1
|
Manti F, Di Carlo E, Santagata S, Giovanniello T, Angeloni A, Pisani F, Pascucci T, Nardecchia F, Carducci C, Leuzzi V. The clinical value of peripheral biogenic amine metabolites in early-treated phenylketonuria. Mol Genet Metab 2025; 145:109088. [PMID: 40121795 DOI: 10.1016/j.ymgme.2025.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Brain monoamine depletion is a well-established biochemical consequence of phenylketonuria (PKU). Similar alterations are expected in the peripheral biogenic amines (PBA), which share the same metabolic pathway with the brain. The present cross-sectional study explored the potential prognostic value of PBA by examining their relationship with blood Phe and clinical outcomes in early-treated adult PKU patients (ETPKU). METHOD 53 ETPKU (age 27.14 ± 8.22 years; 35 female) and 60 age-matched control subjects (age 43 ± 13 years; 43 female) were enrolled in the study. A UPLC-ESI-MS/MS-based method was developed to assess 5-hydroxytryptophan (5-HTP), serotonin (5-HT), 5-hydroxyhyndolacetic acid (5-HIAA), and 3-O-methyldopa (3-OMD) in different blood-derived matrices. Life-long Index of Dietary Control (IDC), concurrent Phe, and Tyr were other parameters included in the analysis. Clinical outcome measures included IQ, executive functions (BRIEF), and psychiatric morbidity (CBCL/ASR and DSM-5-TR). RESULTS 5-HTP, 5-HIAA, and 3-OMD were significantly lower in PKU patients than in controls. 5-HIAA and 3-OMD were negatively correlated with concurrent Phe levels. Concerning outcome measures, IDC influenced IQ and BRIEF-Shift subscale, 5-HIAA BRIEF-Emotional Control, 3-OMD BRIEF-Initiate subscale, and Tyr BRIEF-Control subscale. In contrast, concurrent plasma Phe did not affect any outcome measures. CONCLUSION While confirming the negative influence of Phe on PBA in adult ETPKU, mimicking what happens in the brain, we also found an effect of PBA depletion on clinical outcome measures independent of Phe level. This suggests that PBA could serve as new candidate biomarkers for treatment monitoring in adult ETPKU patients.
Collapse
Affiliation(s)
- Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University of Rome, via del Policlinico 155, 00161 Rome, Italy
| | - Silvia Santagata
- Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Teresa Giovanniello
- Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, via del Policlinico 155, 00161 Rome, Italy; Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Francesco Pisani
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Nardecchia
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, via del Policlinico 155, 00161 Rome, Italy; Clinical Pathology Unit, AOU Policlinico Umberto I, via del Policlinico 155, 00161 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy
| |
Collapse
|
2
|
Pundir M, Lobanova L, Papagerakis S, Chen X, Papagerakis P. Colorimetric sensing assay based on aptamer-gold nanoparticles for rapid detection of salivary melatonin to monitor circadian rhythm sleep disorders. Anal Chim Acta 2023; 1279:341777. [PMID: 37827675 DOI: 10.1016/j.aca.2023.341777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Salivary melatonin is a clinically used biomarker for diagnosing circadian rhythm sleep disorders. Current melatonin detection assays are complex, expensive, and in many cases do not adequately measure low levels of salivary melatonin. Precisely measuring melatonin levels at multiple time points is crucial for determining dim light melatonin onset to evaluate its circadian fluctuation as well as the extent of circadian disruption and consequently adapt treatment regimens. Moreover, melatonin low levels in saliva challenges the reliability of routine clinical testing. This paper presents the development of a novel, highly sensitive, yet cost-effective, colorimetric assay for the rapid detection of salivary melatonin utilizing aptamer-AuNPs. Among several types of the aptamer tested, the 36-mer MLT-A-2 aptamer-AuNP probe showed the highest sensitivity with a melatonin limit of detection of 0.0011 nM along with a limit of quantification of 0.0021 nM in saliva. Moreover, our assay showed preferential interaction with melatonin when tested in presence of other structurally similar counter-targets. Taken together, this study provides new parameters for a melatonin assay that meets adequate levels of sensitivity and selectivity. The developed colorimetric assay could be adapted in a point-of-care system for profiling salivary melatonin levels at multiple time points during 24 h, crucial for accurately diagnosing and monitoring circadian rhythm sleep disorders and beyond.
Collapse
Affiliation(s)
- Meenakshi Pundir
- Faculty of Dentistry, Université Laval, 2420 Rue de la Terrasse, Quebec City, G1V0A6, Canada; Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Silvana Papagerakis
- Faculty of Dentistry, Université Laval, 2420 Rue de la Terrasse, Quebec City, G1V0A6, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, United States.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Department of Mechanical Engineering, School of Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada.
| | - Petros Papagerakis
- Faculty of Dentistry, Université Laval, 2420 Rue de la Terrasse, Quebec City, G1V0A6, Canada; Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada.
| |
Collapse
|
3
|
Lim SG, Seo SE, Park SJ, Kim J, Kim Y, Kim KH, An JE, Kwon OS. Real-time monitoring of serotonin with highly selective aptamer-functionalized conducting polymer nanohybrids. NANO CONVERGENCE 2022; 9:31. [PMID: 35829851 PMCID: PMC9279540 DOI: 10.1186/s40580-022-00325-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 06/01/2023]
Abstract
Adequate serotonin levels are pivotal to human well-being; thus, serotonin can be used as a biomarker because it regulates a wide range of physical and psychological functions. As an imbalance of serotonin is highly likely to initiate the pathogenesis of various disorders, monitoring serotonin levels in real time is in high demand for the early detection of disease. We fabricated a field-effect transistor (FET) biosensor based on aptamer-immobilized conducting polymer nanohybrids, which showed an instantaneous response toward serotonin in solution. The mechanism of serotonin detection was based on aptamer deformation after aptamer-ligand interaction and the consequential decrease in the charge carrier density of the FET template. Docking simulations with AutoDock/Vina and PyMOL were successfully used to investigate the binding site of serotonin in the loop structure of the aptamer. The fabricated FET template showed high sensitivity toward serotonin in the range of 10 fM to 100 nM, and the limit of detection (LOD) was exceptionally low at 10 fM. Moreover, the selectivity toward serotonin was confirmed by observing no signal after the injection of structural analogs, functional analogs and excess physiological biomolecules. The potential clinical application of this sensor was confirmed because it remained consistent when the buffer solution was exchanged for artificial serum or artificial cerebrospinal fluid (CSF). † S.G.L. and S.E.S. contributed equally to this work.
Collapse
Affiliation(s)
- Seong Gi Lim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yejin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biotechnology (Major), University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Karbownik MS, Hicks SD. The Association of Salivary Serotonin With Mood and Cardio-Autonomic Function: A Preliminary Report. Front Psychiatry 2022; 13:788153. [PMID: 35711584 PMCID: PMC9193578 DOI: 10.3389/fpsyt.2022.788153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Serotonin plays an important role in mood regulation and depression. However, it is not clear whether the levels of serotonin in saliva are related to current mood. AIM To test the association of salivary serotonin concentrations with mood, as well as cardiovascular and autonomic parameters. MATERIALS AND METHODS Saliva samples were obtained from collegiate runners and output parameters were examined before and after physical activity. RESULTS Salivary serotonin concentration was negatively associated with current mood (β = -0.32, 95%CI -0.62 to -0.02, p = 0.037, analysis adjusted for potential confounders), but insignificantly with measured cardiovascular and autonomic parameters. CONCLUSIONS Salivary serotonin may reflect current mood. The results are preliminary and require further evaluation.
Collapse
Affiliation(s)
| | - Steven Daniel Hicks
- Division of Academic General Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Karbownik MS, Kręczyńska J, Wiktorowska-Owczarek A, Kwarta P, Cybula M, Stilinović N, Pietras T, Kowalczyk E. Decrease in Salivary Serotonin in Response to Probiotic Supplementation With Saccharomyces boulardii in Healthy Volunteers Under Psychological Stress: Secondary Analysis of a Randomized, Double-Blind, Placebo-Controlled Trial. Front Endocrinol (Lausanne) 2021; 12:800023. [PMID: 35069447 PMCID: PMC8772029 DOI: 10.3389/fendo.2021.800023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bacterial probiotics are thought to exert a serotonergic effect relevant to their potential antidepressant and pro-cognitive action, but yeast probiotics have not been tested. The aim of the present study was to determine whether 30-day supplementation with Saccharomyces boulardii affects the level of salivary serotonin under psychological stress and identify the factors associated with it. METHODS Healthy medical students were randomized to ingest Saccharomyces boulardii CNCM I-1079 or placebo before a stressful event. Salivary serotonin concentration was assessed before and at the end of supplementation. Moreover, obtained results were compared to psychological, biochemical, physiological and sociodemographic study participants data. RESULTS Data of thirty-two participants (22.8 ± 1.7 years of age, 16 males) was available for the main analysis. Supplementation with Saccharomyces boulardii decreased salivary serotonin concentration under psychological stress by 3.13 (95% CI 0.20 to 6.07) ng/mL, p = 0.037, as compared to placebo. Salivary serotonin was positively correlated with salivary metanephrine (β = 0.27, 95% CI 0.02 to 0.52, p = 0.031) and pulse rate (β = 0.28, 95% CI 0.05 to 0.50, p = 0.018), but insignificantly with anxiety, depression, eating attitudes and information retrieval. CONCLUSIONS Saccharomyces boulardii CNCM I-1079 may be distinct from bacterial probiotics in its salivary serotonergic effect, which appears positively linked to symapathoadrenal markers. The study requires cautious interpretation, and further investigation.
Collapse
Affiliation(s)
- Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
- *Correspondence: Michał Seweryn Karbownik,
| | - Joanna Kręczyńska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Łódź, Poland
| | | | - Paulina Kwarta
- Psychiatric Ward for Adolescents, Babinski Specialist Psychiatric Healthcare Center, Łódź, Poland
| | - Magdalena Cybula
- Oklahoma Medical Research Foundation, Aging and Metabolism Program, Oklahoma City, OK, United States
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Novi Sad, Novi Sad, Serbia
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
6
|
Current methods for stress marker detection in saliva. J Pharm Biomed Anal 2020; 191:113604. [PMID: 32957066 PMCID: PMC7474833 DOI: 10.1016/j.jpba.2020.113604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Introduction of relevant biomarkers in stress conditions. Reference ranges of biomarkers in normal conditions. Saliva as easy-accessible specimen. Review of analytical methods for biomarker determination in saliva. Possibilities for design of point-of-care devices.
Stress and stress-related diseases are leading to drastic consequences in private and professional life. Therefore, the need for stress prevention strategies is of personal and economic interest. Especially during the recent period related to covid-19 outbreak and lock-down, an ongoing discussion of increasing stress etiology is reported. Biomarker analysis may help to assist diagnosis and classification of stress-related diseases and therefore support therapeutical decisions. Due to its non-invasive sampling, the analysis of saliva has become highly attractive compared to the detection methods in other specimen. This review article summarizes the status of research, innovative approaches, and trends. Scientific literature published since 2011 was excerpted with concentration on the detection of up to seven promising marker substances. Most often reported cortisol represents the currently best evaluated stress marker, while norepinephrine (noradrenaline) or its metabolite 3-methoxy-4-hydroxyphenylglycol is also a quite commonly considered stress marker. Other complementary stress marker candidates are testosterone, dehydroepiandrosterone (DHEA) and its sulfonated analogue DHEA-S, alpha-amylase, secretory immunoglobulin A, and chromogranin A. Several working groups are researching in the field of stress marker detection to develop reliable, fast, and affordable methods. Analytical methods reported mainly focused on immunological and electrochemical as well as chromatographic methods hyphenated to mass spectrometric detection to yield the required detection limits.
Collapse
|
7
|
Scarsella E, Cintio M, Iacumin L, Ginaldi F, Stefanon B. Interplay between Neuroendocrine Biomarkers and Gut Microbiota in Dogs Supplemented with Grape Proanthocyanidins: Results of Dietary Intervention Study. Animals (Basel) 2020; 10:ani10030531. [PMID: 32235730 PMCID: PMC7142954 DOI: 10.3390/ani10030531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The connection between animal health and gut microbiota has been studied during the past years through different diet modulation experiments; however, there is still a paucity of information about the prebiotic functions in the gastrointestinal tract of companion animals. Considering this, a population of dogs living in the same environment has been subjected to a nutritional study, with different doses of proanthocyanidins extracted from grapevine supplied to the diet. Characterization of the gut microbiota and data from endocrine analysis in saliva have been collected. Dogs responded differently to the dietary intervention, and results underlined the existence of a difference between subjects in terms of fecal microorganisms and neuroendocrine markers, leading us to think the balance of gut microbiota is going to play a strong role in diet formulation based on host health modulation. Abstract Several studies on the interaction between gut microbiota and diets, including prebiotics, have been reported in dogs, but no data are available about the effects of dietary administration of grape proanthocyanidins. In the study, 24 healthy adult dogs of different breeds were recruited and divided in 3 groups of 8 subjects each. A group was fed with a control diet (D0), whilst the others were supplemented with 1 (D1) or 3 (D3) mg/kg live weight of grape proanthocyanidins. Samples of feces were collected at the beginning and after 14 and 28 days for microbiota, short chain fatty acid, and lactic acid analysis. Serotonin and cortisol were measured in saliva, collected at the beginning of the study and after 28 days. A significantly higher abundance (p < 0.01) of Enterococcus and Adlercreutzia were observed in D0, whilst Escherichia and Eubacterium were higher in D1. Fusobacterium and Phascolarctobacterium were higher (p < 0.01) in D3. Salivary serotonin increased (p < 0.01) at T28 for D1 and D3 groups but cortisol did not vary. Proanthocyanidins administration influenced the fecal microbiota and neuroendocrine response of dogs, but a high variability of taxa was observed, suggesting a uniqueness and stability of fecal microbiota related to the individual.
Collapse
|