1
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
2
|
Yang T, Liu Y, Ning Z. Comparative Mitogenomic Analysis of Two Snake Eels Reveals Irregular Gene Rearrangement and Phylogenetic Implications of Ophichthidae. Animals (Basel) 2023; 13:362. [PMID: 36766251 PMCID: PMC9913227 DOI: 10.3390/ani13030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The family Ophichthidae has the largest number and the most various species (about 359 valid species) in the order Anguilliformes worldwide. Both morphological and molecular characteristics have been used to assess their taxonomic status. However, due to the ambiguous morphological features, molecular data such as mitochondrial DNA sequences have been implemented for the correct identification and classification of these fishes. In this study, the gene arrangement and structure characteristics of two Ophichthidae mitochondrial genomes were investigated for the first time. The total mitogenome lengths of O. evermanni and O. erabo were 17,759 bp and 17,856 bp, respectively. Comparing with the ancestral mitochondrial gene order, the irregular gene rearrangement happened between ND6 and tRNA-Pro (P) genes with another similar control region emerging between tRNA-Thr (T) and ND6 genes, which could be explained by the tandem duplication and random loss (TDRL) model appropriately. ML phylogenetic tree demonstrated that the family Ophichthidae was monophyletic origin, but genus Ophichthus might be polyphyletic because of the confused cluster relationships among different species.
Collapse
Affiliation(s)
- Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|
3
|
Hatakeyama R, Sudo R, Yatabe T, Yamano K, Nomura K. Developmental features of Japanese eels, Anguilla japonica, from the late leptocephalus to the yellow eel stages: an early metamorphosis to the eel-like form and a prolonged transition to the juvenile. JOURNAL OF FISH BIOLOGY 2022; 100:454-473. [PMID: 34813089 DOI: 10.1111/jfb.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Organogenesis of Japanese eels (Anguilla japonica) was investigated histologically from the late leptocephalus to the yellow eel stages. Early organogenesis, such as the formation of inner ears and the appearance of round blood cells that might be larval erythrocytes, had already begun at the late leptocephalus stage. During the first developmental phase (M1-M3 stages) of metamorphosing into early glass eels (G1 stage), the formation of gills and lateral muscles progressed conspicuously with a drastic body shape change from leaf-like to eel-like. In contrast, obvious regression in oesophageal muscle and pancreas occurred during metamorphosis. Formation of lateral line canals advanced continuously until the yellow eel stage. When the second developmental phase was initiated at the G1 stage, cone photoreceptor cells appeared, and the formation of oesophageal, stomach and intestinal muscles was initiated. Differentiation of gastric glands began at 1 week after metamorphosis. Erythrocytes increased continuously in density in glass eels and elvers (G1-E2 stages), and the morphological features of cone cells and olfactory epidermal cells became clearer with stage progression. In early elvers (E1 stage), the swimbladder initiated inflation, the stomach fully expanded and the rectal longitudinal fold changed to a circle. Swimbladder gas glands appeared in late elvers (E2 stage). In the yellow eels (juvenile stage), almost all organ structures were formed. These observations indicate that the organogenesis of A. japonica is ongoing after metamorphosis into glass eels, and the M1-E2 stages are considered to be a homologous phase to first metamorphosis, which is a transformation from the larval to the juvenile stages in other teleosts. In comparison to conger eels, the completion of the body shape change to eel-like occurs at the G1 stage, when organogenesis is still in progress, being followed by a prolonged duration of the G1-E2 stages before reaching the yellow eel juvenile stage, which may be a unique characteristic that is related to the early migratory life history of A. japonica.
Collapse
Affiliation(s)
- Rui Hatakeyama
- Glass Eel Production Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency (FRA), Minamiizu, Japan
| | - Ryusuke Sudo
- Glass Eel Production Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency (FRA), Minamiizu, Japan
| | - Takashi Yatabe
- Glass Eel Production Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency (FRA), Minamiizu, Japan
| | - Keisuke Yamano
- Glass Eel Production Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency (FRA), Minamiizu, Japan
| | - Kazuharu Nomura
- Glass Eel Production Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency (FRA), Minamiise, Japan
| |
Collapse
|
4
|
Dornburg A, Near TJ. The Emerging Phylogenetic Perspective on the Evolution of Actinopterygian Fishes. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-122120-122554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina 28223, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
5
|
Formenti G, Rhie A, Balacco J, Haase B, Mountcastle J, Fedrigo O, Brown S, Capodiferro MR, Al-Ajli FO, Ambrosini R, Houde P, Koren S, Oliver K, Smith M, Skelton J, Betteridge E, Dolucan J, Corton C, Bista I, Torrance J, Tracey A, Wood J, Uliano-Silva M, Howe K, McCarthy S, Winkler S, Kwak W, Korlach J, Fungtammasan A, Fordham D, Costa V, Mayes S, Chiara M, Horner DS, Myers E, Durbin R, Achilli A, Braun EL, Phillippy AM, Jarvis ED. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol 2021; 22:120. [PMID: 33910595 PMCID: PMC8082918 DOI: 10.1186/s13059-021-02336-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/31/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly. RESULTS As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100-300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization. CONCLUSIONS Our results indicate that even in the "simple" case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and caution should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone.
Collapse
Affiliation(s)
- Giulio Formenti
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA.
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA.
- The Howards Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Balacco
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | - Bettina Haase
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | | | - Olivier Fedrigo
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | - Samara Brown
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA
- The Howards Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Farooq O Al-Ajli
- Monash University Malaysia Genomics Facility, School of Science, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Qatar Falcon Genome Project, Doha, State of Qatar
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Iliana Bista
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Shane McCarthy
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology & Genetics, Dresden, Germany
| | | | | | | | - Daniel Fordham
- Oxford Nanopore Technologies Ltd, Oxford Science Park, Oxford, UK
| | - Vania Costa
- Oxford Nanopore Technologies Ltd, Oxford Science Park, Oxford, UK
| | - Simon Mayes
- Oxford Nanopore Technologies Ltd, Oxford Science Park, Oxford, UK
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Milan, Italy
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology & Genetics, Dresden, Germany
| | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich D Jarvis
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA.
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA.
- The Howards Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Takezaki N. Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data. Genome Biol Evol 2021; 13:6178791. [PMID: 33739405 PMCID: PMC8103497 DOI: 10.1093/gbe/evab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: 1) 412 genes from 12 species, 2) 772 genes from 15 species, 3) 1,062 genes from 30 species, and 4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the data sets (1)–(3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE data set (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| |
Collapse
|
7
|
Xiong F, Xiong J, Wu YF, Cao L, Huang WS, Chang MX. Time-resolved RNA-seq provided a new understanding of intestinal immune response of European eel (Anguilla anguilla) following infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 105:297-309. [PMID: 32707296 DOI: 10.1016/j.fsi.2020.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
No studies systematically examined the intestinal immune response for yellow stage of European eel (Anguilla anguilla) with Aeromonas hydrophila infection by time-resolved RNA-seq. Here, we examined transcriptional profiles of the intestines at three-time points following infection with A. hydrophila. Intraperitoneal injections caused mortalities within 48 h post-injection (hpi), with the survival rate 87.5% at 24 hpi and 83.9% at 48 hpi. The result from KEGG pathway enrichment analysis showed that the immune related "cytosolic DNA-sensing pathway" was significantly enriched at the first and second time points (6 hpi and 18 hpi), with the up-regulated expression of irf3, il1b, tnfaip3, cxcl8a, ap1-2, c-fos, polr3d, polr3g and polr3k both at 6 hpi and 18 hpi, but not at the third time point (36 hpi). According to the KEGG annotation, 326 immune and inflammation-related DEGs were found. The co-expression network of those 326 DEGs revealed the existence of three modules, and tlr1 was found to be in the center of the biggest module which contained massive DEGs from "signal transduction" and "transport and catabolism". The c3 isoforms showed different expression pattern among the three time points, indicating a unique activation of complement systems at 18 hpi. Furthermore, two cathelicidins (aaCATH_1 and aaCATH_2) were highly up-regulated at the first two time points, and the bacterial growth inhibition assay revealed their antibacterial properties against A. hydrophila. Our data indicated the important roles of cytosolic DNA-sensing pathway, as well as transcripts including tlr1, c3, polr and cathelicidins in the intestine of A. anguilla in response to A. hydrophila infection. The present study will provide leads for functional studies of host-pathogen interactions.
Collapse
Affiliation(s)
- Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jing Xiong
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PR China, Jimei University, Xiamen, 361021, China
| | - Ya Fang Wu
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PR China, Jimei University, Xiamen, 361021, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen Shu Huang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PR China, Jimei University, Xiamen, 361021, China.
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Vertebrate Alpha2,8-Sialyltransferases (ST8Sia): A Teleost Perspective. Int J Mol Sci 2020; 21:ijms21020513. [PMID: 31947579 PMCID: PMC7014012 DOI: 10.3390/ijms21020513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
We identified and analyzed α2,8-sialyltransferases sequences among 71 ray-finned fish species to provide the first comprehensive view of the Teleost ST8Sia repertoire. This repertoire expanded over the course of Vertebrate evolution and was primarily shaped by the whole genome events R1 and R2, but not by the Teleost-specific R3. We showed that duplicated st8sia genes like st8sia7, st8sia8, and st8sia9 have disappeared from Tetrapods, whereas their orthologues were maintained in Teleosts. Furthermore, several fish species specific genome duplications account for the presence of multiple poly-α2,8-sialyltransferases in the Salmonidae (ST8Sia II-r1 and ST8Sia II-r2) and in Cyprinuscarpio (ST8Sia IV-r1 and ST8Sia IV-r2). Paralogy and synteny analyses provided more relevant and solid information that enabled us to reconstruct the evolutionary history of st8sia genes in fish genomes. Our data also indicated that, while the mammalian ST8Sia family is comprised of six subfamilies forming di-, oligo-, or polymers of α2,8-linked sialic acids, the fish ST8Sia family, amounting to a total of 10 genes in fish, appears to be much more diverse and shows a patchy distribution among fish species. A focus on Salmonidae showed that (i) the two copies of st8sia2 genes have overall contrasted tissue-specific expressions, with noticeable changes when compared with human co-orthologue, and that (ii) st8sia4 is weakly expressed. Multiple sequence alignments enabled us to detect changes in the conserved polysialyltransferase domain (PSTD) of the fish sequences that could account for variable enzymatic activities. These data provide the bases for further functional studies using recombinant enzymes.
Collapse
|
9
|
Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int J Biol Macromol 2019; 135:609-618. [PMID: 31132441 DOI: 10.1016/j.ijbiomac.2019.05.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 11/20/2022]
Abstract
Generally, a teleostean group possesses only one type or a set of similar mitochondrial gene arrangement. However, two types of gene arrangement have been identified in the mitochondrial genomes (mitogenomes) of Anguilliformes. Here, a newly sequenced mitogenome of Ophichthus brevicaudatus (Anguilliformes; Ophichthidae) was presented. The total length of the O. brevicaudatus mitogenome was 17,773 bp, and it contained 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNA (tRNA) genes, and two identical control regions (CRs). The gene order differed from that of the typical vertebrate mitogenomes. The genes ND6 and the conjoint trnE were translocated to the location between trnT and trnP, and one of the duplicated CR was translocated to the upstream of the ND6. The duplication-random loss model was adopted to explain the gene rearrangement events in this mitogenome. The most comprehensive phylogenetic trees of Anguilliformes based on complete mitogenome was constructed. The non-monophyly of Congridae was well supported, whereas the non-monophyly of Derichthyidae and Chlopsidae was not supported. These results provide insight into gene arrangement features of anguilliform mitogenomes and lay the foundation for further phylogenetic studies on Anguilliformes.
Collapse
|
10
|
Poulsen JY, Miller MJ, Sado T, Hanel R, Tsukamoto K, Miya M. Resolving deep-sea pelagic saccopharyngiform eel mysteries: Identification of Neocyema and Monognathidae leptocephali and establishment of a new fish family "Neocyematidae" based on larvae, adults and mitogenomic gene orders. PLoS One 2018; 13:e0199982. [PMID: 30044814 PMCID: PMC6059418 DOI: 10.1371/journal.pone.0199982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/14/2018] [Indexed: 11/24/2022] Open
Abstract
Deep-sea midwater "saccopharyngiform" eels of the families Cyematidae, Monognathidae, Eurypharyngidae and Saccopharyngidae (order Anguilliformes) are extraordinary fishes having major skeletal reductions and modifications compared to the general anguilliform body structure. Little is known about most aspects of the systematics, phylogeny, and ecology of these families, and few of the approximately 30 species described from adult specimens have been matched with their leptotocephalus larvae. Based on mitogenomic sequence data from rare new specimens, we show that the long-speculated-about larval form referred to as "Leptocephalus holti", which was thought to possibly be the larva of the rare orange-colored eels of Neocyema (5 known specimens; speculated to belong to the Cyematidae) are actually the larvae of the one-jaw eels of the family Monognathidae. One of the 5 types of L. holti larvae that were collected in the Pacific is genetically matched with Monognathus jesperseni, but multiple species exist based on larval sequence data and the morphology of adult specimens. A rare leptocephalus from the Sargasso Sea, with unique morphological characteristics including many small orange spots on the gut, was found to be the larva of Neocyema, which is presently only known from the Atlantic Ocean. We demonstrate that Neocyema constitutes a separate family being most closely related to Eurypharyngidae and Saccopharyngidae based on mitogenomic DNA sequences and unique mitochondrial gene orders.
Collapse
Affiliation(s)
- Jan Y. Poulsen
- Department of Fish and Shellfish, Greenland Institute of Natural Resources, Kivioq, Nuuk, Greenland
- Fish Section, Australian Museum, Sydney NSW, Australia
| | - Michael J. Miller
- Department of Marine Science and Resources, Nihon University, Fujisawa, Japan
| | - Tetsuya Sado
- Natural History Museum and Institute, Chiba, Aoba-cho, Chuo-ku, Chiba, Japan
| | | | - Katsumi Tsukamoto
- Department of Marine Science and Resources, Nihon University, Fujisawa, Japan
| | - Masaki Miya
- Thunen-Institute of Fisheries Ecology, Hamburg, Germany
| |
Collapse
|
11
|
Phylogenetic position of the rainbow sardine Dussumieria (Dussumieriidae) and its bearing on the early evolution of the Clupeoidei. Gene 2017; 623:41-47. [DOI: 10.1016/j.gene.2017.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 11/21/2022]
|
12
|
Larouche O, Zelditch ML, Cloutier R. Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates. BMC Biol 2017; 15:32. [PMID: 28449681 PMCID: PMC5406925 DOI: 10.1186/s12915-017-0370-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fishes are extremely speciose and also highly disparate in their fin configurations, more specifically in the number of fins present as well as their structure, shape, and size. How they achieved this remarkable disparity is difficult to explain in the absence of any comprehensive overview of the evolutionary history of fish appendages. Fin modularity could provide an explanation for both the observed disparity in fin configurations and the sequential appearance of new fins. Modularity is considered as an important prerequisite for the evolvability of living systems, enabling individual modules to be optimized without interfering with others. Similarities in developmental patterns between some of the fins already suggest that they form developmental modules during ontogeny. At a macroevolutionary scale, these developmental modules could act as evolutionary units of change and contribute to the disparity in fin configurations. This study addresses fin disparity in a phylogenetic perspective, while focusing on the presence/absence and number of each of the median and paired fins. RESULTS Patterns of fin morphological disparity were assessed by mapping fin characters on a new phylogenetic supertree of fish orders. Among agnathans, disparity in fin configurations results from the sequential appearance of novel fins forming various combinations. Both median and paired fins would have appeared first as elongated ribbon-like structures, which were the precursors for more constricted appendages. Among chondrichthyans, disparity in fin configurations relates mostly to median fin losses. Among actinopterygians, fin disparity involves fin losses, the addition of novel fins (e.g., the adipose fin), and coordinated duplications of the dorsal and anal fins. Furthermore, some pairs of fins, notably the dorsal/anal and pectoral/pelvic fins, show non-independence in their character distribution, supporting expectations based on developmental and morphological evidence that these fin pairs form evolutionary modules. CONCLUSIONS Our results suggest that the pectoral/pelvic fins and the dorsal/anal fins form two distinct evolutionary modules, and that the latter is nested within a more inclusive median fins module. Because the modularity hypotheses that we are testing are also supported by developmental and variational data, this constitutes a striking example linking developmental, variational, and evolutionary modules.
Collapse
Affiliation(s)
- Olivier Larouche
- Laboratoire de Paléontologie et de Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1 Canada
| | | | - Richard Cloutier
- Laboratoire de Paléontologie et de Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1 Canada
| |
Collapse
|
13
|
Martin KJ, Holland PWH. Diversification of Hox Gene Clusters in Osteoglossomorph Fish in Comparison to Other Teleosts and the Spotted Gar Outgroup. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:638-644. [DOI: 10.1002/jez.b.22726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 12/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Kyle J Martin
- Department of Zoology; University of Oxford; Oxford UK
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | | |
Collapse
|
14
|
Song X, Tang W. Complete mitochondrial DNA sequence of Brachysomophis crocodilinus (Anguilliformes: Ophichthidae). Mitochondrial DNA B Resour 2017; 2:187-188. [PMID: 33473763 PMCID: PMC7799937 DOI: 10.1080/23802359.2017.1307707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Brachysomophis crocodilinus belongs to the family Ophichthidae, the complete mitochondrial genome of which was sequenced in this study. The mitochondrial genome of B. crocodilinus is of 17,818 bp in length, with overall base composition of 32.11% A, 24.69% T, 16.22% G, and 26.98% C. The genome content includes 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 control regions. The result of phylogenetic analysis indicates that B. crocodilinus mitogenome is close to that of Ophisurus macrorhynchos, which are nested within the family Ophichthidae.
Collapse
Affiliation(s)
- Xiaojing Song
- Laboratory of Ichthyology, Shanghai Ocean University, Shanghai, China
- Shanghai Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Wenqiao Tang
- Laboratory of Ichthyology, Shanghai Ocean University, Shanghai, China
- Shanghai Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| |
Collapse
|
15
|
Song X, Tang W. Complete mitochondrial genome of Ophichthus rotundus (Anguilliformes: Ophichthidae). Mitochondrial DNA B Resour 2017; 2:176-177. [PMID: 33473758 PMCID: PMC7799477 DOI: 10.1080/23802359.2017.1303350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The complete mitochondrial genome of Ophichthus rotundus was sequenced in this study. The genome sequence is 17,785 bp in length, comprising 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 control regions. Overall base composition is 30.59% A, 24.94% T, 17.01% G, and 27.46% C. The result of phylogenetic analysis indicates that O. rotundus mitogenome is close to that of M. maculosus, which are nested within the family Ophichthidae.
Collapse
Affiliation(s)
- Xiaojing Song
- Laboratory of Ichthyology, Shanghai Ocean University, Shanghai, China
- Shanghai Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| | - Wenqiao Tang
- Laboratory of Ichthyology, Shanghai Ocean University, Shanghai, China
- Shanghai Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China
| |
Collapse
|
16
|
Mirande JM. Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of morphological characters in large-scale analyses. Cladistics 2016; 33:333-350. [DOI: 10.1111/cla.12171] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
- Juan Marcos Mirande
- Unidad Ejecutora Lillo (UEL, Fundación Miguel Lillo-CONICET); San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
17
|
Lavoué S. Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Mol Phylogenet Evol 2016; 99:34-43. [DOI: 10.1016/j.ympev.2016.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/16/2022]
|
18
|
The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 2016; 6:24501. [PMID: 27089831 PMCID: PMC4835728 DOI: 10.1038/srep24501] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.
Collapse
|
19
|
Affiliation(s)
- E. Parmentier
- Laboratory of Functional and Evolutionary Morphology; AFFISH-RC; University of Liège; Liège Belgium
| |
Collapse
|
20
|
Barros-García D, Bañón R, Arronte JC, Fernández-Peralta L, García R, de Carlos A. DNA barcoding of deep-water notacanthiform fishes (Teleostei, Elopomorpha). ZOOL SCR 2015. [DOI: 10.1111/zsc.12154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David Barros-García
- Departamento de Bioquímica; Xenética e Inmunoloxía; Universidade de Vigo; Rúa Fonte das Abelleiras s/n Vigo 36310 Spain
- ECIMAT; Estación de Ciencias Mariñas de Toralla (Universidade de Vigo); Isla de Toralla s/n, 36331 Vigo Spain
| | - Rafael Bañón
- Servizo de Planificación; Consellería do Mar e Medio Rural; Xunta de Galicia; Santiago de Compostela Spain
| | - Juan Carlos Arronte
- Instituto Español de Oceanografía; C.O. de Santander, Promontorio San Martín s/n, 39004 Santander Spain
| | | | - Ramón García
- Instituto Español de Oceanografía; CO de Málaga, Puerto pesquero s/n, 29640 Fuengirola Spain
| | - Alejandro de Carlos
- Departamento de Bioquímica; Xenética e Inmunoloxía; Universidade de Vigo; Rúa Fonte das Abelleiras s/n Vigo 36310 Spain
| |
Collapse
|
21
|
Coluccia E, Deidda F, Cannas R, Lobina C, Cuccu D, Deiana AM, Salvadori S. Comparative cytogenetics of six Indo-Pacific moray eels (Anguilliformes: Muraenidae) by chromosomal banding and fluorescence in situ hybridization. JOURNAL OF FISH BIOLOGY 2015; 87:634-645. [PMID: 26242690 DOI: 10.1111/jfb.12737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.
Collapse
Affiliation(s)
- E Coluccia
- Dipartimento di Scienze della Vita e dell'Ambiente, sezione Biologia Animale ed Ecologia, Università degli Studi di Cagliari, via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - F Deidda
- Dipartimento di Scienze della Vita e dell'Ambiente, sezione Biologia Animale ed Ecologia, Università degli Studi di Cagliari, via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - R Cannas
- Dipartimento di Scienze della Vita e dell'Ambiente, sezione Biologia Animale ed Ecologia, Università degli Studi di Cagliari, via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - C Lobina
- Dipartimento di Scienze della Vita e dell'Ambiente, sezione Biologia Animale ed Ecologia, Università degli Studi di Cagliari, via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - D Cuccu
- Dipartimento di Scienze della Vita e dell'Ambiente, sezione Biologia Animale ed Ecologia, Università degli Studi di Cagliari, via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - A M Deiana
- Dipartimento di Scienze della Vita e dell'Ambiente, sezione Biologia Animale ed Ecologia, Università degli Studi di Cagliari, via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - S Salvadori
- Dipartimento di Scienze della Vita e dell'Ambiente, sezione Biologia Animale ed Ecologia, Università degli Studi di Cagliari, via T. Fiorelli, 1, 09126, Cagliari, Italy
| |
Collapse
|
22
|
Mu X, Wang X, Liu Y, Song H, Liu C, Gu D, Wei H, Luo J, Hu Y. An unusual mitochondrial genome structure of the tonguefish, Cynoglossus trigrammus: Control region translocation and a long additional non-coding region inversion. Gene 2015; 573:216-24. [PMID: 26187073 DOI: 10.1016/j.gene.2015.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
Flatfishes (Pleuronectiformes) exhibit different types of large-scale gene rearrangements. In the present study, the mitochondrial (mt) genome (18,369bp) of a tonguefish, Cynoglossus trigrammus, was determined using de novo mitochondrion genome sequencing. Compared with other flatfishes, the mt genome of C. trigrammus revealed distinct mitogenome architectures that primarily included two striking findings: 1) insertion of an additional long non-coding region (1647bp) making it the second largest genome length among Pleuronectiformes and 2) the translocation of the control region. The reconstructed phylogenetic tree based on 13 mt protein-coding gene sequences recovered the monophyletic suborder Pleuronectoidei and the family Cynoglossidae. These data provide useful information for a better understanding of the mitogenomic diversities and evolution in fish as well as novel genetic markers for studying population genetics and species identification.
Collapse
Affiliation(s)
- Xidong Mu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application Cultivation, Ministry of Agriculture Guangzhou, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuejie Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application Cultivation, Ministry of Agriculture Guangzhou, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yi Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application Cultivation, Ministry of Agriculture Guangzhou, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongmei Song
- Key Laboratory of Tropical & Subtropical Fishery Resource Application Cultivation, Ministry of Agriculture Guangzhou, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chao Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application Cultivation, Ministry of Agriculture Guangzhou, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Dangen Gu
- Key Laboratory of the Conservation and Ecological Restoration of Fishery Resource in Pearl River, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hui Wei
- Key Laboratory of the Conservation and Ecological Restoration of Fishery Resource in Pearl River, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jianren Luo
- Key Laboratory of Tropical & Subtropical Fishery Resource Application Cultivation, Ministry of Agriculture Guangzhou, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of the Conservation and Ecological Restoration of Fishery Resource in Pearl River, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yinchang Hu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application Cultivation, Ministry of Agriculture Guangzhou, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of the Conservation and Ecological Restoration of Fishery Resource in Pearl River, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
23
|
Dornburg A, Friedman M, Near TJ. Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). Mol Phylogenet Evol 2015; 89:205-18. [PMID: 25899306 DOI: 10.1016/j.ympev.2015.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 02/05/2023]
Abstract
Elopomorpha is one of the three main clades of living teleost fishes and includes a range of disparate lineages including eels, tarpons, bonefishes, and halosaurs. Elopomorphs were among the first groups of fishes investigated using Hennigian phylogenetic methods and continue to be the object of intense phylogenetic scrutiny due to their economic significance, diversity, and crucial evolutionary status as the sister group of all other teleosts. While portions of the phylogenetic backbone for Elopomorpha are consistent between studies, the relationships among Albula, Pterothrissus, Notacanthiformes, and Anguilliformes remain contentious and difficult to evaluate. This lack of phylogenetic resolution is problematic as fossil lineages are often described and placed taxonomically based on an assumed sister group relationship between Albula and Pterothrissus. In addition, phylogenetic studies using morphological data that sample elopomorph fossil lineages often do not include notacanthiform or anguilliform lineages, potentially introducing a bias toward interpreting fossils as members of the common stem of Pterothrissus and Albula. Here we provide a phylogenetic analysis of DNA sequences sampled from multiple nuclear genes that include representative taxa from Albula, Pterothrissus, Notacanthiformes and Anguilliformes. We integrate our molecular dataset with a morphological character matrix that spans both living and fossil elopomorph lineages. Our results reveal substantial uncertainty in the placement of Pterothrissus as well as all sampled fossil lineages, questioning the stability of the taxonomy of fossil Elopomorpha. However, despite topological uncertainty, our integration of fossil lineages into a Bayesian time calibrated framework provides divergence time estimates for the clade that are consistent with previously published age estimates based on the elopomorph fossil record and molecular estimates resulting from traditional node-dating methods.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | - Matt Friedman
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Wang SY, Shi W, Miao XG, Kong XY. Complete mitochondrial genome sequences of three rhombosoleid fishes and comparative analyses with other flatfishes (Pleuronectiformes). Zool Stud 2014. [DOI: 10.1186/s40555-014-0080-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Peltorhamphus novaezeelandiae, Colistium nudipinnis, and Pelotretis flavilatus belong to the family Rhombosoleidae of Pleuronectiformes. Their high phenotypic similarity has provoked great differences in the number and nomenclature of the taxa that depend primarily on morphological features. These facts have made it necessary to develop molecular markers for taxonomy and phylogenetic studies. In this study, the complete mitogenomes (mtDNA) of the three rhombosoleid fishes were determined for the comparative studies and potential development of molecular markers in the future.
Results
The lengths of the complete mitogenome of the three flatfishes are 16,889, 16,588, and 16,937 bp in the order mentioned above. The difference of lengths mainly results from the presence of tandem repeats at the 3′-end with variations of motif length and copy number in the control regions (CR). The gene content and arrangement is identical to that of the typical teleostean mtDNA. Two large intergenic spacers of 28 and 18 bp were found in P. flavilatus mtDNA. The genes are highly conserved except for the sizes of ND1 (which is 28 bp shorter than the two others), ND5 (13 bp longer), and tRNA
Glu
(5 bp longer) in P. flavilatus mtDNA. The symbolic structures of the CRs are observed as in other fishes, including ETAS, CSB-F, E, D, C, B, A, G-BOX, pyrimidine tract, and CSB2, 3.
Conclusions
Comparative genomic analysis within rhombosoleids revealed that the mitogenomic feature of P. flavilatus was significantly different from that of the two others. Base composition, gene arrangement, and CR structure were carried on in the 17 mitogenomes. Apart from gene rearrangement in two tongue soles (Cynoglossus semilaevis and Cynoglossus abbreviatus), the gene order in 15 others is identical to that of the typical fish mitogenomes. Of the 16 studied mitogenomes, 15 species (except for Zebrias zebrinus) have tandem repeats at the 3′-, 5′-, or both 3′- and 5′-ends of the CRs. Moreover, the motif length and copy number intraspecies or interspecies are also variable. These phenomena fully indicate the diversity of repeats in flatfish mtDNA and would provide useful data for studies on the structure of mitogenomes in fishes.
Collapse
|
25
|
Miller MJ, Bonhommeau S, Munk P, Castonguay M, Hanel R, McCleave JD. A century of research on the larval distributions of the Atlantic eels: a re-examination of the data. Biol Rev Camb Philos Soc 2014; 90:1035-64. [PMID: 25291986 DOI: 10.1111/brv.12144] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 11/28/2022]
Abstract
The spawning areas of the Atlantic freshwater eels were discovered about a century ago by the Danish scientist Johannes Schmidt who after years of searching found newly hatched larvae of the European eel, Anguilla anguilla, and the American eel, Anguilla rostrata, in the southern Sargasso Sea. The discovery showed that anguillid eels migrate thousands of kilometers to offshore spawning areas for reproduction, and that their larvae, called leptocephali, are transported equally long distances by ocean currents to their continental recruitment areas. The spawning sites were found to be related to oceanographic conditions several decades later by German and American surveys from 1979 to 1989 and by a Danish survey in 2007 and a German survey in 2011. All these later surveys showed that spawning occurred within a restricted latitudinal range, between temperature fronts within the Subtropical Convergence Zone of the Sargasso Sea. New data and re-examinations of Schmidt's data confirmed his original conclusions about the two species having some overlap in spawning areas. Although there have been additional collections of leptocephali in various parts of the North Atlantic, and both otolith research and transport modelling studies have subsequently been carried out, there is still a range of unresolved questions about the routes of larval transport and durations of migration. This paper reviews the history and basic findings of surveys for anguillid leptocephali in the North Atlantic and analyses a new comprehensive database that includes 22612 A. anguilla and 9634 A. rostrata leptocephali, which provides a detailed view of the spatial and temporal distributions and size of the larvae across the Atlantic basin and in the Mediterranean Sea. The differences in distributions, maximum sizes, and growth rates of the two species of larvae are likely linked to the contrasting migration distances to their recruitment areas on each side of the basin. Anguilla rostrata leptocephali originate from a more western spawning area, grow faster, and metamorphose at smaller sizes of <70 mm than the larvae of A. anguilla, which mostly are spawned further east and can reach sizes of almost 90 mm. The larvae of A. rostrata spread west and northwest from the spawning area as they grow larger, with some being present in the western Caribbean and eastern Gulf of Mexico. Larvae of A. anguilla appear to be able to reach Europe by entering the Gulf Stream system or by being entrained into frontal countercurrents that transport them directly northeastward. The larval duration of A. anguilla is suggested to be quite variable, but gaps in sampling effort prevent firm conclusions. Although knowledge about larval behaviour is lacking, some influences of directional swimming are implicated by the temporal distributions of the largest larvae. Ocean-atmosphere changes have been hypothesized to affect the survival of the larvae and cause reduced recruitment, so even after about a century following the discovery of their spawning areas, mysteries still remain about the marine life histories of the Atlantic eels.
Collapse
Affiliation(s)
- Michael J Miller
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | | | - Peter Munk
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - Martin Castonguay
- Maurice-Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Québec G5H 3Z4, Canada
| | | | - James D McCleave
- School of Marine Sciences, University of Maine, Orono, ME, U.S.A
| |
Collapse
|
26
|
Fonseca MM, Harris DJ, Posada D. The inversion of the Control Region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication. PLoS One 2014; 9:e106654. [PMID: 25268704 PMCID: PMC4182315 DOI: 10.1371/journal.pone.0106654] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial genomes are known to have a strong strand-specific compositional bias that is more pronounced at fourfold redundant sites of mtDNA protein-coding genes. This observation suggests that strand asymmetries, to a large extent, are caused by mutational asymmetric mechanisms. In vertebrate mitogenomes, replication and not transcription seems to play a major role in shaping compositional bias. Hence, one can better understand how mtDNA is replicated – a debated issue – through a detailed picture of mitochondrial genome evolution. Here, we analyzed the compositional bias (AT and GC skews) in protein-coding genes of almost 2,500 complete vertebrate mitogenomes. We were able to identify three fish mitogenomes with inverted AT/GC skew coupled with an inversion of the Control Region. These findings suggest that the vertebrate mitochondrial replication mechanism is asymmetric and may invert its polarity, with the leading-strand becoming the lagging-strand and vice-versa, without compromising mtDNA maintenance and expression. The inversion of the strand-specific compositional bias through the inversion of the Control Region is in agreement with the strand-displacement model but it is also compatible with the RITOLS model of mtDNA replication.
Collapse
Affiliation(s)
- Miguel M. Fonseca
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- * E-mail:
| | - D. James Harris
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| |
Collapse
|
27
|
Datovo A, Vari RP. The adductor mandibulae muscle complex in lower teleostean fishes (Osteichthyes: Actinopterygii): comparative anatomy, synonymy, and phylogenetic implications. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12142] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aléssio Datovo
- Museu de Zoologia da Universidade de São Paulo; Av. Nazaré 481 04263-000 São Paulo SP Brazil
- Laboratório de Ictiologia de Ribeirão Preto; FFCLRP; Departamento de Biologia; Universidade de São Paulo; Av. dos Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
- Division of Fishes; Department of Vertebrate Zoology; National Museum of Natural History; Smithsonian Institution; MRC-159, PO Box 37012 Washington, DC 20013-7012 USA
| | - Richard P. Vari
- Division of Fishes; Department of Vertebrate Zoology; National Museum of Natural History; Smithsonian Institution; MRC-159, PO Box 37012 Washington, DC 20013-7012 USA
| |
Collapse
|
28
|
Bullard SA. Blood Flukes (Digenea: Aporocotylidae) of Elopomorphs: Emendation ofParacardicoloides, Supplemental Observations ofParacardicoloides yamagutii, and a New Genus and Species from Ladyfish,Elops saurus, (Elopiformes: Elopidae) in the Gulf of Mexico. J Parasitol 2014; 100:305-16. [DOI: 10.1645/13-391.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Song HY, Mabuchi K, Satoh TP, Moore JA, Yamanoue Y, Miya M, Nishida M. Mitogenomic circumscription of a novel percomorph fish clade mainly comprising "Syngnathoidei" (Teleostei). Gene 2014; 542:146-55. [PMID: 24680775 DOI: 10.1016/j.gene.2014.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 03/10/2014] [Accepted: 03/20/2014] [Indexed: 12/25/2022]
Abstract
Percomorpha, comprising about 60% of modern teleost fishes, has been described as the "(unresolved) bush at the top" of the tree, with its intrarelationships still being ambiguous owing to huge diversity (>15,000 species). Recent molecular phylogenetic studies based on extensive taxon and character sampling, however, have revealed a number of unexpected clades of Percomorpha, and one of which is composed of Syngnathoidei (seahorses, pipefishes, and their relatives) plus several groups distributed across three different orders. To circumscribe the clade more definitely, we sampled several candidate taxa with reference to the previous studies and newly determined whole mitochondrial genome (mitogenome) sequences for 16 percomorph species across syngnathoids, dactylopterids, and their putatively closely-related fishes (Mullidae, Callionymoidei, Malacanthidae). Unambiguously aligned sequences (13,872 bp) from those 16 species plus 78 percomorphs and two outgroups (total 96 species) were subjected to partitioned Bayesian and maximum likelihood analyses. The resulting trees revealed a highly supported clade comprising seven families in Syngnathoidei (Gasterosteiformes), Dactylopteridae (Scorpaeniformes), Mullidae in Percoidei and two families in Callionymoidei (Perciformes). We herein proposed to call this clade "Syngnathiformes" following the latest nuclear DNA studies with some revisions on the included families.
Collapse
Affiliation(s)
- Ha Yeun Song
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Kohji Mabuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Takashi P Satoh
- National Museum of Nature and Science, Collection Center, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Jon A Moore
- Florida Atlantic University, Wilkes Honors College, Jupiter, FL 33458, USA & Harbor Branch Oceanographic Institution, Fort Pierce, FL 34946, USA
| | - Yusuke Yamanoue
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka-cho, Nishi-ku, Hamamatsu 431-0214, Japan
| | - Masaki Miya
- Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan
| | - Mutsumi Nishida
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| |
Collapse
|
30
|
Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, Pieribone VA, Gruber DF. The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS One 2014; 9:e83259. [PMID: 24421880 PMCID: PMC3885428 DOI: 10.1371/journal.pone.0083259] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022] Open
Abstract
The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.
Collapse
Affiliation(s)
- John S. Sparks
- Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, New York United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Robert C. Schelly
- Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, New York United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - W. Leo Smith
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Matthew P. Davis
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Vincent A. Pieribone
- Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, New York United States of America
- Department of Cellular and Molecular Physiology, The John B. Pierce Laboratory, Inc., Yale University, New Haven, Connecticut, United States of America
| | - David F. Gruber
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- Department of Natural Sciences, Baruch College, City University of New York, New York, New York, United States of America
| |
Collapse
|
31
|
Chen JN, López JA, Lavoué S, Miya M, Chen WJ. Phylogeny of the Elopomorpha (Teleostei): Evidence from six nuclear and mitochondrial markers. Mol Phylogenet Evol 2014; 70:152-61. [DOI: 10.1016/j.ympev.2013.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/04/2013] [Indexed: 12/15/2022]
|
32
|
Santini F, Kong X, Sorenson L, Carnevale G, Mehta RS, Alfaro ME. A multi-locus molecular timescale for the origin and diversification of eels (Order: Anguilliformes). Mol Phylogenet Evol 2013; 69:884-94. [PMID: 23831455 DOI: 10.1016/j.ympev.2013.06.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 11/25/2022]
Abstract
Anguilliformes are an ecologically diverse group of predominantly marine fishes whose members are easily recognized by their extremely elongate bodies, and universal lack of pelvic fins. Recent studies based on mitochondrial loci, including full mitogenomes, have called into question the monophyly of both the Anguilliformes, which appear to be paraphyletic without the inclusion of the Saccopharyngiformes (gulper eels and allies), as well as other more commonly known eel families (e.g., Congridae, Serrivomeridae). However, no study to date has investigated anguilliform interrelationships using nuclear loci. Here we present a new phylogenetic hypothesis for the Anguilliformes based on five markers (the nuclear loci Early Growth Hormone 3, Myosin Heavy Polypeptide 6 and Recombinase Activating Gene 1, as well as the mitochondrial genes Cytochrome b and Cytochrome Oxidase I). Our sampling spans 148 species and includes 19 of the 20 extant families of anguilliforms and saccopharyngiforms. Maximum likelihood analysis reveals that saccopharyngiform eels are deeply nested within the anguilliforms, and supports the non-monophyly of Congridae and Nettastomatidae, as well as that of Derichthyidae and Chlopsidae. Our analyses suggest that Protanguilla may be the sister group of the Synaphobranchidae, though the recent hypothesis that this species is the sister group to all other anguilliforms cannot be rejected. The molecular phylogeny, time-calibrated using a Bayesian relaxed clock approach and seven fossil calibration points, reveals a Late Cretaceous origin of this expanded anguilliform clade (stem age ~116 Ma, crown age ~99 Ma). Most major (family level) lineages originated between the end of the Cretaceous and Early Eocene, suggesting that anguilliform radiation may have been facilitated by the recovery of marine ecosystems following the KP extinction.
Collapse
Affiliation(s)
- Francesco Santini
- University of California Los Angeles, Department of Ecology and Evolutionary Biology, 610 Charles E Young Drive South, Los Angeles, CA 90095, USA; Università degli Studi di Torino, Dipartimento di Scienze della Terra, Via Valperga Caluso 35, 10125 Torino, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Minegishi Y, Henkel CV, Dirks RP, van den Thillart GEEJM. Genomics in eels--towards aquaculture and biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:583-590. [PMID: 22527267 PMCID: PMC3419832 DOI: 10.1007/s10126-012-9444-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
Freshwater eels (genus Anguilla), especially the species inhabiting the temperate areas such as the European, American and Japanese eels, are important aquaculture species. Although artificial reproduction has been attempted since the 1930s and large numbers of studies have been conducted, it has not yet fully succeeded. Problems in eel artificial breeding are highly diverse, for instance, lack of basic information about reproduction in nature, no appropriate food for larvae, high mortality, and high individual variation in adults in response to maturation induction. Over the last decade, genomic data have been obtained for a variety of aquatic organisms. Recent technological advances in sequencing and computation now enable the accumulation of genomic information even for non-model species. The draft genome of the European eel Anguilla anguilla has been recently determined using Illumina technology and transcriptomic data based on next generation sequencing have been emerging. Extensive genomic information will facilitate many aspects of the artificial reproduction of eels. Here, we review the progress in genome-wide studies of eels, including additional analysis of the European eel genome data, and discuss future directions and implications of genomic data for aquaculture.
Collapse
Affiliation(s)
- Yuki Minegishi
- Institute of Biology-Leiden, Leiden University, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Tang KL, Fielitz C. Phylogeny of moray eels (Anguilliformes: Muraenidae), with a revised classification of true eels (Teleostei: Elopomorpha: Anguilliformes). ACTA ACUST UNITED AC 2012; 24:55-66. [DOI: 10.3109/19401736.2012.710226] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Henkel CV, Burgerhout E, de Wijze DL, Dirks RP, Minegishi Y, Jansen HJ, Spaink HP, Dufour S, Weltzien FA, Tsukamoto K, van den Thillart GEEJM. Primitive duplicate Hox clusters in the European eel's genome. PLoS One 2012; 7:e32231. [PMID: 22384188 PMCID: PMC3286462 DOI: 10.1371/journal.pone.0032231] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758) have long motivated scientific enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment. We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome to investigate the eel's complement of the Hox developmental transcription factors. We show that unlike any other teleost fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication. Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation elsewhere in the eel's life history coincides with the evolutionary origin of its Hox repertoire.
Collapse
|
36
|
Johnson GD, Ida H, Sakaue J, Sado T, Asahida T, Miya M. A 'living fossil' eel (Anguilliformes: Protanguillidae, fam. nov.) from an undersea cave in Palau. Proc Biol Sci 2011; 279:934-43. [PMID: 21849321 PMCID: PMC3259923 DOI: 10.1098/rspb.2011.1289] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We report the discovery of an enigmatic, small eel-like fish from a 35 m-deep fringing-reef cave in the western Pacific Ocean Republic of Palau that exhibits an unusual suite of morphological characters. Many of these uniquely characterize the Recent members of the 19 families comprising the elopomorph order Anguilliformes, the true eels. Others are found among anguilliforms only in the Cretaceous fossils, and still others are primitive with respect to both Recent and fossil eels. Thus, morphological evidence explicitly places it as the most basal lineage (i.e. the sister group of extant anguilliforms). Phylogenetic analysis and divergence time estimation based on whole mitogenome sequences from various actinopterygians, including representatives of all eel families, demonstrate that this fish represents one of the most basal, independent lineages of the true eels, with a long evolutionary history comparable to that of the entire Anguilliformes (approx. 200 Myr). Such a long, independent evolutionary history dating back to the early Mesozoic and a retention of primitive morphological features (e.g. the presence of a premaxilla, metapterygoid, free symplectic, gill rakers, pseudobranch and distinct caudal fin rays) warrant recognition of this species as a ‘living fossil’ of the true eels, herein described as Protanguilla palau genus et species nov. in the new family Protanguillidae.
Collapse
Affiliation(s)
- G David Johnson
- Division of Fishes, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | | | | | | | | | | |
Collapse
|
37
|
Escobar JS, Glémin S, Galtier N. GC-Biased Gene Conversion Impacts Ribosomal DNA Evolution in Vertebrates, Angiosperms, and Other Eukaryotes. Mol Biol Evol 2011; 28:2561-75. [DOI: 10.1093/molbev/msr079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
38
|
SAITOH KENJI, SADO TETSUYA, DOOSEY MICHAELH, BART Jr HENRYL, INOUE JUNG, NISHIDA MUTSUMI, MAYDEN RICHARDL, MIYA MASAKI. Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00651.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Page TJ, Hughes JM. Comparing the performance of multiple mitochondrial genes in the analysis of Australian freshwater fishes. JOURNAL OF FISH BIOLOGY 2010; 77:2093-2122. [PMID: 21133918 DOI: 10.1111/j.1095-8649.2010.02821.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, four mitochondrial genes (cytochrome oxidase I, ATPase, cytochrome b and control region) were amplified from most of the fish species found in the fresh waters of south-eastern Queensland, Australia. The performance of these different gene regions was compared in terms of their ability to cluster fish families together in a neighbour-joining tree, both individually by gene and in all combinations. The relative divergence rates of each of these genes were also calculated. The three coding genes (cytochrome oxidase I, ATPase and cytochrome b) recovered similar number of families and had broadly similar divergence rates. ATPase diverged a little more quickly than cytochrome oxidase I and cytochrome b slightly more slowly than cytochrome oxidase I. All two-gene combinations recovered the same number of families. Results from the control region were much more variable, and, although generally possessing more diversity than the other regions, were sometimes less variable.
Collapse
Affiliation(s)
- T J Page
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
| | | |
Collapse
|
40
|
Yamanoue Y, Setiamarga DHE, Matsuura K. Pelvic fins in teleosts: structure, function and evolution. JOURNAL OF FISH BIOLOGY 2010; 77:1173-1208. [PMID: 21039499 DOI: 10.1111/j.1095-8649.2010.02674.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The pelvic fins of teleosts are paired appendages that are considered to be homologous to the hind limbs of tetrapods. Because they are less important for swimming, their morphology and function can be flexibly modified, and such modifications have probably facilitated the adaptations of teleosts to various environments. Recently, among these modifications, pelvic-fin loss has gained attention in evolutionary developmental biology. Pelvic-fin loss, however, has only been investigated in a few model species, and various biological aspects of pelvic fins in teleosts in general remain poorly understood. This review summarizes the current state of knowledge regarding pelvic fins, such as their structure, function and evolution, to elucidate their contribution to the considerable diversity of teleosts. This information could be invaluable for future investigations into various aspects of pelvic fins, which will provide clues to understanding the evolution, diversity and adaptations of teleosts.
Collapse
Affiliation(s)
- Y Yamanoue
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | | | | |
Collapse
|
41
|
Kawaguchi M, Hiroi J, Miya M, Nishida M, Iuchi I, Yasumasu S. Intron-loss evolution of hatching enzyme genes in Teleostei. BMC Evol Biol 2010; 10:260. [PMID: 20796321 PMCID: PMC2939575 DOI: 10.1186/1471-2148-10-260] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 08/27/2010] [Indexed: 11/29/2022] Open
Abstract
Background Hatching enzyme, belonging to the astacin metallo-protease family, digests egg envelope at embryo hatching. Orthologous genes of the enzyme are found in all vertebrate genomes. Recently, we found that exon-intron structures of the genes were conserved among tetrapods, while the genes of teleosts frequently lost their introns. Occurrence of such intron losses in teleostean hatching enzyme genes is an uncommon evolutionary event, as most eukaryotic genes are generally known to be interrupted by introns and the intron insertion sites are conserved from species to species. Here, we report on extensive studies of the exon-intron structures of teleostean hatching enzyme genes for insight into how and why introns were lost during evolution. Results We investigated the evolutionary pathway of intron-losses in hatching enzyme genes of 27 species of Teleostei. Hatching enzyme genes of basal teleosts are of only one type, which conserves the 9-exon-8-intron structure of an assumed ancestor. On the other hand, otocephalans and euteleosts possess two types of hatching enzyme genes, suggesting a gene duplication event in the common ancestor of otocephalans and euteleosts. The duplicated genes were classified into two clades, clades I and II, based on phylogenetic analysis. In otocephalans and euteleosts, clade I genes developed a phylogeny-specific structure, such as an 8-exon-7-intron, 5-exon-4-intron, 4-exon-3-intron or intron-less structure. In contrast to the clade I genes, the structures of clade II genes were relatively stable in their configuration, and were similar to that of the ancestral genes. Expression analyses revealed that hatching enzyme genes were high-expression genes, when compared to that of housekeeping genes. When expression levels were compared between clade I and II genes, clade I genes tends to be expressed more highly than clade II genes. Conclusions Hatching enzyme genes evolved to lose their introns, and the intron-loss events occurred at the specific points of teleostean phylogeny. We propose that the high-expression hatching enzyme genes frequently lost their introns during the evolution of teleosts, while the low-expression genes maintained the exon-intron structure of the ancestral gene.
Collapse
Affiliation(s)
- Mari Kawaguchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Inoue JG, Miya M, Miller MJ, Sado T, Hanel R, Hatooka K, Aoyama J, Minegishi Y, Nishida M, Tsukamoto K. Deep-ocean origin of the freshwater eels. Biol Lett 2010; 6:363-6. [PMID: 20053660 PMCID: PMC2880065 DOI: 10.1098/rsbl.2009.0989] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of more than 800 species of eels of the order Anguilliformes, only freshwater eels (genus Anguilla with 16 species plus three subspecies) spend most of their lives in freshwater during their catadromous life cycle. Nevertheless, because their spawning areas are located offshore in the open ocean, they migrate back to their specific breeding places in the ocean, often located thousands of kilometres away. The evolutionary origin of such enigmatic behaviour, however, remains elusive because of the uncertain phylogenetic position of freshwater eels within the principally marine anguilliforms. Here, we show strong evidence for a deep oceanic origin of the freshwater eels, based on the phylogenetic analysis of whole mitochondrial genome sequences from 56 species representing all of the 19 anguilliform families. The freshwater eels occupy an apical position within the anguilliforms, forming a highly supported monophyletic group with various oceanic midwater eel species. Moreover, reconstruction of the growth habitats on the resulting tree unequivocally indicates an origination of the freshwater eels from the midwater of the deep ocean. This shows significant concordance with the recent collection of mature adults of the Japanese eel in the upper midwater of the Pacific, suggesting that they have retained their evolutionary origin as a behavioural trait in their spawning areas.
Collapse
Affiliation(s)
- Jun G Inoue
- Ocean Research Institute, The University of Tokyo, Tokyo 164-8639, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kong X, Dong X, Zhang Y, Shi W, Wang Z, Yu Z. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: control region translocation and a tRNA gene inversion. Genome 2009; 52:975-84. [PMID: 19953125 DOI: 10.1139/g09-069] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization of fish mitochondrial genomes (mitogenomes) is quite conserved, usually with the heavy strand encoding 12 of 13 protein-coding genes and 14 of 22 tRNA genes, and the light strand encoding ND6 and the remaining 8 tRNA genes. Currently, there are only a few reports on gene reorganization of fish mitogenomes, with only two types of rearrangements (shuffling and translocation) observed. No gene inversion has been detected in approximately 420 complete fish mitogenomes available so far. Here we report a novel rearrangement in the mitogenome of Cynoglossus semilaevis (Cynoglossinae, Cynoglossidae, Pleuronectiformes). The genome is 16 371 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 2 main noncoding regions, the putative control region and the light-strand replication origin. A striking finding of this study is that the tRNAGln gene is translocated from the light to the heavy strand (Q inversion). This is accompanied by shuffling of the tRNAIle gene and long-range translocation of the putative control region downstream to a site between ND1 and the tRNAGln gene. The remaining gene order is identical to that of typical fish mitogenomes. Additionally, unique characters of this mitogenome, including a high A+T content and length variations of 8 protein-coding genes, were found through comparison of the mitogenome sequence with those from other flatfishes. All the features detected and their relationships with the rearrangements, as well as a possible rearrangement pathway, are discussed. These data provide interesting information for better understanding the molecular mechanisms of gene reorganization in fish mitogenomes.
Collapse
Affiliation(s)
- Xiaoyu Kong
- Marine Biodiversity Collection of South China Sea, Laboratory of Marine Bioresource Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, China
- Laboratory of Mariculture Research, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Xiaoli Dong
- Marine Biodiversity Collection of South China Sea, Laboratory of Marine Bioresource Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, China
- Laboratory of Mariculture Research, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Yanchun Zhang
- Marine Biodiversity Collection of South China Sea, Laboratory of Marine Bioresource Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, China
- Laboratory of Mariculture Research, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Wei Shi
- Marine Biodiversity Collection of South China Sea, Laboratory of Marine Bioresource Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, China
- Laboratory of Mariculture Research, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Zhongming Wang
- Marine Biodiversity Collection of South China Sea, Laboratory of Marine Bioresource Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, China
- Laboratory of Mariculture Research, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Ziniu Yu
- Marine Biodiversity Collection of South China Sea, Laboratory of Marine Bioresource Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, China
- Laboratory of Mariculture Research, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, China
| |
Collapse
|
44
|
Virta VC, Cooper MS. Ontogeny and phylogeny of the yolk extension in embryonic cypriniform fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:196-223. [PMID: 19206142 DOI: 10.1002/jez.b.21284] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The validity of defining a common phylotypic stage for all vertebrates has been questioned because of variations in embryonic morphological traits between vertebrate classes, as well as variations in embryonic phenotypes between species of the same vertebrate class. To evaluate the evolutionary lability of phylotypic features in vertebrate embryos, we have examined the phylogenetic and ontogenetic origins of the yolk extension--a distinctive morphological trait that is found in the ventrolateral trunk region of cypriniform fish embryos. This posterior axial protrusion, extending from the embryonic yolk ball, is formed in cypriniform fishes by a ventrolateral constriction of the yolk mass during the phylotypic period of development. Using a functional definition of the phylotypic period, a comparative analysis of published literature on developing actinoptyerygian (ray-finned) fishes reveals that the yolk extension is a shared embryonic trait of the clade Cypriniformes. The yolk extension also appears in several species in two other basal teleostean clades, Characiformes and Anguilliformes. The conservation of the yolk extension in the clade Cypriniformes, as well as its presence in two other basal teleostean clades, supports the hypothesis that the yolk extension is a product of evolutionary transformation. Besides exhibiting evolutionary transformation, the process of yolk extension formation satisfies five other defined criteria for developmental modularity. Thus, it appears that yolk extension ontogenesis is a novel evolutionary, developmental module that has been incorporated into the phylotypic period of certain teleostean lineages.
Collapse
|
45
|
Kawahara R, Miya M, Mabuchi K, Near TJ, Nishida M. Stickleback phylogenies resolved: Evidence from mitochondrial genomes and 11 nuclear genes. Mol Phylogenet Evol 2009; 50:401-4. [DOI: 10.1016/j.ympev.2008.10.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
46
|
Sano K, Inohaya K, Kawaguchi M, Yoshizaki N, Iuchi I, Yasumasu S. Purification and characterization of zebrafish hatching enzyme - an evolutionary aspect of the mechanism of egg envelope digestion. FEBS J 2009; 275:5934-46. [PMID: 19021768 DOI: 10.1111/j.1742-4658.2008.06722.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There are two hatching enzyme homologues in the zebrafish genome: zebrafish hatching enzyme ZHE1 and ZHE2. Northern blot and RT-PCR analysis revealed that ZHE1 was mainly expressed in pre-hatching embryos, whereas ZHE2 was rarely expressed. This was consistent with the results obtained in an experiment conducted at the protein level, which demonstrated that one kind of hatching enzyme, ZHE1, was able to be purified from the hatching liquid. Therefore, the hatching of zebrafish embryo is performed by a single enzyme, different from the finding that the medaka hatching enzyme is an enzyme system composed of two enzymes, medaka high choriolytic enzyme (MHCE) and medaka low choriolytic enzyme (MLCE), which cooperatively digest the egg envelope. The six ZHE1-cleaving sites were located in the N-terminal regions of egg envelope subunit proteins, ZP2 and ZP3, but not in the internal regions, such as the ZP domains. The digestion manner of ZHE1 appears to be highly analogous to that of MHCE, which partially digests the egg envelope and swells the envelope. The cross-species digestion using enzymes and substrates of zebrafish and medaka revealed that both ZHE1 and MHCE cleaved the same sites of the egg envelope proteins of two species, suggesting that the substrate specificity of ZHE1 is quite similar to that of MHCE. However, MLCE did not show such similarity. Because HCE and LCE are the result of gene duplication in the evolutionary pathway of Teleostei, the present study suggests that ZHE1 and MHCE maintain the character of an ancestral hatching enzyme, and that MLCE acquires a new function, such as promoting the complete digestion of the egg envelope swollen by MHCE.
Collapse
Affiliation(s)
- Kaori Sano
- Graduate Program of Biological Science, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
A ZZ–ZW sex chromosome system in the finless eel Dalophis imberbis (Anguilliformes, Ophichtidae). Genetica 2008; 135:283-8. [DOI: 10.1007/s10709-008-9276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
|
48
|
López JA, Westneat MW, Hanel R. The Phylogenetic Affinities of the Mysterious Anguilliform Genera Coloconger and Thalassenchelys as Supported by mTDNA Sequences. COPEIA 2007. [DOI: 10.1643/0045-8511(2007)7[959:tpaotm]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Lavoué S, Miya M, Poulsen JY, Møller PR, Nishida M. Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. Mol Phylogenet Evol 2007; 47:1111-21. [PMID: 18262798 DOI: 10.1016/j.ympev.2007.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 11/15/2022]
Abstract
Recent mitogenomic studies suggest a new position for the deep-sea fishes of the order Alepocephaliformes, placing them within the Otocephala in contrast to their traditional placement within the Euteleostei. However, these studies included only two alepocephaliform taxa and left several questions unsolved about their systematics. Here we use whole mitogenome sequences to reconstruct phylogenetic relationships for 11 alepocephaliform taxa, sampled from all five nominal families, and a large selection of non-alepocephaliform teleosts, to address the following three questions: (1) is the Alepocephaliformes monophyletic, (2) what is its phylogenetic position within the Teleostei and (3) what are the relationships among the alepocephaliform families? Our character sets, including unambiguously aligned, concatenated mitogenome sequences that we have divided into four (first and second codon positions, tRNA genes, and rRNA genes) or five partitions (same as before plus the transversions at third codon positions, using "RY" coding), were analyzed by the partitioned maximum likelihood and Bayesian methods. Our result strongly supported the monophyly of the Alepocephaliformes and its close relationship to the Clupeiformes and Ostariophysi. Altogether, these three groups comprise the Otocephala. Statistical comparison using likelihood-based SH test confidently rejected the monophyly of the Euteleostei when including the Alepocephaliformes. However, increasing the taxonomic sampling within the Alepocephaliformes did not resolve its position relative to the Clupeiformes and Ostariophysi. Within the Alepocephaliformes, our results strongly supported the monophyly of the platytroctid genera but not that of the remaining taxa. From one analysis to other, platytroctids were either the sister group of the remaining taxa or nested within the alepocephalids. Inferred relationships among alepocephaliform taxa were not congruent with any of the previously published phylogenetic hypotheses based on morphological characters.
Collapse
Affiliation(s)
- Sébastien Lavoué
- Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Tokyo 164-8639, Japan.
| | | | | | | | | |
Collapse
|
50
|
Hoegg S, Boore JL, Kuehl JV, Meyer A. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni. BMC Genomics 2007; 8:317. [PMID: 17845724 PMCID: PMC2080641 DOI: 10.1186/1471-2164-8-317] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 09/10/2007] [Indexed: 11/10/2022] Open
Abstract
Background Teleost fish have seven paralogous clusters of Hox genes stemming from two complete genome duplications early in vertebrate evolution, and an additional genome duplication during the evolution of ray-finned fish, followed by the secondary loss of one cluster. Gene duplications on the one hand, and the evolution of regulatory sequences on the other, are thought to be among the most important mechanisms for the evolution of new gene functions. Cichlid fish, the largest family of vertebrates with about 2500 species, are famous examples of speciation and morphological diversity. Since this diversity could be based on regulatory changes, we chose to study the coding as well as putative regulatory regions of their Hox clusters within a comparative genomic framework. Results We sequenced and characterized all seven Hox clusters of Astatotilapia burtoni, a haplochromine cichlid fish. Comparative analyses with data from other teleost fish such as zebrafish, two species of pufferfish, stickleback and medaka were performed. We traced losses of genes and microRNAs of Hox clusters, the medaka lineage seems to have lost more microRNAs than the other fish lineages. We found that each teleost genome studied so far has a unique set of Hox genes. The hoxb7a gene was lost independently several times during teleost evolution, the most recent event being within the radiation of East African cichlid fish. The conserved non-coding sequences (CNS) encompass a surprisingly large part of the clusters, especially in the HoxAa, HoxCa, and HoxDa clusters. Across all clusters, we observe a trend towards an increased content of CNS towards the anterior end. Conclusion The gene content of Hox clusters in teleost fishes is more variable than expected, with each species studied so far having a different set. Although the highest loss rate of Hox genes occurred immediately after whole genome duplications, our analyses showed that gene loss continued and is still ongoing in all teleost lineages. Along with the gene content, the CNS content also varies across clusters. The excess of CNS at the anterior end of clusters could imply a stronger conservation of anterior expression patters than those towards more posterior areas of the embryo.
Collapse
Affiliation(s)
- Simone Hoegg
- Lehrstuhl für Evolutionsbiologie und Zoologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jeffrey L Boore
- Program in Evolutionary Genomics, DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, and University of California, Berkeley, California 94720, USA
- SymBio Corporation, 1455 Adams Drive, Menlo Park, CA 94025, and University of California, Berkeley, California 94720, USA
| | - Jennifer V Kuehl
- Program in Evolutionary Genomics, DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, and University of California, Berkeley, California 94720, USA
| | - Axel Meyer
- Lehrstuhl für Evolutionsbiologie und Zoologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|