1
|
Ebert A, Alseekh S, D’Andrea L, Roessner U, Bock R, Kopka J. Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers. Metabolites 2024; 14:562. [PMID: 39452943 PMCID: PMC11509208 DOI: 10.3390/metabo14100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. OBJECTIVES We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. METHODS We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. RESULTS We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. CONCLUSIONS We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites.
Collapse
Affiliation(s)
- Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lucio D’Andrea
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Cauz-Santos LA, Samuel R, Metschina D, Christenhusz MJM, Dodsworth S, Dixon KW, Conran JG, Paun O, Chase MW. Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts. Mol Ecol 2024; 33:e17498. [PMID: 39152668 DOI: 10.1111/mec.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.
Collapse
Affiliation(s)
- Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Dominik Metschina
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Maarten J M Christenhusz
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Kingsley W Dixon
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - John G Conran
- Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Mark W Chase
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Ranawaka B, An J, Lorenc MT, Jung H, Sulli M, Aprea G, Roden S, Llaca V, Hayashi S, Asadyar L, LeBlanc Z, Ahmed Z, Naim F, de Campos SB, Cooper T, de Felippes FF, Dong P, Zhong S, Garcia-Carpintero V, Orzaez D, Dudley KJ, Bombarely A, Bally J, Winefield C, Giuliano G, Waterhouse PM. A multi-omic Nicotiana benthamiana resource for fundamental research and biotechnology. NATURE PLANTS 2023; 9:1558-1571. [PMID: 37563457 PMCID: PMC10505560 DOI: 10.1038/s41477-023-01489-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Nicotiana benthamiana is an invaluable model plant and biotechnology platform with a ~3 Gb allotetraploid genome. To further improve its usefulness and versatility, we have produced high-quality chromosome-level genome assemblies, coupled with transcriptome, epigenome, microRNA and transposable element datasets, for the ubiquitously used LAB strain and a related wild accession, QLD. In addition, single nucleotide polymorphism maps have been produced for a further two laboratory strains and four wild accessions. Despite the loss of five chromosomes from the ancestral tetraploid, expansion of intergenic regions, widespread segmental allopolyploidy, advanced diploidization and evidence of recent bursts of Copia pseudovirus (Copia) mobility not seen in other Nicotiana genomes, the two subgenomes of N. benthamiana show large regions of synteny across the Solanaceae. LAB and QLD have many genetic, metabolic and phenotypic differences, including disparate RNA interference responses, but are highly interfertile and amenable to genome editing and both transient and stable transformation. The LAB/QLD combination has the potential to be as useful as the Columbia-0/Landsberg errecta partnership, utilized from the early pioneering days of Arabidopsis genomics to today.
Collapse
Affiliation(s)
- Buddhini Ranawaka
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Jiyuan An
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
| | - Michał T Lorenc
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Hyungtaek Jung
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Sally Roden
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Victor Llaca
- Genomics Technologies, Corteva Agriscience, Johnston, IA, USA
| | - Satomi Hayashi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Leila Asadyar
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Zacharie LeBlanc
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Zuba Ahmed
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Fatima Naim
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Samanta Bolzan de Campos
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Tal Cooper
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Felipe F de Felippes
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Pengfei Dong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Victor Garcia-Carpintero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
| | - Kevin J Dudley
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- QUT Central Analytical Research Facility, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
- Università degli Studi di Milano, Milan, Italy
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Christopher Winefield
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
- Department of Wine Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand.
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Wang S, Gao J, Li Z, Chen K, Pu W, Feng C. Phylotranscriptomics supports numerous polyploidization events and phylogenetic relationships in Nicotiana. FRONTIERS IN PLANT SCIENCE 2023; 14:1205683. [PMID: 37575947 PMCID: PMC10421670 DOI: 10.3389/fpls.2023.1205683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Introduction Nicotiana L. (Solanaceae) is of great scientific and economic importance, and polyploidization has been pivotal in shaping this genus. Despite many previous studies on the Nicotiana phylogenetic relationship and hybridization, evidence from whole genome data is still lacking. Methods In this study, we obtained 995 low-copy genes and plastid transcript fragments from the transcriptome datasets of 26 Nicotiana species, including all sections. We reconstructed the phylogenetic relationship and phylogenetic network of diploid species. Results The incongruence among gene trees showed that the formation of N. sylvestris involved incomplete lineage sorting. The nuclear-plastid discordance and nuclear introgression absence indicated that organelle capture from section Trigonophyllae was involved in forming section Petunioides. Furthermore, we analyzed the evolutionary origin of polyploid species and dated the time of hybridization events based on the analysis of PhyloNet, sequence similarity search, and phylogeny of subgenome approaches. Our results highly evidenced the hybrid origins of five polyploid sections, including sections Nicotiana, Repandae, Rusticae, Polydicliae, and Suaveolentes. Notably, we provide novel insights into the hybridization event of section Polydicliae and Suaveolentes. The section Polydicliae formed from a single hybridization event between maternal progenitor N. attenuata and paternal progenitor N. undulata; the N. sylvestris (paternal progenitor) and the N. glauca (maternal progenitor) were involved in the formation of section Suaveolentes. Discussion This study represents the first exploration of Nicotiana polyploidization events and phylogenetic relationships using the high-throughput RNA-seq approach. It will provide guidance for further studies in molecular systematics, population genetics, and ecological adaption studies in Nicotiana and other related species.
Collapse
Affiliation(s)
- Shuaibin Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Junping Gao
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Zhaowu Li
- Puai Medical College, Shaoyang University, Shaoyang, China
| | - Kai Chen
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex-situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| |
Collapse
|
5
|
D’Andrea L, Sierro N, Ouadi S, Hasing T, Rinaldi E, Ivanov NV, Bombarely A. Polyploid Nicotiana section Suaveolentes originated by hybridization of two ancestral Nicotiana clades. FRONTIERS IN PLANT SCIENCE 2023; 14:999887. [PMID: 37223799 PMCID: PMC10200995 DOI: 10.3389/fpls.2023.999887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/30/2023] [Indexed: 05/25/2023]
Abstract
Introduction Nicotiana section Suaveolentes is an almost all-Australian clade of allopolyploid tobacco species that emerged through hybridization between diploid relatives of the genus. In this study, we aimed to assess the phylogenetic relationship of the Suaveolentes section with several Nicotiana diploid species based on both plastidial and nuclear genes. Methods The Nicotiana plastome-based phylogenetic analysis representing 47 newly re-built plastid genomes suggested that an ancestor of N. section Noctiflorae is the most likely maternal donor of the Suaveolentes clade. Nevertheless, we found clear evidence of plastid recombination with an ancestor from the Sylvestres clade. We analyzed 411 maximum likelihood-based phylogenetic trees from a set of conserved nuclear diploid single copy gene families following an approach that assessed the genomic origin of each homeolog. Results We found that Nicotiana section Suaveolentes is monophyletic with contributions from the sections Alatae, Sylvestres, Petunioides and Noctiflorae. The dating of the divergence between these sections indicates that the Suaveolentes hybridization predates the split between Alatae/Sylvestres, and Noctiflorae/Petunioides. Discussion We propose that Nicotiana section Suaveolentes arose from the hybridization of two ancestral species from which the Noctiflorae/Petunioides and Alatae/Sylvestres sections are derived, with Noctiflorae the maternal parent. This study is a good example in which the use of genome wide data provided additional evidence about the origin of a complex polyploid clade.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Department of Bioscience, Universita degli Studi di Milano, Milan, Italy
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Sonia Ouadi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | | | - Elijah Rinaldi
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nikolai V. Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Aureliano Bombarely
- Department of Bioscience, Universita degli Studi di Milano, Milan, Italy
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), Valencia, Spain
| |
Collapse
|
6
|
Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, Fletcher P, Jakob A, Cauz-Santos LA, Vignolle G, Dodsworth S, Christenhusz MJM, Buril MT, Paun O. Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). ANNALS OF BOTANY 2023; 131:123-142. [PMID: 35029647 PMCID: PMC9904355 DOI: 10.1093/aob/mcac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
Collapse
Affiliation(s)
- Mark W Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | - John G Conran
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Felipe Nollet
- Universidade Federal Rural de Pernambuco, Centro de Ciências Biológicas, Departamento de Botânica, Rua Manuel de Medeiros, S/N, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Paul Fletcher
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Aljaž Jakob
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Gabriel Vignolle
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Maarten J M Christenhusz
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Maria Teresa Buril
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
7
|
Wang S, Gao J, Chao H, Li Z, Pu W, Wang Y, Chen M. Comparative Chloroplast Genomes of Nicotiana Species (Solanaceae): Insights Into the Genetic Variation, Phylogenetic Relationship, and Polyploid Speciation. FRONTIERS IN PLANT SCIENCE 2022; 13:899252. [PMID: 35865282 PMCID: PMC9295722 DOI: 10.3389/fpls.2022.899252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 05/25/2023]
Abstract
Nicotiana L. is a genus rich in polyploidy, which represents an ideal natural system for investigating speciation, biodiversity, and phytogeography. Despite a wealth of phylogenetic work on this genus, a robust evolutionary framework with a dated molecular phylogeny for the genus is still lacking. In this study, the 19 complete chloroplast genomes of Nicotiana species were assembled, and five published chloroplast genomes of Nicotiana were retrieved for comparative analyses. The results showed that the 24 chloroplast genomes of Nicotiana, ranging from 155,327 bp (N. paniculata) to 156,142 bp (N. heterantha) in size, exhibited typical quadripartite structure. The chloroplast genomes were rather conserved in genome structure, GC content, RNA editing sites, and gene content and order. The higher GC content observed in the IR regions could be a result of the presence of abundant rRNA and tRNA genes, which contained a relatively higher GC content. A total of seven hypervariable regions, as new molecular markers for phylogenetic analysis, were uncovered. Based on 78 protein-coding genes, we constructed a well-supported phylogenetic tree, which was largely in agreement with previous studies, except for a slight conflict in several sections. Chloroplast phylogenetic results indicated that the progenitors of diploid N. sylvestris, N. knightiana, and the common ancestor of N. sylvestris and N. glauca might have donated the maternal genomes of allopolyploid N. tabacum, N. rustica, and section Repandae, respectively. Meanwhile, the diploid section Noctiflorae lineages (N. glauca) acted as the most likely maternal progenitor of section Suaveolentes. Molecular dating results show that the polyploid events range considerably in ~0.12 million (section Nicotiana) to ~5.77 million (section Repandae) years ago. The younger polyploids (N. tabacum and N. rustica) were estimated to have arisen ~0.120 and ~0.186 Mya, respectively. The older polyploids (section Repandae and Suaveolentes) were considered to have originated from a single polyploid event at ~5.77 and ~4.49 Mya, respectively. In summary, the comparative analysis of chloroplast genomes of Nicotiana species has not only revealed a series of new insights into the genetic variation and phylogenetic relationships in Nicotiana but also provided rich genetic resources for speciation and biodiversity research in the future.
Collapse
Affiliation(s)
- Shuaibin Wang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Junping Gao
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Haoyu Chao
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhaowu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Yaofu Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Cauz‐Santos LA, Dodsworth S, Samuel R, Christenhusz MJM, Patel D, Shittu T, Jakob A, Paun O, Chase MW. Genomic insights into recent species divergence in Nicotiana benthamiana and natural variation in Rdr1 gene controlling viral susceptibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:7-18. [PMID: 35535507 PMCID: PMC9543217 DOI: 10.1111/tpj.15801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 05/31/2023]
Abstract
One of the most commonly encountered and frequently cited laboratory organisms worldwide is classified taxonomically as Nicotiana benthamiana (Solanaceae), an accession of which, typically referred to as LAB, is renowned for its unique susceptibility to a wide range of plant viruses and hence capacity to be transformed using a variety of methods. This susceptibility is the result of an insertion and consequent loss of function in the RNA-dependent RNA polymerase 1 (Rdr1) gene. However, the origin and age of LAB and the evolution of N. benthamiana across its wide distribution in Australia remain relatively underexplored. Here, we have used multispecies coalescent methods on genome-wide single nucleotide polymorphisms (SNPs) to assess species limits, phylogenetic relationships and divergence times within N. benthamiana. Our results show that the previous taxonomic concept of this species in fact comprises five geographically, morphologically and genetically distinct species, one of which includes LAB. We provide clear evidence that LAB is closely related to accessions collected further north in the Northern Territory; this species split much earlier, c. 1.1 million years ago, from their common ancestor than the other four in this clade and is morphologically the most distinctive. We also found that the Rdr1 gene insertion is variable among accessions from the northern portions of the Northern Territory. Furthermore, this long-isolated species typically grows in sheltered sites in subtropical/tropical monsoon areas of northern Australia, contradicting the previously advanced hypothesis that this species is an extremophile that has traded viral resistance for precocious development.
Collapse
Affiliation(s)
- Luiz A. Cauz‐Santos
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| | - Steven Dodsworth
- School of Biological SciencesUniversity of PortsmouthKing Henry Building, King Henry 1 StreetPortsmouthPO1 2DYUK
- School of Life SciencesUniversity of Bedfordshire, University SquareLutonBedfordshireLU1 3JUUK
| | - Rosabelle Samuel
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| | | | - Denise Patel
- School of Life SciencesUniversity of Bedfordshire, University SquareLutonBedfordshireLU1 3JUUK
| | - Taiwo Shittu
- School of Life SciencesUniversity of Bedfordshire, University SquareLutonBedfordshireLU1 3JUUK
| | - Aljaž Jakob
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| | - Mark W. Chase
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Royal Botanic GardensKewRichmondTW9 3DSUK
- Department of Environment and AgricultureCurtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
9
|
Santilli L, Pérez F, Schrevel CD, Dandois P, Mondaca H, Lavandero N. Nicotianarupicola sp. nov. and Nicotianaknightiana (sect.Paniculatae, Solanaceae), a new endemic and a new record for the flora of Chile. PHYTOKEYS 2022; 188:83-103. [PMID: 35095294 PMCID: PMC8789758 DOI: 10.3897/phytokeys.188.73370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/29/2021] [Indexed: 05/31/2023]
Abstract
Nicotianaknightiana is recorded for the first time for the flora of Chile. A new species of Nicotiana, endemic to the coast of the Coquimbo region is described and illustrated. Molecular analysis placed the new species within the N.sect.Paniculatae, as sister to N.cordifolia, an endemic to Juan Fernandez islands. The new species can be considered critically endangered (CR) according to the IUCN categories due to its restricted and fragmented distribution, small population number, and the threat that urbanization and mining activities represent for the conservation of the biodiversity of the area.
Collapse
Affiliation(s)
- Ludovica Santilli
- Museo Nacional de Historia Natural, Área Botánica, Interior Parque Quinta Normal S/N, Casilla 787, Santiago, ChileMuseo Nacional de Historia Natural, Área BotánicaSantiagoChile
| | - Fernanda Pérez
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePontificia Universidad Católica de ChileSantiagoChile
| | - Claire De Schrevel
- Independent researcher, Copiapó, ChileIndependent researcherCopiapóChile
| | - Philippe Dandois
- Independent researcher, Copiapó, ChileIndependent researcherCopiapóChile
| | - Héctor Mondaca
- Independent researcher, Santiago, ChileIndependent researcherSantiagoChile
| | - Nicolás Lavandero
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
10
|
Hussain Z, Sun Y, Shah SH, Khan H, Ali S, Iqbal A, Zia MA, Ali SS. The dynamics of genome size and GC contents evolution in genus Nicotiana. BRAZ J BIOL 2021; 83:e245372. [PMID: 34669791 DOI: 10.1590/1519-6984.245372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Hybridization and Polyploidization are most common of the phenomenon observed in plants, especially in the genus Nicotiana leading to the duplication of genome. Although genomic changes associated with these events has been studied at various levels but the genome size and GC content variation is less understood because of absence of sufficient genomic data. In this study the flow cytometry technique was used to uncover the genome size and GC contents of 46 Nicotiana species and we compared the genomic changes associated with the hybridization events along evolutionary time scale. The genome size among Nicotiana species varied between 3.28 pg and 11.88 pg whereas GC contents varied between 37.22% and 51.25%. The tetraploid species in genus Nicotiana including section Polydiclae, Repandae, Nicotiana, Rustica and Sauveolentes revealed both up and downsizing in their genome sizes when compared to the sum of genomes of their ancestral species. The genome sizes of three homoploid hybrids were found near their ancestral species. Loss of large genome sequence was observed in the evolutionary more aged species (>10 Myr) as compared to the recently evolved one's (<0.2 Myr). The GC contents were found homogenous with a mean difference of 2.46% among the Nicotiana species. It is concluded that genome size change appeared in either direction whereas the GC contents were found more homogenous in genus Nicotiana.
Collapse
Affiliation(s)
- Z Hussain
- Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| | - Y Sun
- Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - S H Shah
- Allama Iqbal Open University, Faculty of Sciences, Department of Agricultural Sciences, Islamabad, Pakistan
| | - H Khan
- Quid-e-Azam University, Department of Biotechnology, Islamabad, Pakistan
| | - S Ali
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| | - A Iqbal
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| | - M A Zia
- National Agricultural Research Centre - NARC, National Institute for Genomics and Advanced Biotechnology - NIGAB, Islamabad, Pakistan
| | - S S Ali
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| |
Collapse
|
11
|
Kawaguchi K, Ohya Y, Maekawa M, Iizuka T, Hasegawa A, Shiragaki K, He H, Oda M, Morikawa T, Yokoi S, Tezuka T. Two Nicotiana occidentalis accessions enable gene identification for Type II hybrid lethality by the cross to N. sylvestris. Sci Rep 2021; 11:17093. [PMID: 34429461 PMCID: PMC8384851 DOI: 10.1038/s41598-021-96482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid lethality, meaning the death of F1 hybrid seedlings, has been observed in many plant species, including Nicotiana. Previously, we have revealed that hybrids of the selected Nicotiana occidentalis accession and N. tabacum, an allotetraploid with S and T genomes, exhibited lethality characterized by the fading of shoot color. The lethality was suggested to be controlled by alleles of loci on the S and T genomes derived from N. sylvestris and N. tomentosiformis, respectively. Here, we extended the analysis of hybrid lethality using other two accessions of N. occidentalis identified from the five tested accessions. The two accessions were crossed with N. tabacum and its two progenitors, N. sylvestris and N. tomentosiformis. After crosses with N. tabacum, the two N. occidentalis accessions yielded inviable hybrid seedlings whose lethality was characterized by the fading of shoot color, but only the T genome of N. tabacum was responsible for hybrid lethality. Genetic analysis indicated that first-mentioned N. occidentalis accession carries a single gene causing hybrid lethality by allelic interaction with the S genome.
Collapse
Affiliation(s)
- Kenji Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- NARO Hokkaido Agricultural Research Center, Memuro Research Station, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido, 082-0081, Japan
| | - Yuichiro Ohya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Maho Maekawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21St Century, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
12
|
Nakata K, Nagashima H, Inaba N, Yamashita H, Shinozaki Y, Kanekatsu M, Marubashi W, Yamada T. Analysis of the possible cytogenetic mechanism for overcoming hybrid lethality in an interspecific cross between Nicotiana suaveolens and Nicotiana tabacum. Sci Rep 2021; 11:7812. [PMID: 33837225 PMCID: PMC8035154 DOI: 10.1038/s41598-021-87242-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Hybrid lethality is a type of reproductive isolation in which hybrids die before maturation, due to the interaction between the two causative genes derived from each of the hybrid parents. The interspecific hybrid of Nicotiana suaveolens × Nicotiana tabacum is a model plant used in studies on hybrid lethality. While most of the progeny produced from such a cross die, some individuals grow normally and mature. Separately, a technique for producing mature hybrids by artificial culture has been developed. However, the mechanism by which hybrids overcome lethality, either spontaneously or by artificial culture, remains unclear. In the present study, we found that some hybrids that overcome lethality, either spontaneously or by artificial culture, lack the distal part of the Q chromosome, a region that includes the gene responsible for lethality. Quantitative polymerase chain reaction results suggested that the distal deletion of the Q chromosome, detected in some hybrid seedlings that overcome lethality, is caused by reciprocal translocations between homoeologous chromosomes. The results showed that chromosomal instability during meiosis in amphidiploid N. tabacum as well as during artificial culturing of hybrid seedlings is involved in overcoming hybrid lethality in interspecific crosses of the genus Nicotiana.
Collapse
Affiliation(s)
- Kouki Nakata
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Hiroki Nagashima
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Natsuki Inaba
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Haruka Yamashita
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
- Division of Evolutionary Genetics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Yoshihito Shinozaki
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Motoki Kanekatsu
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Wataru Marubashi
- Faculty of Agricultural Science, Meiji University, Kanagawa, Japan
| | - Tetsuya Yamada
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan.
| |
Collapse
|
13
|
Landis JB, Kurti A, Lawhorn AJ, Litt A, McCarthy EW. Differential Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of Nicotiana tabacum (Solanaceae). Genes (Basel) 2020; 11:E1097. [PMID: 32961813 PMCID: PMC7563459 DOI: 10.3390/genes11091097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Floral organ size, especially the size of the corolla, plays an important role in plant reproduction by facilitating pollination efficiency. Previous studies have outlined a hypothesized organ size pathway. However, the expression and function of many of the genes in the pathway have only been investigated in model diploid species; therefore, it is unknown how these genes interact in polyploid species. Although correlations between ploidy and cell size have been shown in many systems, it is unclear whether there is a difference in cell size between naturally occurring and synthetic polyploids. To address these questions comparing floral organ size and cell size across ploidy, we use natural and synthetic polyploids of Nicotiana tabacum (Solanaceae) as well as their known diploid progenitors. We employ a comparative transcriptomics approach to perform analyses of differential gene expression, focusing on candidate genes that may be involved in floral organ size, both across developmental stages and across accessions. We see differential expression of several known floral organ candidate genes including ARF2, BIG BROTHER, and GASA/GAST1. Results from linear models show that ploidy, cell width, and cell number positively influence corolla tube circumference; however, the effect of cell width varies by ploidy, and diploids have a significantly steeper slope than both natural and synthetic polyploids. These results demonstrate that polyploids have wider cells and that polyploidy significantly increases corolla tube circumference.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- Department of Biology, SUNY Cortland, Cortland, NY 13045, USA
| |
Collapse
|
14
|
Liu D, Yang Q. Expression patterns of NbrgsCaM family genes in Nicotiana benthamiana and their potential roles in development and stress responses. Sci Rep 2020; 10:9652. [PMID: 32541846 PMCID: PMC7296017 DOI: 10.1038/s41598-020-66670-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
rgsCaM has been reported as a calmodulin-like (CML) factor induced by viral infection in Nicotiana. There are three CMLs that belong to the rgsCaM family in Arabidopsis thaliana. In this study, we found a total of 5 NbrgsCaM coding sequences in N. benthamiana genome. We analyzed transcription patterns of NbrgsCaMs in transgenic plants expressing a β-glucuronidase (GUS) under the promoter of NbrgsCaMs by histochemistry staining and RT-qPCR. Similar to their Arabidopsis homologs, most NbrgsCaMs have an overlapping but distinct expression pattern in response to developmental and environmental changes. Specifically, the NbrgsCaM4 promoter exhibited robust activity and showed distinct regulatory response to viral infection, developmental stages and other abiotic stimuli. Overall, these findings provide clues for further understanding of the NbrgsCaM family genes in regulating plant growth and development under biotic stress and environmental stimulation.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuying Yang
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
15
|
Li D, Halitschke R, Baldwin IT, Gaquerel E. Information theory tests critical predictions of plant defense theory for specialized metabolism. SCIENCE ADVANCES 2020; 6:eaaz0381. [PMID: 32577508 PMCID: PMC7286674 DOI: 10.1126/sciadv.aaz0381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/14/2020] [Indexed: 05/15/2023]
Abstract
Different plant defense theories have provided important theoretical guidance in explaining patterns in plant specialized metabolism, but their critical predictions remain to be tested. Here, we systematically explored the metabolomes of Nicotiana attenuata, from single plants to populations, as well as of closely related species, using unbiased tandem mass spectrometry (MS/MS) analyses and processed the abundances of compound spectrum-based MS features within an information theory framework to test critical predictions of optimal defense (OD) and moving target (MT) theories. Information components of plant metabolomes were consistent with the OD theory but contradicted the main prediction of the MT theory for herbivory-induced dynamics of metabolome compositions. From micro- to macroevolutionary scales, jasmonate signaling was confirmed as the master determinant of OD, while ethylene signaling provided fine-tuning for herbivore-specific responses annotated via MS/MS molecular networks.
Collapse
Affiliation(s)
- Dapeng Li
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Rayko Halitschke
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
- Corresponding author. (E.G.); (I.T.B)
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Corresponding author. (E.G.); (I.T.B)
| |
Collapse
|
16
|
Schiavinato M, Marcet‐Houben M, Dohm JC, Gabaldón T, Himmelbauer H. Parental origin of the allotetraploid tobacco Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:541-554. [PMID: 31833111 PMCID: PMC7317763 DOI: 10.1111/tpj.14648] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 05/12/2023]
Abstract
Nicotiana section Suaveolentes is an almost all-Australian clade of allopolyploid tobacco species including the important plant model Nicotiana benthamiana. The homology relationships of this clade and its formation are not completely understood. To address this gap, we assessed phylogenies of all individual genes of N. benthamiana and the well studied N. tabacum (section Nicotiana) and their homologues in six diploid Nicotiana species. We generated sets of 44 424 and 65 457 phylogenetic trees of N. benthamiana and N. tabacum genes, respectively, each collectively called a phylome. Members of Nicotiana sections Noctiflorae and Sylvestres were represented as the species closest to N. benthamiana in most of the gene trees. Analyzing the gene trees of the phylome we: (i) dated the hybridization event giving rise to N. benthamiana to 4-5 MyA, and (ii) separated the subgenomes. We assigned 1.42 Gbp of the genome sequence to section Noctiflorae and 0.97 Gbp to section Sylvestres based on phylome analysis. In contrast, read mapping of the donor species did not succeed in separating the subgenomes of N. benthamiana. We show that the maternal progenitor of N. benthamiana was a member of section Noctiflorae, and confirm a member of section Sylvestres as paternal subgenome donor. We also demonstrate that the advanced stage of long-term genome diploidization in N. benthamiana is reflected in its subgenome organization. Taken together, our results underscore the usefulness of phylome analysis for subgenome characterization in hybrid species.
Collapse
Affiliation(s)
- Matteo Schiavinato
- Department of BiotechnologyInstitute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Marina Marcet‐Houben
- Bioinformatics and Genomics ProgrammeCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology08003BarcelonaSpain
- ICREABarcelonaSpain
| | - Juliane C. Dohm
- Department of BiotechnologyInstitute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Toni Gabaldón
- Bioinformatics and Genomics ProgrammeCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology08003BarcelonaSpain
- ICREABarcelonaSpain
- Present address:
Barcelona Supercomputing Centre (BSC‐CNS) and Institute for Research in Biomedicine (IRB)BarcelonaSpain
| | - Heinz Himmelbauer
- Department of BiotechnologyInstitute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| |
Collapse
|
17
|
Guo H, Lackus ND, Köllner TG, Li R, Bing J, Wang Y, Baldwin IT, Xu S. Evolution of a Novel and Adaptive Floral Scent in Wild Tobacco. Mol Biol Evol 2020; 37:1090-1099. [PMID: 31808808 DOI: 10.1093/molbev/msz292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many plants emit diverse floral scents that mediate plant-environment interactions and attain reproductive success. However, how plants evolve novel and adaptive biosynthetic pathways for floral volatiles remains unclear. Here, we show that in the wild tobacco, Nicotiana attenuata, a dominant species-specific floral volatile (benzyl acetone, BA) that attracts pollinators and deters florivore is synthesized by phenylalanine ammonia-lyase 4 (NaPAL4), isoflavone reductase 3 (NaIFR3), and chalcone synthase 3 (NaCHAL3). Transient expression of NaFIR3 alone in N. attenuata leaves is sufficient and necessary for ectopic foliar BA emissions, and coexpressing NaIFR3 with NaPAL4 and NaCHAL3 increased the BA emission levels. Independent changes in transcription of NaPAL4 and NaCHAL3 contributed to intraspecific variations of floral BA emission. However, among species, the gain of expression of NaIFR3 resulted in the biosynthesis of BA, which was only found in N. attenuata. This study suggests that novel metabolic pathways associated with adaptation can arise via reconfigurations of gene expression.
Collapse
Affiliation(s)
- Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Julia Bing
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yangzi Wang
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Dodsworth S, Guignard MS, Pérez-Escobar OA, Struebig M, Chase MW, Leitch AR. Repetitive DNA Restructuring Across Multiple Nicotiana Allopolyploidisation Events Shows a Lack of Strong Cytoplasmic Bias in Influencing Repeat Turnover. Genes (Basel) 2020; 11:E216. [PMID: 32092894 PMCID: PMC7074350 DOI: 10.3390/genes11020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Allopolyploidy is acknowledged as an important force in plant evolution. Frequent allopolyploidy in Nicotiana across different timescales permits the evaluation of genome restructuring and repeat dynamics through time. Here we use a clustering approach on high-throughput sequence reads to identify the main classes of repetitive elements following three allotetraploid events, and how these are inherited from the closest extant relatives of the maternal and paternal subgenome donors. In all three cases, there was a lack of clear maternal, cytoplasmic bias in repeat evolution, i.e., lack of a predicted bias towards maternal subgenome-derived repeats, with roughly equal contributions from both parental subgenomes. Different overall repeat dynamics were found across timescales of <0.5 (N. rustica L.), 4 (N. repanda Willd.) and 6 (N. benthamiana Domin) Ma, with nearly additive, genome upsizing, and genome downsizing, respectively. Lower copy repeats were inherited in similar abundance to the parental subgenomes, whereas higher copy repeats contributed the most to genome size change in N. repanda and N. benthamiana. Genome downsizing post-polyploidisation may be a general long-term trend across angiosperms, but at more recent timescales there is species-specific variance as found in Nicotiana.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, Luton LU1 3JU, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| | - Maïté S. Guignard
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK; (O.A.P.-E.); (M.W.C.)
| | | | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK; (O.A.P.-E.); (M.W.C.)
- Department of Environment and Agriculture, Curtin University, Bentley 6102, Western Australia, Australia
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| |
Collapse
|
19
|
He H, Iizuka T, Maekawa M, Sadahisa K, Morikawa T, Yanase M, Yokoi S, Oda M, Tezuka T. Nicotiana suaveolens accessions with different ploidy levels exhibit different reproductive isolation mechanisms in interspecific crosses with Nicotiana tabacum. JOURNAL OF PLANT RESEARCH 2019; 132:461-471. [PMID: 31115709 DOI: 10.1007/s10265-019-01114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Reproductive isolation, including prezygotic and postzygotic barriers, is a mechanism that separates species. Many species in the Nicotiana section Suaveolentes exhibit reproductive isolation in crosses with Nicotiana tabacum. In this study, we investigated whether the chromosome numbers and ploidy levels of eight Nicotiana suaveolens accessions are related to the reproductive isolation after crosses with N. tabacum by flow cytometry and chromosome analyses. Additionally, the internal transcribed spacer (ITS) regions of the eight N. suaveolens accessions were sequenced and compared with the previously reported sequences of 22 Suaveolentes species to elucidate the phylogenetic relationships in the section Suaveolentes. We revealed that four N. suaveolens accessions comprised 64 chromosomes, while the other four accessions carried 32 chromosomes. Depending on the ploidy levels of N. suaveolens, several types of reproductive isolation were observed after crosses with N. tabacum, including decreases in the number of capsules and the germination rates of hybrid seeds, as well as hybrid lethality and abscission of enlarged ovaries at 12-17 days after pollination. A phylogenetic analysis involving ITS sequences divided the eight N. suaveolens accessions into three distinct clades. Based on the results, we confirmed that N. suaveolens accessions vary regarding ploidy levels and reproductive isolation mechanisms in crosses with N. tabacum. These accessions will be very useful for revealing and characterizing the reproductive isolation mechanisms in interspecific crosses and their relationships with ploidy levels.
Collapse
Affiliation(s)
- Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Maho Maekawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kumi Sadahisa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masanori Yanase
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
20
|
McCarthy EW, Landis JB, Kurti A, Lawhorn AJ, Chase MW, Knapp S, Le Comber SC, Leitch AR, Litt A. Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae). BMC PLANT BIOLOGY 2019; 19:162. [PMID: 31029077 PMCID: PMC6486959 DOI: 10.1186/s12870-019-1771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/10/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Polyploidy has played a major role in angiosperm evolution. Previous studies have examined polyploid phenotypes in comparison to their extant progenitors, but not in context of predicted progenitor phenotypes at allopolyploid origin. In addition, differences in the trends of polyploid versus diploid evolution have not been investigated. We use ancestral character-state reconstructions to estimate progenitor phenotype at allopolyploid origin to determine patterns of polyploid evolution leading to morphology of the extant species. We also compare trends in diploid versus allopolyploid evolution to determine if polyploidy modifies floral evolutionary patterns. RESULTS Predicting the ancestral phenotype of a nascent allopolyploid from reconstructions of diploid phenotypes at the time of polyploid formation generates different phenotype predictions than when extant diploid phenotypes are used, the outcome of which can alter conclusions about polyploid evolution; however, most analyses yield the same results. Using ancestral reconstructions of diploid floral phenotypes indicate that young polyploids evolve shorter, wider corolla tubes, but older polyploids and diploids do not show any detectable evolutionary trends. Lability of the traits examined (floral shape, corolla tube length, and corolla tube width) differs across young and older polyploids and diploids. Corolla length is more evolutionarily labile in older polyploids and diploids. Polyploids do not display unique suites of floral characters based on both morphological and color traits, but some suites of characters may be evolving together and seem to have arisen multiple times within Nicotiana, perhaps due to the influence of pollinators. CONCLUSIONS Young polyploids display different trends in floral evolution (shorter, wider corolla tubes, which may result in more generalist pollination) than older polyploids and diploids, suggesting that patterns of divergence are impacted by the early consequences of allopolyploidy, perhaps arising from genomic shock and/or subsequent genome stabilization associated with diploidization. Convergent evolution in floral morphology and color in Nicotiana can be consistent with pollinator preferences, suggesting that pollinators may have shaped floral evolution in Nicotiana.
Collapse
Affiliation(s)
- Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Present address: Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045 USA
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102 Australia
| | | | - Steven C. Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| |
Collapse
|
21
|
Dodsworth S, Guignard MS, Christenhusz MJM, Cowan RS, Knapp S, Maurin O, Struebig M, Leitch AR, Chase MW, Forest F. Potential of Herbariomics for Studying Repetitive DNA in Angiosperms. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Betto-Colliard C, Hofmann S, Sermier R, Perrin N, Stöck M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc Biol Sci 2018; 285:rspb.2017.2667. [PMID: 29436499 PMCID: PMC5829204 DOI: 10.1098/rspb.2017.2667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) at least five (up to seven) distinct allotriploid and allotetraploid taxa have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess two conspecific genomes and a deeply diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) maternal versus paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization.
Collapse
Affiliation(s)
- Caroline Betto-Colliard
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Sylvia Hofmann
- Department of Conservation Biology, UFZ Helmholtz-Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
23
|
Jassbi AR, Zare S, Asadollahi M, Schuman MC. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem Rev 2017; 117:12227-12280. [PMID: 28960061 DOI: 10.1021/acs.chemrev.7b00001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.
Collapse
Affiliation(s)
| | | | | | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv) , Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
24
|
Landrein S, Buerki S, Wang HF, Clarkson JJ. Untangling the reticulate history of species complexes and horticultural breeds in Abelia (Caprifoliaceae). ANNALS OF BOTANY 2017; 120:257-269. [PMID: 28334098 PMCID: PMC5737605 DOI: 10.1093/aob/mcw279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/15/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The genetic and morphological consequences of natural selection and selective breeding are explored in the genus Abelia . The genus consists of ornamental shrubs endemic to China, which have been bred to create attractive and diverse cultivars. METHODS DNA fingerprinting (AFLP) and DNA sequence data are used to investigate the genetic diversity among 46 accessions of Abelia (22 natural taxa and 24 horticultural breeds). In the cultivated varieties these data are used to explore taxon boundaries, hybridisation and backcrossing. The genetic analysis dataset is also used to investigate morphological variation within natural species complexes and subsequently to inform a taxonomic treatment. KEY RESULTS Abelia comprises five species: A. forrestii , A. schumannii , A. macrotera , A. uniflora and A. chinensis and has a total of 11 varieties. Abelia uniflora and A. macrotera do not occur in sympatry and are disjunctly distributed to the east and west of the A. chinensis distribution range. Abelia chinensis is widespread in eastern China and creates hybrids and introgressive taxa, including A. uniflora , along the contact zones with the previous taxa. Abelia `Maurice Foster' is a horticultural variety collected from wild stocks in Sichuan (China). Bayesian clustering methods (inferred in STRUCTURE based on AFLP data) indicate admixture between A. macrotera and A. schumannii in this variety. Hybridization probably occurred in the wild where these progenitor taxa co-occur and naturally form hybrids. AFLP results also reveal that a few diagnostic morphological characters such as sepal number or inflorescence structure were transferred between natural species and this is mirrored by taxa such as in Abelia `Saxon Gold' and A. forrestii . CONCLUSIONS Studying both natural and cultivated species from the same group has helped understanding both differentiation mechanisms and how to improve cultivated plants in the future by studying which morphological characters are transferred between species and which taxa may already have arisen through hybridisation.
Collapse
Affiliation(s)
- Sven Landrein
- Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, UK
| | - Sven Buerki
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Hua-Feng Wang
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resource, Ministry of Education, College of Horticulture and Landscape Agriculture, Hainan University, Haikou 570228, China
| | - James J. Clarkson
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
25
|
Homoeologous chromosome pairing across the eukaryote phylogeny. Mol Phylogenet Evol 2017; 117:83-94. [PMID: 28602622 DOI: 10.1016/j.ympev.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.
Collapse
|
26
|
Dodsworth S, Jang TS, Struebig M, Chase MW, Weiss-Schneeweiss H, Leitch AR. Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2017; 303:1013-1020. [PMID: 32009724 PMCID: PMC6961477 DOI: 10.1007/s00606-016-1356-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/23/2016] [Indexed: 05/02/2023]
Abstract
Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila + N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS UK
| | - Tae-Soo Jang
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
| | - Mark W. Chase
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS UK
- School of Plant Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Hanna Weiss-Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
| |
Collapse
|
27
|
McCarthy EW, Chase MW, Knapp S, Litt A, Leitch AR, Le Comber SC. Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids. NATURE PLANTS 2016; 2:16119. [PMID: 27501400 DOI: 10.1038/nplants.2016.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/06/2016] [Indexed: 05/28/2023]
Abstract
Polyploidy is an important driving force in angiosperm evolution, and much research has focused on genetic, epigenetic and transcriptomic responses to allopolyploidy. Nicotiana is an excellent system in which to study allopolyploidy because half of the species are allotetraploids of different ages, allowing us to examine the trajectory of floral evolution over time. Here, we study the effects of allopolyploidy on floral morphology in Nicotiana, using corolla tube measurements and geometric morphometrics to quantify petal shape. We show that polyploid morphological divergence from the intermediate phenotype expected (based on progenitor morphology) increases with time for floral limb shape and tube length, and that most polyploids are distinct or transgressive in at least one trait. In addition, we show that polyploids tend to evolve shorter and wider corolla tubes, suggesting that allopolyploidy could provide an escape from specialist pollination via reversion to more generalist pollination strategies.
Collapse
Affiliation(s)
- Elizabeth W McCarthy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- Natural History Museum, London SW7 5BD, UK
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
28
|
Heiling S, Khanal S, Barsch A, Zurek G, Baldwin IT, Gaquerel E. Using the knowns to discover the unknowns: MS-based dereplication uncovers structural diversity in 17-hydroxygeranyllinalool diterpene glycoside production in the Solanaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:561-77. [PMID: 26749139 DOI: 10.1111/tpj.13119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 05/25/2023]
Abstract
Exploring the diversity of plant secondary metabolism requires efficient methods to obtain sufficient structural insights to discriminate previously known from unknown metabolites. De novo structure elucidation and confirmation of known metabolites (dereplication) remain a major bottleneck for mass spectrometry-based metabolomic workflows, and few systematic dereplication strategies have been developed for the analysis of entire compound classes across plant families, partly due to the complexity of plant metabolic profiles that complicates cross-species comparisons. 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) are abundant defensive secondary metabolites whose malonyl and glycosyl decorations are induced by jasmonate signaling in the ecological model plant Nicotiana attenuata. The multiple labile glycosidic bonds of HGL-DTGs result in extensive in-source fragmentation (IS-CID) during ionization. To reconstruct these IS-CID clusters from profiling data and identify precursor ions, we applied a deconvolution algorithm and created an MS/MS library from positive-ion spectra of purified HGL-DTGs. From this library, 251 non-redundant fragments were annotated, and a workflow to characterize leaf, flower and fruit extracts of 35 solanaceous species was established. These analyses predicted 105 novel HGL-DTGs that were restricted to Nicotiana, Capsicum and Lycium species. Interestingly, malonylation is a highly conserved step in HGL-DTG metabolism, but is differentially affected by jasmonate signaling among Nicotiana species. This MS-based workflow is readily applicable for cross-species re-identification/annotation of other compound classes with sufficient fragmentation knowledge, and therefore has the potential to support hypotheses regarding secondary metabolism diversification.
Collapse
Affiliation(s)
- Sven Heiling
- Molecular Ecology Department, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| | - Santosh Khanal
- Molecular Ecology Department, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| | - Aiko Barsch
- Bruker Daltonics, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Gabriela Zurek
- Bruker Daltonics, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Ian T Baldwin
- Molecular Ecology Department, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| | - Emmanuel Gaquerel
- Plant Defense Metabolism Research Group, Centre for Organismal Studies Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| |
Collapse
|
29
|
Adlung N, Prochaska H, Thieme S, Banik A, Blüher D, John P, Nagel O, Schulze S, Gantner J, Delker C, Stuttmann J, Bonas U. Non-host Resistance Induced by the Xanthomonas Effector XopQ Is Widespread within the Genus Nicotiana and Functionally Depends on EDS1. FRONTIERS IN PLANT SCIENCE 2016; 7:1796. [PMID: 27965697 PMCID: PMC5127841 DOI: 10.3389/fpls.2016.01796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
Most Gram-negative plant pathogenic bacteria translocate effector proteins (T3Es) directly into plant cells via a conserved type III secretion system, which is essential for pathogenicity in susceptible plants. In resistant plants, recognition of some T3Es is mediated by corresponding resistance (R) genes or R proteins and induces effector triggered immunity (ETI) that often results in programmed cell death reactions. The identification of R genes and understanding their evolution/distribution bears great potential for the generation of resistant crop plants. We focus on T3Es from Xanthomonas campestris pv. vesicatoria (Xcv), the causal agent of bacterial spot disease on pepper and tomato plants. Here, 86 Solanaceae lines mainly of the genus Nicotiana were screened for phenotypical reactions after Agrobacterium tumefaciens-mediated transient expression of 21 different Xcv effectors to (i) identify new plant lines for T3E characterization, (ii) analyze conservation/evolution of putative R genes and (iii) identify promising plant lines as repertoire for R gene isolation. The effectors provoked different reactions on closely related plant lines indicative of a high variability and evolution rate of potential R genes. In some cases, putative R genes were conserved within a plant species but not within superordinate phylogenetical units. Interestingly, the effector XopQ was recognized by several Nicotiana spp. lines, and Xcv infection assays revealed that XopQ is a host range determinant in many Nicotiana species. Non-host resistance against Xcv and XopQ recognition in N. benthamiana required EDS1, strongly suggesting the presence of a TIR domain-containing XopQ-specific R protein in these plant lines. XopQ is a conserved effector among most xanthomonads, pointing out the XopQ-recognizing RxopQ as candidate for targeted crop improvement.
Collapse
Affiliation(s)
- Norman Adlung
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
- *Correspondence: Norman Adlung
| | - Heike Prochaska
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Sabine Thieme
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Anne Banik
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Doreen Blüher
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Peter John
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Oliver Nagel
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Sebastian Schulze
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Johannes Gantner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Carolin Delker
- Department of Crop Physiology, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-WittenbergHalle, Germany
| | - Johannes Stuttmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
- Ulla Bonas
| |
Collapse
|
30
|
McCarthy EW, Arnold SEJ, Chittka L, Le Comber SC, Verity R, Dodsworth S, Knapp S, Kelly LJ, Chase MW, Baldwin IT, Kovařík A, Mhiri C, Taylor L, Leitch AR. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae). ANNALS OF BOTANY 2015; 115:1117-31. [PMID: 25979919 PMCID: PMC4598364 DOI: 10.1093/aob/mcv048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/15/2015] [Accepted: 03/16/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. METHODS Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. KEY RESULTS Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. CONCLUSIONS Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.
Collapse
Affiliation(s)
- Elizabeth W McCarthy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sarah E J Arnold
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Robert Verity
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sandra Knapp
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian T Baldwin
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Aleš Kovařík
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Corinne Mhiri
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Lin Taylor
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
31
|
Xu S, Zhou W, Pottinger S, Baldwin IT. Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC PLANT BIOLOGY 2015; 15:2. [PMID: 25592329 PMCID: PMC4304619 DOI: 10.1186/s12870-014-0406-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/22/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Herbivore-induced defence responses are often specific - different herbivores induce different defence responses in plants - and their specificity is largely mediated by chemical cues (herbivore-associated elicitors: HAEs) in insect oral or oviposition secretions. However, the specificity and the mechanisms of HAE-induced defence have not been investigated in the context of the evolutionary relationships among plant species. Here we compare the responses of six closely related Nicotiana species to a synthetic elicitor, N-linolenoyl-glutamic acid (C18:3-Glu) and HAE of two insect herbivores (the Solanaceae specialist Manduca sexta and generalist Spodoptera littoralis). RESULTS HAE-induced defences are highly specific among closely related Nicotiana species at three perspectives. 1) A single Nicotiana species can elicit distinct responses to different HAEs. N. pauciflora elicited increased levels of JA and trypsin proteinase inhibitors (TPI) in response to C18:3-Glu and the oral secretions of M. sexta (OS Ms ) but not to oral secretions of S. littoralis (OS Sl ). In contrast, N. miersii only responded to OS Sl but not to the other two HAEs. The specific responses to different HAEs in Nicotiana species are likely due to the perception by the plant of each specific component of the HAE. 2) One HAE can induce different defence responses among closely related Nicotiana species. OS Ms and C18:3-Glu induced JA and TPI accumulations in N. linearis, N. attenuata, N. acuminata and N. pauciflora, but not in N. miersii and N. obtusifolia. 3) The effect of HAE-induced defences differ for the Solanaceae specialist M. sexta and the generalist S. littoralis. Among the four tested Nicotiana species, while the growth rate of M. sexta was only reduced by the induced defences elicited by C18:3-Glu; the growth rate of S. littoralis can be reduced by the induced defences elicited by all three HAEs. This is likely due to differences in the susceptibility of the specialist M. sexta and generalist S. littoralis to induced defences of their host. CONCLUSIONS Closely related Nicotiana species elicit highly specific defence responses to herbivore associated elicitors and provide an ideal framework for investigating the molecular mechanisms and evolutionary divergence of induced resistance in plants.
Collapse
Affiliation(s)
- Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Sarah Pottinger
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
32
|
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR. Genomic repeat abundances contain phylogenetic signal. Syst Biol 2015; 64:112-26. [PMID: 25261464 PMCID: PMC4265144 DOI: 10.1093/sysbio/syu080] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ilia J Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Petr Novák
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mathieu Piednoël
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
33
|
Kovacova V, Zluvova J, Janousek B, Talianova M, Vyskot B. The evolutionary fate of the horizontally transferred agrobacterial mikimopine synthase gene in the genera Nicotiana and Linaria. PLoS One 2014; 9:e113872. [PMID: 25420106 PMCID: PMC4242671 DOI: 10.1371/journal.pone.0113872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
Few cases of spontaneously horizontally transferred bacterial genes into plant genomes have been described to date. The occurrence of horizontally transferred genes from the T-DNA of Agrobacterium rhizogenes into the plant genome has been reported in the genus Nicotiana and in the species Linaria vulgaris. Here we compare patterns of evolution in one of these genes (a gene encoding mikimopine synthase, mis) following three different events of horizontal gene transfer (HGT). As this gene plays an important role in Agrobacterium, and there are known cases showing that genes from pathogens can acquire plant protection function, we hypothesised that in at least some of the studied species we will find signs of selective pressures influencing mis sequence. The mikimopine synthase (mis) gene evolved in a different manner in the branch leading to Nicotiana tabacum and N. tomentosiformis, in the branch leading to N. glauca and in the genus Linaria. Our analyses of the genus Linaria suggest that the mis gene began to degenerate soon after the HGT. In contrast, in the case of N. glauca, the mis gene evolved under significant selective pressures. This suggests a possible role of mikimopine synthase in current N. glauca and its ancestor(s). In N. tabacum and N. tomentosiformis, the mis gene has a common frameshift mutation that disrupted its open reading frame. Interestingly, our results suggest that in spite of the frameshift, the mis gene could evolve under selective pressures. This sequence may still have some regulatory role at the RNA level as suggested by coverage of this sequence by small RNAs in N. tabacum.
Collapse
Affiliation(s)
- Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Martina Talianova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| |
Collapse
|
34
|
Chen K, Dorlhac de Borne F, Szegedi E, Otten L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:669-82. [PMID: 25219519 DOI: 10.1111/tpj.12661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 05/21/2023]
Abstract
Nicotiana species carry cellular T-DNA sequences (cT-DNAs), acquired by Agrobacterium-mediated transformation. We characterized the cT-DNA sequences of the ancestral Nicotiana tabacum species Nicotiana tomentosiformis by deep sequencing. N. tomentosiformis contains four cT-DNA inserts derived from different Agrobacterium strains. Each has an incomplete inverted-repeat structure. TA is similar to part of the Agrobacterium rhizogenes 1724 mikimopine-type T-DNA, but has unusual orf14 and mis genes. TB carries a 1724 mikimopine-type orf14-mis fragment and a mannopine-agropine synthesis region (mas2-mas1-ags). The mas2' gene codes for an active enzyme. TC is similar to the left part of the A. rhizogenes A4 T-DNA, but also carries octopine synthase-like (ocl) and c-like genes normally found in A. tumefaciens. TD shows a complex rearrangement of T-DNA fragments similar to the right end of the A4 TL-DNA, and including an orf14-like gene and a gene with unknown function, orf511. The TA, TB, TC and TD insertion sites were identified by alignment with N. tabacum and Nicotiana sylvestris sequences. The divergence values for the TA, TB, TC and TD repeats provide an estimate for their relative introduction times. A large deletion has occurred in the central part of the N. tabacum cv. Basma/Xanthi TA region, and another deletion removed the complete TC region in N. tabacum. Nicotiana otophora lacks TA, TB and TD, but contains TC and another cT-DNA, TE. This analysis, together with that of Nicotiana glauca and other Nicotiana species, indicates multiple sequential insertions of cT-DNAs during the evolution of the genus Nicotiana.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du C. N. R. S., Rue du Général Zimmer 12, 67084, Strasbourg, France
| | | | | | | |
Collapse
|
35
|
Liu H, Marubashi W. Species origin of genomic factors in Nicotiana nudicaulis Watson controlling hybrid lethality in interspecific hybrids between N. nudicaulis Watson and N. tabacum L. PLoS One 2014; 9:e97004. [PMID: 24806486 PMCID: PMC4013128 DOI: 10.1371/journal.pone.0097004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/15/2014] [Indexed: 11/21/2022] Open
Abstract
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis × N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris × N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris × N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla × N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla × N. tabacum and N. sylvestris × N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis.
Collapse
Affiliation(s)
- Hongshuo Liu
- Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Wataru Marubashi
- Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| |
Collapse
|
36
|
A phylogenetic hypothesis for the recently diversified Ruschieae (Aizoaceae) in southern Africa. Mol Phylogenet Evol 2013; 69:1005-20. [DOI: 10.1016/j.ympev.2013.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
|
37
|
Ge XH, Ding L, Li ZY. Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. PLANT CELL REPORTS 2013; 32:1661-73. [PMID: 23864197 DOI: 10.1007/s00299-013-1475-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/05/2023]
Abstract
Many plants are allopolyploids with different nuclear genomes from two or more progenitors, but cytoplasmic genomes typically inherited from the female parent. The importance of this speciation mechanism has stimulated the extensive investigations of genetic consequences of genome mergers in several experimental systems during last 20 years. The dynamic nature of polyploid genomes is recognized, and widespread changes to gene expression are revealed by transcriptomic analysis. These progresses show different stabilities of parental genomes and their unequal contributions to the transcriptome, proteome, and phenotype. We review the results in systems where extensive genetic analyses have been conducted and propose possible mechanisms for biased behavior of parental genomes in allopolyploids, including the role of nucleolar dominance. It is hypothesized that the novel ribosomes with rRNAs from uniparental genome and the ribosomal proteins of biparental origins have some impacts on the biased cellular and genetic behaviors of parental genomes in hybrids and allopolyploids.
Collapse
Affiliation(s)
- Xian-Hong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | |
Collapse
|
38
|
Rønsted N, Zubov D, Bruun-Lund S, Davis AP. Snowdrops falling slowly into place: an improved phylogeny for Galanthus (Amaryllidaceae). Mol Phylogenet Evol 2013; 69:205-17. [PMID: 23747523 DOI: 10.1016/j.ympev.2013.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/24/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Snowdrops (Galanthus, 20 spp.; Amaryllidaceae) are cherished garden plants and the world's most traded wild-sourced ornamental bulb genus. Despite their popularity and economic importance, species delimitation is problematic and the infrageneric classification uncertain. We present a molecular phylogenetic study of Galanthus with the aim of resolving these issues and to better understand the evolution within the genus. Sequences of nuclear encoded nrITS, and plastid encoded matK, trnLF, ndhF, and psbK-psbI, for all currently recognised species and two naturally occurring putative hybrids, were analysed using maximum parsimony and Bayesian inference. Phylogenetic analysis of Galanthus, based on nuclear ITS sequences, provides a well-resolved topology, including seven well-supported named clades (platyphyllus, trojanus, ikariae, elwesii, nivalis, woronowii, and alpinus), and five major clades (A-E). The recovered ITS topology is in accordance with the geographical distribution of Galanthus species. The combined plastid data set provided far less resolution than that of ITS, with generally lower levels of statistical support, and one case of significant incongruence with the ITS dataset (involving G. gracilis). Phylogenetic network and hybridization analyses identified several possible hybridization events but these are more likely to be due to the result of a lack of resolution in the plastid dataset. The putative natural hybrid, G. ×valentinei nothosubsp. subplicatus, is supported by our data and analyses, whereas a hybrid origin for G. ×allenii is not. ITS and plastid data indicated that some Galanthus species are in need of taxonomic recircumscription.
Collapse
Affiliation(s)
- Nina Rønsted
- The Natural History Museum of Denmark, Sølvgade 83, DK-1307 Copenhagen, Denmark
| | | | | | | |
Collapse
|
39
|
Renny-Byfield S, Kovarik A, Kelly LJ, Macas J, Novak P, Chase MW, Nichols RA, Pancholi MR, Grandbastien MA, Leitch AR. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:829-39. [PMID: 23517128 DOI: 10.1111/tpj.12168] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/23/2013] [Accepted: 03/01/2013] [Indexed: 05/18/2023]
Abstract
Recent advances have highlighted the ubiquity of whole-genome duplication (polyploidy) in angiosperms, although subsequent genome size change and diploidization (returning to a diploid-like condition) are poorly understood. An excellent system to assess these processes is provided by Nicotiana section Repandae, which arose via allopolyploidy (approximately 5 million years ago) involving relatives of Nicotiana sylvestris and Nicotiana obtusifolia. Subsequent speciation in Repandae has resulted in allotetraploids with divergent genome sizes, including Nicotiana repanda and Nicotiana nudicaulis studied here, which have an estimated 23.6% genome expansion and 19.2% genome contraction from the early polyploid, respectively. Graph-based clustering of next-generation sequence data enabled assessment of the global genome composition of these allotetraploids and their diploid progenitors. Unexpectedly, in both allotetraploids, over 85% of sequence clusters (repetitive DNA families) had a lower abundance than predicted from their diploid relatives; a trend seen particularly in low-copy repeats. The loss of high-copy sequences predominantly accounts for the genome downsizing in N. nudicaulis. In contrast, N. repanda shows expansion of clusters already inherited in high copy number (mostly chromovirus-like Ty3/Gypsy retroelements and some low-complexity sequences), leading to much of the genome upsizing predicted. We suggest that the differential dynamics of low- and high-copy sequences reveal two genomic processes that occur subsequent to allopolyploidy. The loss of low-copy sequences, common to both allopolyploids, may reflect genome diploidization, a process that also involves loss of duplicate copies of genes and upstream regulators. In contrast, genome size divergence between allopolyploids is manifested through differential accumulation and/or deletion of high-copy-number sequences.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zimmer EA, Wen J. Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 2013; 66:539-50. [PMID: 23375140 DOI: 10.1016/j.ympev.2013.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
Abstract
The paper reviews the current state of low and single copy nuclear markers that have been applied successfully in plant phylogenetics to date, and discusses case studies highlighting the potential of massively parallel high throughput or next-generation sequencing (NGS) approaches for molecular phylogenetic and evolutionary investigations. The current state, prospects and challenges of specific single- or low-copy plant nuclear markers as well as phylogenomic case studies are presented and evaluated.
Collapse
Affiliation(s)
- Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | | |
Collapse
|
41
|
Angel CA, Schoelz JE. A survey of resistance to Tomato bushy stunt virus in the genus Nicotiana reveals that the hypersensitive response is triggered by one of three different viral proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:240-8. [PMID: 23075040 DOI: 10.1094/mpmi-06-12-0157-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, we screened 22 Nicotiana spp. for resistance to the tombusviruses Tomato bushy stunt virus (TBSV), Cucumber necrosis virus, and Cymbidium ringspot virus. Eighteen species were resistant, and resistance was manifested in at least two different categories. In all, 13 species responded with a hypersensitive response (HR)-type resistance, whereas another five were resistant but either had no visible response or responded with chlorotic lesions rather than necrotic lesions. Three different TBSV proteins were found to trigger HR in Nicotiana spp. in an agroinfiltration assay. The most common avirulence (avr) determinant was the TBSV coat protein P41, a protein that had not been previously recognized as an avr determinant. A mutational analysis confirmed that the coat protein rather than the viral RNA sequence was responsible for triggering HR, and it triggered HR in six species in the Alatae section. The TBSV P22 movement protein triggered HR in two species in section Undulatae (Nicotiana glutinosa and N. edwardsonii) and one species in section Alatae (N. forgetiana). The TBSV P19 RNA silencing suppressor protein triggered HR in sections Sylvestres (N. sylvestris), Nicotiana (N. tabacum), and Alatae (N. bonariensis). In general, Nicotiana spp. were capable of recognizing only one tombusvirus avirulence determinant, with the exceptions of N. bonariensis and N. forgetiana, which were each able to recognize P41, as well as P19 and P22, respectively. Agroinfiltration failed to detect the TBSV avr determinants responsible for triggering HR in N. arentsii, N. undulata, and N. rustica. This study illustrates the breadth and variety of resistance responses to tombusviruses that exists in the Nicotiana genus.
Collapse
Affiliation(s)
- Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
42
|
Kelly LJ, Leitch AR, Clarkson JJ, Knapp S, Chase MW. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section suaveolentes). Evolution 2013; 67:80-94. [PMID: 23289563 DOI: 10.1111/j.1558-5646.2012.01748.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nicotiana (Solanaceae) provides an ideal system for understanding polyploidization, a pervasive and powerful evolutionary force in plants, as this genus contains several groups of allotetraploids that formed at different times from different diploid progenitors. However, the parental lineages of the largest group of allotetraploids, Nicotiana section Suaveolentes, have been problematic to identify. Using data from four regions of three low-copy nuclear genes, nuclear ribosomal DNA, and regions of the plastid genome, we have reconstructed the evolutionary origin of sect. Suaveolentes and identified the most likely diploid progenitors by using a combination of gene trees and network approaches to uncover the most strongly supported evidence of species relationships. Our analyses best support a scenario where a member of the sect. Sylvestres lineage acted as the paternal progenitor and a member of either sect. Petunioides or sect. Noctiflorae that also contained introgressed DNA from the other, or a hypothetical hybrid species between these two sections, was the maternal progenitor. Nicotiana exemplifies many of the factors that can complicate the reconstruction of polyploid evolutionary history and highlights how reticulate evolution at the diploid level can add even greater complexity to allopolyploid genomes.
Collapse
Affiliation(s)
- Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Matyášek R, Renny-Byfield S, Fulneček J, Macas J, Grandbastien MA, Nichols R, Leitch A, Kovařík A. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics 2012; 13:722. [PMID: 23259460 PMCID: PMC3563450 DOI: 10.1186/1471-2164-13-722] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/13/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit. Here we study rDNA complexity in species with arrays consisting of thousands of units. METHODS We examined homogeneity of genic (18S) and non-coding internally transcribed spacer (ITS1) regions of rDNA using Roche 454 and/or Illumina platforms in four angiosperm species, Nicotiana sylvestris, N. tomentosiformis, N. otophora and N. kawakamii. We compared the data with Southern blot hybridisation revealing the structure of intergenic spacer (IGS) sequences and with the number and distribution of rDNA loci. RESULTS AND CONCLUSIONS In all four species the intragenomic homogeneity of the 18S gene was high; a single ribotype makes up over 90% of the genes. However greater variation was observed in the ITS1 region, particularly in species with two or more rDNA loci, where >55% of rDNA units were a single ribotype, with the second most abundant variant accounted for >18% of units. IGS heterogeneity was high in all species. The increased number of ribotypes in ITS1 compared with 18S sequences may reflect rounds of incomplete homogenisation with strong selection for functional genic regions and relaxed selection on ITS1 variants. The relationship between the number of ITS1 ribotypes and the number of rDNA loci leads us to propose that rDNA evolution and complexity is influenced by locus number and/or amplification of orphaned rDNA units at new chromosomal locations.
Collapse
Affiliation(s)
- Roman Matyášek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Královopolská 135, Brno, CZ-612 65, Czech Republic
| | - Simon Renny-Byfield
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jaroslav Fulneček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Královopolská 135, Brno, CZ-612 65, Czech Republic
| | - Jiří Macas
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic
| | - Marie-Angele Grandbastien
- Institut Jean-Pierre Bourgin, Laboratoire de Biologie Cellulaire, INRA-Centre de Versailles, Versailles Cedex, F-780 26, France
| | - Richard Nichols
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Andrew Leitch
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Královopolská 135, Brno, CZ-612 65, Czech Republic
| |
Collapse
|
44
|
Parisod C, Mhiri C, Lim KY, Clarkson JJ, Chase MW, Leitch AR, Grandbastien MA. Differential dynamics of transposable elements during long-term diploidization of Nicotiana section Repandae (Solanaceae) allopolyploid genomes. PLoS One 2012; 7:e50352. [PMID: 23185607 PMCID: PMC3503968 DOI: 10.1371/journal.pone.0050352] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/18/2012] [Indexed: 01/26/2023] Open
Abstract
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo drastic reorganization. However, timing and mechanisms of structural diploidization over evolutionary timescales are still poorly known. As transposable elements (TEs) represent major and labile components of plant genomes, they likely play a pivotal role in fuelling genome changes leading to long-term diploidization. Here, we exploit the 4.5 MY old allopolyploid Nicotiana section Repandae to investigate the impact of TEs on the evolutionary dynamics of genomes. Sequence-specific amplified polymorphisms (SSAP) on seven TEs with expected contrasted dynamics were used to survey genome-wide TE insertion polymorphisms. Comparisons of TE insertions in the four allopolyploid species and descendents of the diploid species most closely related to their actual progenitors revealed that the polyploids showed considerable departure from predicted additivity of the diploids. Large numbers of new SSAP bands were observed in polyploids for two TEs, but restructuring for most TE families involved substantial loss of fragments relative to the genome of the diploid representing the paternal progenitor, which could be due to changes in allopolyploids, diploid progenitor lineages or both. The majority of non-additive bands were shared by all polyploid species, suggesting that significant restructuring occurred early after the allopolyploid event that gave rise to their common ancestor. Furthermore, several gains and losses of SSAP fragments were restricted to N. repanda, suggesting a unique evolutionary trajectory. This pattern of diploidization in TE genome fractions supports the hypothesis that TEs are central to long-term genome turnover and depends on both TE and the polyploid lineage considered.
Collapse
Affiliation(s)
- Christian Parisod
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, INRA-Versailles, Versailles, France
| | - Corinne Mhiri
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, INRA-Versailles, Versailles, France
| | - K. Yoong Lim
- School of Biological Sciences, Queen Mary University of London, London, United Kingdom
| | - James J. Clarkson
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Andrew R. Leitch
- School of Biological Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
45
|
Zimmer EA, Wen J. Using nuclear gene data for plant phylogenetics: Progress and prospects. Mol Phylogenet Evol 2012; 65:774-85. [DOI: 10.1016/j.ympev.2012.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
46
|
Tezuka T, Matsuo C, Iizuka T, Oda M, Marubashi W. Identification of Nicotiana tabacum linkage group corresponding to the Q chromosome gene(s) involved in hybrid lethality. PLoS One 2012; 7:e37822. [PMID: 22629459 PMCID: PMC3358278 DOI: 10.1371/journal.pone.0037822] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/24/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A linkage map consisting of 24 linkage groups has been constructed using simple sequence repeat (SSR) markers in Nicotiana tabacum. However, chromosomal assignments of all linkage groups have not yet been made. The Q chromosome in N. tabacum encodes a gene or genes triggering hybrid lethality, a phenomenon that causes death of hybrids derived from some crosses. METHODOLOGY/PRINCIPAL FINDINGS We identified a linkage group corresponding to the Q chromosome using an interspecific cross between an N. tabacum monosomic line lacking the Q chromosome and N. africana. N. ingulba yielded inviable hybrids after crossing with N. tabacum. SSR markers on the identified linkage group were used to analyze hybrid lethality in this cross. The results implied that one or more genes on the Q chromosome are responsible for hybrid lethality in this cross. Furthermore, the gene(s) responsible for hybrid lethality in the cross N. tabacum × N. africana appear to be on the region of the Q chromosome to which SSR markers PT30342 and PT30365 map. CONCLUSIONS/SIGNIFICANCE Linkage group 11 corresponded to the Q chromosome. We propose a new method to correlate linkage groups with chromosomes in N. tabacum.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | |
Collapse
|
47
|
Sýkorová E, Fulnečková J, Mokroš P, Fajkus J, Fojtová M, Peška V. Three TERT genes in Nicotiana tabacum. Chromosome Res 2012; 20:381-94. [PMID: 22543812 DOI: 10.1007/s10577-012-9282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 01/15/2023]
Abstract
Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5' end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.
Collapse
Affiliation(s)
- Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
48
|
Tezuka T, Marubashi W. Genes in S and T subgenomes are responsible for hybrid lethality in interspecific hybrids between Nicotiana tabacum and Nicotiana occidentalis. PLoS One 2012; 7:e36204. [PMID: 22563450 PMCID: PMC3338585 DOI: 10.1371/journal.pone.0036204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 04/03/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Many species of Nicotiana section Suaveolentes produce inviable F(1) hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction between gene(s) on the Q chromosome belonging to the S subgenome of N. tabacum and gene(s) in Suaveolentes species. Here, we examined if hybrid seedlings from the cross N. occidentalis (section Suaveolentes)×N. tabacum are inviable despite a lack of the Q chromosome. METHODOLOGY/PRINCIPAL FINDINGS Hybrid lethality in the cross of N. occidentalis×N. tabacum was characterized by shoots with fading color. This symptom differed from what has been previously observed in lethal crosses between many species in section Suaveolentes and N. tabacum. In crosses of monosomic N. tabacum plants lacking the Q chromosome with N. occidentalis, hybrid lethality was observed in hybrid seedlings either lacking or possessing the Q chromosome. N. occidentalis was then crossed with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT), to reveal which subgenome of N. tabacum contains gene(s) responsible for hybrid lethality. Hybrid seedlings from the crosses N. occidentalis×N. tomentosiformis and N. occidentalis×N. sylvestris were inviable. CONCLUSIONS/SIGNIFICANCE Although the specific symptoms of hybrid lethality in the cross N. occidentalis×N. tabacum were similar to those appearing in hybrids from the cross N. occidentalis×N. tomentosiformis, genes in both the S and T subgenomes of N. tabacum appear responsible for hybrid lethality in crosses with N. occidentalis.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | |
Collapse
|
49
|
Zarrei M, Wilkin P, Ingrouille MJ, Leitch IJ, Buerki S, Fay MF, Chase MW. Speciation and evolution in the Gagea reticulata species complex (Tulipeae; Liliaceae). Mol Phylogenet Evol 2012; 62:624-39. [DOI: 10.1016/j.ympev.2011.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 10/29/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
|
50
|
Govindarajulu R, Hughes CE, Alexander PJ, Bailey CD. The complex evolutionary dynamics of ancient and recent polyploidy in Leucaena (Leguminosae; Mimosoideae). AMERICAN JOURNAL OF BOTANY 2011; 98:2064-76. [PMID: 22130273 DOI: 10.3732/ajb.1100260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. METHODS Parsimony- and ML-based phylogenetic approaches were applied to 105 accessions sequenced for six sequence characterized amplified region-based nuclear encoded loci, nrDNA ITS, and four cpDNA regions. Hypotheses for the origin of tetraploid species were inferred using results derived from a novel species tree and established gene tree methods and from data on genome sizes and geographic distributions. RESULTS The combination of comprehensively sampled multilocus DNA sequence data sets and a novel methodology provide strong resolution and support for the origins of all five tetraploid species. A minimum of four allopolyploidization events are required to explain the origins of these species. The origin(s) of one tetraploid pair (L. involucrata/L. pallida) can be equally explained by two unique allopolyploidizations or a single event followed by divergent speciation. CONCLUSIONS Alongside other recent findings, a comprehensive picture of the complex evolutionary dynamics of polyploidy in Leucaena is emerging that includes paleotetraploidization, diploidization of the last common ancestor to Leucaena, allopatric divergence among diploids, and recent allopolyploid origins for tetraploid species likely associated with human translocation of seed. These results provide insights into the role of divergence and reticulation in a well-characterized angiosperm lineage and into traits of diploid parents and derived tetraploids (particularly self-compatibility and year-round flowering) favoring the formation and establishment of novel tetraploids combinations.
Collapse
|