1
|
An J, Yin X, Chen R, Boyko CB, Liu X. Integrative taxonomy of the subfamily Orbioninae (Crustacea: Isopoda) based on mitochondrial and nuclear data with evidence that supports Epicaridea as a suborder. Mol Phylogenet Evol 2023; 180:107681. [PMID: 36572163 DOI: 10.1016/j.ympev.2022.107681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Epicaridea is a group of isopods with high morphological diversity, reduction and loss of characters, and strong sexual dimorphism due to their parasitic lifestyles but their systematics is not well understood. Despite the use of nuclear and mitochondrial genes to test the phylogeny of many invertebrate groups, few molecular data from epicarideans are known, especially from the subfamily Orbioninae. Species in this group are obligate penaeoid shrimp parasites and the lack molecular data has hampered studies on the phylogeny of Orbioninae. To rectify this, mitochondrial and nuclear genes of 9 orbionine species are sequenced here. Compared to the isopod ground pattern, the sequences of orbionines seem to be more plastic near the control region and major translocations are located between rrns and cob. A phylogenetic analysis based on three data sets showed strong support for a monophyletic Orbioninae and that Epicaridea should be accepted at the rank of a suborder within Isopoda. The monophyly of Parapenaeon and Orbione is in doubt based on morphological and molecular data. The genus Parapenaeon is revised and a new genus Aparapenaeon is erected for Parapenaeon japonica and three closely related species.
Collapse
Affiliation(s)
- Jianmei An
- School of Life Science, Shanxi Normal University, Linfen 041000, PR China.
| | - Xiaotian Yin
- School of Life Science, Shanxi Normal University, Linfen 041000, PR China
| | - Ruru Chen
- School of Life Science, Shanxi Normal University, Linfen 041000, PR China
| | - Christopher B Boyko
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Xinming Liu
- Guangxi University of Chinese Medicine, Nanning 530200, PR China
| |
Collapse
|
2
|
Song N, Wei SJ, Wang M. Mitochondrial genome rearrangements and phylogenomics of the Hymenoptera (Insecta) using an expanded taxon sample. Mitochondrial DNA A DNA Mapp Seq Anal 2023; 34:49-65. [PMID: 38753301 DOI: 10.1080/24701394.2024.2345663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/16/2024] [Indexed: 01/30/2025]
Abstract
The order Hymenoptera is one of the most species-rich insect orders, with more than 150,000 described extant species. Many hymenopteran insects have very different mitochondrial genome (mitogenome) organizations compared to the putative ancestral organization of insects. In this study, we sequenced 18 mitogenomes of representatives in the order Hymenoptera to increase taxonomic sampling. A total of 475 species were used in phylogenetic analyses, including 18 new mitogenomes and 457 existing mitogenomes. Using a site-heterogeneous model, Bayesian's inference from amino acid data yielded more resolved relationships among Hymenoptera than maximum-likelihood analysis and coalescent-based species analyses. The monophyly of Symphyta was not supported. The Xyeloidea was the earliest branching clade in the Hymenoptera. The Orussoidea was closely related to Apocrita. Within Apocrita, the Parasitoida was non-monophyletic. The monophyly of most Parasitoida superfamilies received strong support. The Proctotrupomorpha clade was supported in Bayesian's analysis. The Apoidea was monophyletic when excluding Ampulex compressa from consideration. The superfamilies Vespoidea and Chrysidoidea were found to be non-monophyletic. Comparisons of mitochondrial gene order revealed a higher frequency of gene rearrangement among lineages with a parasitoid lifestyle, particularly prominent in Chalcidoidea. The degree of gene rearrangement ranked second in specific taxa of Cynipoidea and Ichneumonoidea.
Collapse
Affiliation(s)
- Nan Song
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Miaomiao Wang
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Zapelloni F, Jurado-Rivera JA, Jaume D, Juan C, Pons J. Comparative Mitogenomics in Hyalella (Amphipoda: Crustacea). Genes (Basel) 2021; 12:genes12020292. [PMID: 33669879 PMCID: PMC7923271 DOI: 10.3390/genes12020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
We present the sequencing and comparative analysis of 17 mitochondrial genomes of Nearctic and Neotropical amphipods of the genus Hyalella, most from the Andean Altiplano. The mitogenomes obtained comprised the usual 37 gene-set of the metazoan mitochondrial genome showing a gene rearrangement (a reverse transposition and a reversal) between the North and South American Hyalella mitogenomes. Hyalella mitochondrial genomes show the typical AT-richness and strong nucleotide bias among codon sites and strands of pancrustaceans. Protein-coding sequences are biased towards AT-rich codons, with a preference for leucine and serine amino acids. Numerous base changes (539) were found in tRNA stems, with 103 classified as fully compensatory, 253 hemi-compensatory and the remaining base mismatches and indels. Most compensatory Watson–Crick switches were AU -> GC linked in the same haplotype, whereas most hemi-compensatory changes resulted in wobble GU and a few AC pairs. These results suggest a pairing fitness increase in tRNAs after crossing low fitness valleys. Branch-site level models detected positive selection for several amino acid positions in up to eight mitochondrial genes, with atp6 and nad5 as the genes displaying more sites under selection.
Collapse
Affiliation(s)
- Francesco Zapelloni
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
| | - José A. Jurado-Rivera
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
| | - Damià Jaume
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
| | - Carlos Juan
- Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Spain; (F.Z.); (J.A.J.-R.); (C.J.)
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
| | - Joan Pons
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, C/Miquel Marquès 21, 07190 Esporles, Spain;
- Correspondence: ; Tel.: +34-971-173-332
| |
Collapse
|
4
|
Zou H, Jakovlić I, Zhang D, Chen R, Mahboob S, Al-Ghanim KA, Al-Misned F, Li WX, Wang GT. The complete mitochondrial genome of Cymothoa indica has a highly rearranged gene order and clusters at the very base of the Isopoda clade. PLoS One 2018; 13:e0203089. [PMID: 30180209 PMCID: PMC6122833 DOI: 10.1371/journal.pone.0203089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/14/2018] [Indexed: 11/18/2022] Open
Abstract
As a result of great diversity in life histories and a large number of described species, taxonomic and phylogenetic uncertainty permeates the entire crustacean order of Isopoda. Large molecular datasets capable of providing sufficiently high phylogenetic resolution, such as mitochondrial genomes (mitogenomes), are needed to infer their evolutionary history with confidence, but isopod mitogenomes remain remarkably poorly represented in public databases. We sequenced the complete mitogenome of Cymothoa indica, a species belonging to a family from which no mitochondrial genome was sequenced yet, Cymothoidae. The mitogenome (circular, 14484 bp, A+T = 63.8%) is highly compact, appears to be missing two tRNA genes (trnI and trnE), and exhibits a unique gene order with a large number of rearrangements. High compactness and the existence of palindromes indicate that the mechanism behind these rearrangements might be associated with linearization events in its evolutionary history, similar to those proposed for isopods from the Armadillidium genus (Oniscidea). Isopods might present an important model system to study the proposed discontinuity in the dynamics of mitochondrial genomic architecture evolution. Phylogenetic analyses (Bayesian Inference and Maximum Likelihood) conducted using nucleotide sequences of all mitochondrial genes resolved Oniscidea and Cymothoida suborders as paraphyletic. Cymothoa indica was resolved as a sister group (basal) to all remaining isopods, which challenges the accepted isopod phylogeny, where Cymothoida are the most derived, and Phreatoicidea the most basal isopod group. There is growing evidence that Cymothoida suborder might be split into two evolutionary distant clades, with parasitic species being the most basal split in the Isopoda clade, but a much larger amount of molecular resources carrying a high phylogenetic resolution will be needed to infer the remarkably complex evolutionary history of this group of animals with confidence.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | | | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Rong Chen
- Bio-Transduction Lab, Biolake, Wuhan, P. R. China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | | | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
5
|
Yu J, An J, Li Y, Boyko CB. The first complete mitochondrial genome of a parasitic isopod supports Epicaridea Latreille, 1825 as a suborder and reveals the less conservative genome of isopods. Syst Parasitol 2018; 95:465-478. [PMID: 29644508 DOI: 10.1007/s11230-018-9792-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/14/2018] [Indexed: 11/26/2022]
Abstract
The complete mitochondrial genome sequence of the holoparasitic isopod Gyge ovalis (Shiino, 1939) has been determined. The mitogenome is 14,268 bp in length and contains 34 genes: 13 protein-coding genes, two ribosomal RNA, 19 tRNA and a control region. Three tRNA genes (trnE, trnI and trnS1) are missing. Most of the tRNA genes show secondary structures which derive from the usual cloverleaf pattern except for trnC which is characterised by the loss of the DHU-arm. Compared to the isopod ground pattern and Eurydice pulchra Leach, 1815 (suborder Cymothoida Wägele, 1989), the genome of G. ovalis shows few differences, with changes only around the control region. However, the genome of G. ovalis is very different from that of non-cymothoidan isopods and reveals that the gene order evolution in isopods is less conservative compared to other crustaceans. Phylogenic trees were constructed using maxiumum likelihood and Bayesian inference analyses based on 13 protein-coding genes. The results do not support the placement of G. ovalis with E. pulchra and Bathynomus sp. in the same suborder; rather, G. ovalis appears to have a closer relationship to Ligia oceanica (Linnaeus, 1767), but this result suggests a need for more data and further analysis. Nevertheless, these results cast doubt that Epicaridea Latreille, 1825 can be placed as an infraorder within the suborder Cymothoida, and Epicaridea appears to also deserve subordinal rank. Further development of robust phylogenetic relationships across Isopoda Latreille, 1817 will require more genetic data from a greater diversity of taxa belonging to all isopod suborders.
Collapse
Affiliation(s)
- Jialu Yu
- School of Life Science, Shanxi Normal University, Linfen, 041000, People's Republic of China
| | - Jianmei An
- School of Life Science, Shanxi Normal University, Linfen, 041000, People's Republic of China.
| | - Yue Li
- School of Life Science, Shanxi Normal University, Linfen, 041000, People's Republic of China
| | - Christopher B Boyko
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
6
|
Shen Y, Kou Q, Zhong Z, Li X, He L, He S, Gan X. The first complete mitogenome of the South China deep-sea giant isopod Bathynomus sp. (Crustacea: Isopoda: Cirolanidae) allows insights into the early mitogenomic evolution of isopods. Ecol Evol 2017; 7:1869-1881. [PMID: 28331594 PMCID: PMC5355201 DOI: 10.1002/ece3.2737] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 12/02/2022] Open
Abstract
In this study, the complete mitochondrial (mt) genome sequence of the South China deep‐sea giant isopod Bathynomus sp. was determined, and this study is the first to explore in detail the mt genome of a deep‐sea member of the order Isopoda. This species belongs to the genus Bathynomus, the members of which are saprophagous residents of the deep‐sea benthic environment; based on their large size, Bathynomus is included in the “supergiant group” of isopods. The mt genome of Bathynomus sp. is 14,965 bp in length and consists of 13 protein‐coding genes, two ribosomal RNA genes, only 18 transfer RNA genes, and a noncoding control region 362 bp in length, which is the smallest control region discovered in Isopoda to date. Although the overall genome organization is typical for metazoans, the mt genome of Bathynomus sp. shows a number of derived characters, such as an inversion of 10 genes when compared to the pancrustacean ground pattern. Rearrangements in some genes (e.g., cob, trnT, nad5, and trnF) are shared by nearly all isopod mt genomes analyzed thus far, and when compared to the putative isopod ground pattern, five rearrangements were found in Bathynomus sp. Two tRNAs exhibit modified secondary structures: The TΨC arm is absent from trnQ, and trnC lacks the DHU. Within the class Malacostraca, trnC arm loss is only found in other isopods. Phylogenetic analysis revealed that Bathynomus sp. (Cymothoida) and Sphaeroma serratum (Sphaeromatidea) form a single clade, although it is unclear whether Cymothoida is monophyletic or paraphyletic. Moreover, the evolutionary rate of Bathynomus sp. (dN/dS [nonsynonymous mutational rate/synonymous mutational rate] = 0.0705) is the slowest measured to date among Cymothoida, which may be associated with its relatively constant deep‐sea environment. Overall, our results may provide useful information for understanding the evolution of deep‐sea Isopoda species.
Collapse
Affiliation(s)
- Yanjun Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China; University of Chinese Academy of Sciences Beijing China
| | - Qi Kou
- Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Zaixuan Zhong
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China; University of Chinese Academy of Sciences Beijing China
| | - Xinzheng Li
- Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering Chinese Academy of Sciences Sanya China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China
| | - Xiaoni Gan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences Institute of Hydrobiology Chinese Academy of Sciences Wuhan Hubei China
| |
Collapse
|
7
|
Panova M, Nygren A, Jonsson PR, Leidenberger S. A molecular phylogeny of the north-east Atlantic species of the genusIdotea(Isopoda) with focus on the Baltic Sea. ZOOL SCR 2016. [DOI: 10.1111/zsc.12200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marina Panova
- Department of Marine Sciences - Tjärnö; University of Gothenburg; SE-452 96 Strömstad Sweden
| | - Arne Nygren
- The Maritime Museum & Aquarium; Karl Johansgatan 1-3 SE-414 59 Göteborg Sweden
| | - Per R. Jonsson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; SE-452 96 Strömstad Sweden
| | - Sonja Leidenberger
- Swedish Species Information Centre/ArtDatabanken; Swedish University of Agricultural Sciences; Bäcklösavägen 10 SE-750 07 Uppsala Sweden
| |
Collapse
|
8
|
The mitogenome of Gammarus duebeni (Crustacea Amphipoda): A new gene order and non-neutral sequence evolution of tandem repeats in the control region. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:201-11. [DOI: 10.1016/j.cbd.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
|
9
|
Kilpert F, Held C, Podsiadlowski L. Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Mol Phylogenet Evol 2012; 64:106-17. [PMID: 22491068 DOI: 10.1016/j.ympev.2012.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
In this study, we analyse the evolutionary dynamics and phylogenetic implications of gene order rearrangements in five newly sequenced mitochondrial (mt) genomes and four published mt genomes of isopod crustaceans. The sequence coverage is nearly complete for four of the five newly sequenced species, with only the control region and some tRNA genes missing, while in Janira maculosa only two thirds of the genome could be determined. Mitochondrial gene order in isopods seems to be more plastic than that in other crustacean lineages, making all nine known mt gene orders different. Especially the asellote Janira is characterized by many autapomorphies. The following inferred ancestral isopod mt gene order exists slightly modified in modern isopods: nad1, tnrL1, rrnS, control region, trnS1, cob, trnT, nad5, trnF. We consider the inferred gene translocation events leading to gene rearrangements as valuable characters in phylogenetic analyses. In this first study covering major isopod lineages, potential apomorphies were identified, e.g., a shared relative position of trnR in Valvifera. We also report one of the first findings of homoplasy in mitochondrial gene order, namely a shared relative position of trnV in unrelated isopod lineages. In addition to increased taxon sampling secondary structure, modification in tRNAs and GC-skew inversion may be potentially fruitful subjects for future mt genome studies in a phylogenetic context.
Collapse
Affiliation(s)
- Fabian Kilpert
- Institute of Evolutionary Biology and Ecology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | | | | |
Collapse
|
10
|
Doublet V, Raimond R, Grandjean F, Lafitte A, Souty-Grosset C, Marcadé I. Widespread atypical mitochondrial DNA structure in isopods (Crustacea, Peracarida) related to a constitutive heteroplasmy in terrestrial species. Genome 2012; 55:234-44. [PMID: 22376074 DOI: 10.1139/g2012-008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metazoan mitochondrial DNA (mtDNA) is generally composed of circular monomeric molecules. However, a few exceptions do exist and among them two terrestrial isopods Armadillidium vulgare and Porcellionides pruinosus have an atypical mtDNA composed of linear monomers associated with circular "head-to-head" dimers: a very unusual structure for animal mtDNA genome. To assess the distribution of this atypical mtDNA among isopods, we performed RFLP and Southern blot analyses on mtDNA of 16 terrestrial (Oniscidea family) and two aquatic isopod species: the marine Sphaeroma serratum (suborder Flabellifera, sister group of Oniscidea) and the freshwater Asellus aquaticus (Asellota, early derived taxon of isopod). The atypical mtDNA structure was observed in 15 terrestrial isopod species and A. aquaticus, suggesting a wide distribution of atypical mtDNA among isopods. However, a typical metazoan mtDNA structure was detected in the marine isopod S. serratum and the Oniscidea Ligia oceanica . Our results suggest two possible scenarios: an early origin of the atypical mtDNA in isopods followed by reversion to the typical ancestral mtDNA structure for several species, or a convergent appearance of the atypical mtDNA structure in two isopod suborders. We compare this distribution of the atypical mtDNA structure with the presence of a heteroplasmy also observed in the mtDNA of several terrestrial isopod species. We discuss if this transmitted heteroplasmy is vectored by the atypical mtDNA and its impact on the maintenance of the atypical mtDNA in isopods.
Collapse
Affiliation(s)
- Vincent Doublet
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 40 Avenue du Recteur Pineau, 86022 Poitiers CEDEX, France.
| | | | | | | | | | | |
Collapse
|
11
|
Xavier R, Santos AM, Harris DJ, Sezgin M, Machado M, Branco M. Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the genus Stenosoma (Isopoda, Valvifera, Idoteidae). ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00537.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Kim S, Park MH, Jung JH, Ahn DH, Sultana T, Kim S, Park JK, Choi HG, Min GS. The mitochondrial genomes of Cambaroides similis and Procambarus clarkii (Decapoda: Astacidea: Cambaridae): the phylogenetic implications for Reptantia. ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00534.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Yuan ML, Wei DD, Wang BJ, Dou W, Wang JJ. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genomics 2010; 11:597. [PMID: 20969792 PMCID: PMC3091742 DOI: 10.1186/1471-2164-11-597] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 10/23/2010] [Indexed: 01/04/2023] Open
Abstract
Background The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of Panonychus citri (Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari. Results The mitochondrial genome of P. citri is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for P. citri is the same as those for P. ulmi and Tetranychus urticae, but distinctly different from other Acari by a series of gene translocations and/or inversions. The majority of the P. citri mitochondrial genome has a high A + T content (85.28%), which is also reflected by AT-rich codons being used more frequently, but exhibits a positive GC-skew (0.03). The Acari mitochondrial nad1 exhibits a faster amino acid substitution rate than other genes, and the variation of nucleotide substitution patterns of PCGs is significantly correlated with the G + C content. Most tRNA genes of P. citri are extremely truncated and atypical (44-65, 54.1 ± 4.1 bp), lacking either the T- or D-arm, as found in P. ulmi, T. urticae, and other Acariform mites. Conclusions The P. citri mitochondrial gene order is markedly different from those of other chelicerates, but is conserved within the family Tetranychidae indicating that high rearrangements have occurred after Tetranychidae diverged from other Acari. Comparative analyses suggest that the genome size, gene order, gene content, codon usage, and base composition are strongly variable among Acari mitochondrial genomes. While extremely small and unusual tRNA genes seem to be common for Acariform mites, further experimental evidence is needed.
Collapse
Affiliation(s)
- Ming-Long Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | | | | | | | | |
Collapse
|
14
|
Ito A, Aoki MN, Yokobori SI, Wada H. The complete mitochondrial genome ofCaprella scaura(Crustacea, Amphipoda, Caprellidea), with emphasis on the unique gene order pattern and duplicated control region. ACTA ACUST UNITED AC 2010; 21:183-90. [DOI: 10.3109/19401736.2010.517834] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Kilpert F, Podsiadlowski L. The mitochondrial genome of the Japanese skeleton shrimpCaprella mutica(Amphipoda: Caprellidea) reveals a unique gene order and shared apomorphic translocations with Gammaridea. ACTA ACUST UNITED AC 2010; 21:77-86. [DOI: 10.3109/19401736.2010.490832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Wei SJ, Shi M, Sharkey MJ, van Achterberg C, Chen XX. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genomics 2010; 11:371. [PMID: 20537196 PMCID: PMC2890569 DOI: 10.1186/1471-2164-11-371] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 06/11/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. RESULTS Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship with (Diptera + Mecoptera) were supported across all analyses. CONCLUSIONS Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be a valuable tool for systematics in other groups of arthropods.
Collapse
Affiliation(s)
- Shu-jun Wei
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Shi
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Michael J Sharkey
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| | - Cornelis van Achterberg
- Department of Entomology, Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, Netherlands
| | - Xue-xin Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
17
|
Liu Y, Cui Z. The complete mitochondrial genome of the mantid shrimp Oratosquilla oratoria (Crustacea: Malacostraca: Stomatopoda): Novel non-coding regions features and phylogenetic implications of the Stomatopoda. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:190-8. [PMID: 20510661 DOI: 10.1016/j.cbd.2010.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 12/18/2022]
Abstract
The complete mitochondrial (mt) genome sequence of Oratosquilla oratoria (Crustacea: Malacostraca: Stomatopoda) was determined; a circular molecule of 15,783 bp in length. The gene content and arrangement are consistent with the pancrustacean ground pattern. The mt control region of O. oratoria is characterized by no GA-block near the 3' end and different position of [TA(A)]n-blocks compared with other reported Stomatopoda species. The sequence of the second hairpin structure is relative conserved which suggests this region may be a synapomorphic character for the Stomatopoda. In addition, a relative large intergenic spacer (101 bp) with higher A+T content than that in control region was identified between the tRNA(Glu) and tRNA(Phe) genes. Phylogenetic analyses based on the current dataset of complete mt genomes strongly support the Stomatopoda is closely related to Euphausiacea. They in turn cluster with Penaeoidea and Caridea clades while other decapods form a separate group, which rejects the monophyly of Decapoda. This challenges the suitability of Stomatopoda as an outgroup of Decapoda in phylogenetic analyses. The basal position of Stomatopoda within Eumalacostraca according to the morphological characters is also questioned.
Collapse
Affiliation(s)
- Yuan Liu
- EMBL, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | |
Collapse
|
18
|
TANG RICKYWK, YAU CYNTHIA, NG WAI. Identification of stomatopod larvae (Crustacea: Stomatopoda) from Hong Kong waters using DNA barcodes. Mol Ecol Resour 2010; 10:439-48. [DOI: 10.1111/j.1755-0998.2009.02794.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- RICKY W. K. TANG
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d’Aguilar Road, Shek O; and Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - CYNTHIA YAU
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d’Aguilar Road, Shek O; and Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - WAI‐CHUEN NG
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d’Aguilar Road, Shek O; and Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
19
|
Complete mitochondrial genome of the Chinese spiny lobster Panulirus stimpsoni (Crustacea: Decapoda): genome characterization and phylogenetic considerations. Mol Biol Rep 2010; 38:403-10. [PMID: 20352347 DOI: 10.1007/s11033-010-0122-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/17/2010] [Indexed: 02/08/2023]
Abstract
The genetics and molecular biology of the commercially important Chinese spiny lobster, Panulirus stimpsoni are little known. Here, we present the complete mitochondrial genome sequence of P. stimpsoni, determined by the long polymerase chain reaction and primer walking sequencing method. The entire genome is 15,677 bp in length, encoding the standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The overall A+T content of the genome is 65.6%, lower than most malacostracan species. The gene order is consistent with the pancrustacean ground pattern. Several conserved elements were identified from P. stimpsoni control region, viz. one [TA(A)]n-block, two GA-blocks and three hairpin structures. However, the position of [TA(A)]n-block and number of hairpin structure are different from those in the congeneric P. japonicus and other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes do not support the monophyly of suborder Pleocyemata, which is in contrast to most morphological and molecular results. However, the position of Palinura and Astacidea is unstable, as represented by the basal or sister branches to other Reptantia species. P. stimpsoni, as the second species of Palinura with complete mitochondrial genome available, will provide important information on both genomics and conservation biology of the group.
Collapse
|
20
|
Jenner RA. Higher-level crustacean phylogeny: consensus and conflicting hypotheses. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:143-153. [PMID: 19944189 DOI: 10.1016/j.asd.2009.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 05/28/2023]
Abstract
This paper presents an overview of current hypotheses of higher-level crustacean phylogeny in order to assist and help focus further research. It concentrates on hypotheses proposed or debated in the recent literature based on morphological, molecular and combined evidence phylogenetic analyses. It can be concluded that crustacean phylogeny remains essentially unresolved. Conflict is rife, irrespective of whether one compares different morphological studies, molecular studies, or both. Using the number of recently proposed alternative sister group hypotheses for each of the major tetraconatan taxa as a rough estimate of phylogenetic uncertainty, it can be concluded that the phylogenetic position of Malacostraca remains the most problematic, closely followed by Branchiopoda, Cephalocarida, Remipedia, Ostracoda, Branchiura, Copepoda and Hexapoda. Future progress will depend upon a broader taxon sampling in molecular analyses, and the further exploration of new molecular phylogenetic markers. However, the need for continued revision and expansion of morphological datasets remains undiminished given the conspicuous lack of agreement between molecules and morphology for positioning several taxa. In view of the unparalleled morphological diversity of Crustacea, and the likely nesting of Hexapoda somewhere within Crustacea, working out a detailed phylogeny of Tetraconata is a crucial step towards understanding arthropod body plan evolution.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Zoology, The Natural History Museum, Cromwell Road, London, UK.
| |
Collapse
|
21
|
Jex AR, Hall RS, Littlewood DTJ, Gasser RB. An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic Acids Res 2009; 38:522-33. [PMID: 19892826 PMCID: PMC2811008 DOI: 10.1093/nar/gkp883] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial (mt) genomics represents an understudied but important field of molecular biology. Increasingly, mt dysfunction is being linked to a range of human diseases, including neurodegenerative disorders, diabetes and impairment of childhood development. In addition, mt genomes provide important markers for systematic, evolutionary and population genetic studies. Some technological limitations have prevented the expanded generation and utilization of mt genomic data for some groups of organisms. These obstacles most acutely impede, but are not limited to, studies requiring the determination of complete mt genomic data from minute amounts of material (e.g. biopsy samples or microscopic organisms). Furthermore, post-sequencing bioinformatic annotation and analyses of mt genomes are time consuming and inefficient. Herein, we describe a high-throughput sequencing and bioinformatic pipeline for mt genomics, which will have implications for the annotation and analysis of other organellar (e.g. plastid or apicoplast genomes) and virus genomes as well as long, contiguous regions in nuclear genomes. We utilize this pipeline to sequence and annotate the complete mt genomes of 12 species of parasitic nematode (order Strongylida) simultaneously, each from an individual organism. These mt genomic data provide a rich source of markers for studies of the systematics and population genetics of a group of socioeconomically important pathogens of humans and other animals.
Collapse
Affiliation(s)
- Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, Victoria 3030, Australia.
| | | | | | | |
Collapse
|
22
|
Kilpert F, Podsiadlowski L. The Australian fresh water isopod (Phreatoicidea: Isopoda) allows insights into the early mitogenomic evolution of isopods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 5:36-44. [PMID: 20374940 DOI: 10.1016/j.cbd.2009.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/11/2009] [Accepted: 09/12/2009] [Indexed: 11/18/2022]
Abstract
The complete mitochondrial (mt) genome sequence of the Australian fresh water isopod Eophreatoicus sp.-14 has been determined. The new species is a member of the taxon Phreatoicidea, a clade of particular interest, as it is often regarded as the sister group to all other Isopoda. Although the overall genome organization of Eophreatoicus sp.-14 conforms to the typical state of Metazoa--it is a circular ring of DNA hosting the usual 37 genes and one major non-coding region--it bears a number of derived characters that fall within the scope of "genome morphology". Earlier studies have indicated that the isopod mitochondrial gene order is not as conserved as that of other crustaceans. Indeed, the mt genome of Eophreatoicus sp.-14 shows an inversion of seven genes (including cox1), which is as far as we know unique. Even more interesting is the derived arrangement of nad1, trnL(CUN), rrnS, control region, cob, trnT, nad5 and trnF that is shared by nearly all available isopod mt genomes. A striking feature is the close proximity of the rearranged genes to the mt control region. Inferable gene translocation events are, however, more suitable to trace the evolution of mt genomes. Genes like nad1/trnL(CUN) and nad5/trnF, which retained their adjacent position after being rearranged, were most likely translocated together. A very good example for the need to understand the mechanisms of translocations is the remolding of trnL(UUR) to trnL(CUN). Both tRNA genes are adjacent and have a high sequence similarity, probably the result of a gene duplication and subsequent anticodon mutation. Modified secondary structures were found in three tRNAs of Eophreatoicus sp.-14, which are all characterized by the loss of the DHU-arm. This is common to crustaceans for tRNA Serine(AGY), while the arm-loss in tRNA Cysteine within Malacostraca is only shared by other isopods. Modification of the third tRNA, Isoleucine, is not known from any other related species. Nucleotide frequencies of genes have been found to be indirectly correlated to the orientation of the mitochondrial replication process. In Eophreatoicus sp.-14 and in other Isopoda the associated nucleotide bias is inversed to the state of other Malacostraca. This is a strong indication for an inversion of the control region that most likely evolved in the isopod ancestor.
Collapse
Affiliation(s)
- Fabian Kilpert
- Institute of Evolutionary Biology and Ecology, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, D-53121 Bonn, Germany.
| | | |
Collapse
|
23
|
Bauzà-Ribot MM, Jaume D, Juan C, Pons J. The complete mitochondrial genome of the subterranean crustaceanMetacrangonyx longipes(Amphipoda): A unique gene order and extremely short control region. ACTA ACUST UNITED AC 2009; 20:88-99. [DOI: 10.1080/19401730902964417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Monsoon-influenced speciation patterns in a species flock of Eophreatoicus Nicholls (Isopoda; Crustacea). Mol Phylogenet Evol 2009; 51:349-64. [DOI: 10.1016/j.ympev.2009.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/03/2009] [Accepted: 02/07/2009] [Indexed: 11/18/2022]
|
25
|
Raupach MJ, Mayer C, Malyutina M, Wägele JW. Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc Biol Sci 2009; 276:799-808. [PMID: 19033145 PMCID: PMC2664356 DOI: 10.1098/rspb.2008.1063] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Asellota are a highly variable group of Isopoda with many species in freshwater and marine shallow-water environments. However, in the deep sea, they show their most impressive radiation with a broad range of astonishing morphological adaptations and bizarre body forms. Nevertheless, the evolution and phylogeny of the deep-sea Asellota are poorly known because of difficulties in scoring morphological characters. In this study, the molecular phylogeny of the Asellota is evaluated for 15 marine shallow-water species and 101 deep-sea species, using complete 18S and partial 28S rDNA gene sequences. Our molecular data support the monophyly of most deep-sea families and give evidence for a multiple colonization of the deep sea by at least four major lineages of asellote isopods. According to our molecular data, one of these lineages indicates an impressive radiation in the deep sea. Furthermore, the present study rejects the monophyly of the family Janiridae, a group of plesiomorphic shallow-water Asellota, and several shallow-water and deep-sea genera (Acanthaspidia, Ianthopsis, Haploniscus, Echinozone, Eurycope, Munnopsurus and Syneurycope).
Collapse
Affiliation(s)
- Michael J Raupach
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany.
| | | | | | | |
Collapse
|
26
|
Fahrein K, Talarico G, Braband A, Podsiadlowski L. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida. BMC Genomics 2007; 8:386. [PMID: 17961221 PMCID: PMC2231378 DOI: 10.1186/1471-2164-8-386] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 10/25/2007] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders) are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities. Results The first complete mitochondrial DNA genome of a member of the Ricinulei, Pseudocellus pearsei (Arachnida: Ricinulei) was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (trnW, trnY, trnN, trnL(CUN), trnV) show different relative positions compared to other Chelicerata (e.g. Limulus polyphemus, Ixodes spp.). We propose that two events led to this derived gene order: (1) a tandem duplication followed by random deletion and (2) an independent translocation of trnN. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference) using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved. Conclusion Phylogenetic analyses (ML, MP, BI) of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of intraordinal relationships, e.g. in Acari.
Collapse
|
27
|
Marcadé I, Cordaux R, Doublet V, Debenest C, Bouchon D, Raimond R. Structure and Evolution of the Atypical Mitochondrial Genome of Armadillidium vulgare (Isopoda, Crustacea). J Mol Evol 2007; 65:651-9. [PMID: 17906827 DOI: 10.1007/s00239-007-9037-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/02/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
The crustacean isopod Armadillidium vulgare is characterized by an unusual approximately 42-kb-long mitochondrial genome consisting of two molecules co-occurring in mitochondria: a circular approximately 28-kb dimer formed by two approximately 14-kb monomers fused in opposite polarities and a linear approximately 14-kb monomer. Here we determined the nucleotide sequence of the fundamental monomeric unit of A. vulgare mitochondrial genome, to gain new insight into its structure and evolution. Our results suggest that the junction zone between monomers of the dimer structure is located in or near the control region. Direct sequencing indicated that the nucleotide sequences of the different monomer units are virtually identical. This suggests that gene conversion and/or replication processes play an important role in shaping nucleotide sequence variation in this mitochondrial genome. The only heteroplasmic site we identified predicts an alloacceptor tRNA change from tRNA(Ala) to tRNA(Val). Therefore, in A. vulgare, tRNA(Ala) and tRNA(Val) are found at the same locus in different monomers, ensuring that both tRNAs are present in mitochondria. The presence of this heteroplasmic site in all sequenced individuals suggests that the polymorphism is selectively maintained, probably because of the necessity of both tRNAs for maintaining proper mitochondrial functions. Thus, our results provide empirical evidence for the tRNA gene recruitment model of tRNA evolution. Moreover, interspecific comparisons showed that the A. vulgare mitochondrial gene order is highly derived compared to the putative ancestral arthropod type. By contrast, an overall high conservation of mitochondrial gene order is observed within crustacean isopods.
Collapse
Affiliation(s)
- Isabelle Marcadé
- Laboratoire de Génétique et Biologie des Populations de Crustacés, UMR CNRS 6556, Université de Poitiers, 40 Avenue du Recteur Pineau, F-86022 Poitiers, France.
| | | | | | | | | | | |
Collapse
|
28
|
Podsiadlowski L, Braband A. The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda: Pycnogonida). BMC Genomics 2006; 7:284. [PMID: 17087824 PMCID: PMC1636051 DOI: 10.1186/1471-2164-7-284] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 11/06/2006] [Indexed: 11/25/2022] Open
Abstract
Background Mitochondrial genomes form units of genetic information replicating indepentently from nuclear genomes. Sequence data (most often from protein-coding genes) and other features (gene order, RNA secondary structure) of mitochondrial genomes are often used in phylogenetic studies of metazoan animals from population to phylum level. Pycnogonids are primarily marine arthropods, often considered closely related to chelicerates (spiders, scorpions and allies). However, due to their aberrant morphology and to controversial results from molecular studies, their phylogenetic position is still under debate. Results This is the first report of a complete mitochondrial genome sequence from a sea spider (Nymphon gracile, class Pycnogonida). Gene order derives from that of other arthropods so that presumably 10 single tRNA gene translocations, a translocation of the mitochondrial control region, and one large inversion affecting protein-coding genes must have happened in the lineage leading to Nymphon gracile. Some of the changes in gene order seem not to be common to all pycnogonids, as those were not found in a partial mitochondrial genome of another species, Endeis spinosa. Four transfer RNAs of Nymphon gracile show derivations from the usual cloverleaf secondary structure (truncation or loss of an arm). Initial phylogenetic analyses using mitochondrial protein-coding gene sequences placed Pycnogonida as sister group to Acari. However, this is in contrast to the majority of all other studies using nuclear genes and/or morphology and was not recovered in a second analysis where two long-branching acarid species were omitted. Conclusion Extensive gene rearrangement characterizes the mitochondrial genome of Nymphon gracile. At least some of the events leading to this derived gene order happened after the split of pycnogonid subtaxa. Nucleotide and amino acid frequencies show strong differences between chelicerate taxa, presumably biasing phylogenetic analyses. Thus the affinities between Pycnogonida and Acari (mites and ticks), as found in phylogenetic analyses using mitochondrial genes, may rather be due to long-branch attraction and independently derived nucleotide composition and amino acid frequency, than to a real sister group relationship.
Collapse
Affiliation(s)
- Lars Podsiadlowski
- Department of Animal Systematics and Evolution, Institute of Biology, Freie Universität Berlin, Konigin-Luise-Str. 1-3, D-14195 Berlin, Germany
| | - Anke Braband
- Department of Comparative Zoology, Institute of Biology, Humboldt Unversität, Phillipstr. 13, D-10115 Berlin, Germany
| |
Collapse
|
29
|
Kilpert F, Podsiadlowski L. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 2006; 7:241. [PMID: 16987408 PMCID: PMC1590035 DOI: 10.1186/1471-2164-7-241] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/20/2006] [Indexed: 11/18/2022] Open
Abstract
Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules) are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc.) comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region) of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp), and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already present the last common ancestor of these isopods. Beyond that, the positions of three tRNA genes differ in the two isopod species. Strand bias in nucleotide frequency is reversed in both isopod species compared to other Malacostraca. This is probably due to a reversal of the replication origin, which is further supported by the fact that the hairpin structure typically found in the control region shows a reversed orientation in the isopod species, compared to other crustaceans.
Collapse
Affiliation(s)
- Fabian Kilpert
- Department of Animal Systematics and Evolution, Institute of Biology, Freie Universität Berlin, Konigin-Luise-Str. 1-3, D-14195 Berlin, Germany
| | - Lars Podsiadlowski
- Department of Animal Systematics and Evolution, Institute of Biology, Freie Universität Berlin, Konigin-Luise-Str. 1-3, D-14195 Berlin, Germany
| |
Collapse
|