scientific commentary refers to ‘Biallelic variants in COQ7 cause distal hereditary motor neuropathy with upper motor neuron signs’ by Rebelo et al. (https://doi.org/10.1093/brain/awad158).
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy
- IRP Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy
- IRP Città della Speranza, Padova, Italy
| |
Collapse
|