1
|
Burriel-Carranza B, Tejero-Cicuéndez H, Carné A, Mochales-Riaño G, Talavera A, Al Saadi S, Els J, Šmíd J, Tamar K, Tarroso P, Carranza S. Integrating Genomics and Biogeography to Unravel the Origin of a Mountain Biota: The Case of a Reptile Endemicity Hotspot in Arabia. Syst Biol 2025; 74:230-249. [PMID: 38953551 PMCID: PMC11958937 DOI: 10.1093/sysbio/syae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/04/2024] Open
Abstract
Advances in genomics have greatly enhanced our understanding of mountain biodiversity, providing new insights into the complex and dynamic mechanisms that drive the formation of mountain biotas. These span from broad biogeographic patterns to population dynamics and adaptations to these environments. However, significant challenges remain in integrating large-scale and fine-scale findings to develop a comprehensive understanding of mountain biodiversity. One significant challenge is the lack of genomic data, especially in historically understudied arid regions where reptiles are a particularly diverse vertebrate group. In the present study, we assembled a de novo genome-wide SNP dataset for the complete endemic reptile fauna of a mountain range (19 described species with more than 600 specimens sequenced), and integrated state-of-the-art biogeographic analyses at the population, species, and community level. Thus, we provide a holistic integration of how a whole endemic reptile community has originated, diversified and dispersed through a mountain system. Our results show that reptiles independently colonized the Hajar Mountains of southeastern Arabia 11 times. After colonization, species delimitation methods suggest high levels of within-mountain diversification, supporting up to 49 deep lineages. This diversity is strongly structured following local topography, with the highest peaks acting as a broad barrier to gene flow among the entire community. Interestingly, orogenic events do not seem key drivers of the biogeographic history of reptiles in this system. Instead, past climatic events seem to have had a major role in this community assemblage. We observe an increase of vicariant events from Late Pliocene onwards, coinciding with an unstable climatic period of rapid shifts between hyper-arid and semiarid conditions that led to the ongoing desertification of Arabia. We conclude that paleoclimate, and particularly extreme aridification, acted as a main driver of diversification in arid mountain systems which is tangled with the generation of highly adapted endemicity. Overall, our study does not only provide a valuable contribution to understanding the evolution of mountain biodiversity, but also offers a flexible and scalable approach that can be reproduced into any taxonomic group and at any discrete environment.
Collapse
Affiliation(s)
- Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003, Barcelona, Spain
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Albert Carné
- Museo Nacional de Ciencias Naturales (MNCN), CSIC, C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Gabriel Mochales-Riaño
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | - Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | | | - Johannes Els
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Jiří Šmíd
- Department of Zoology, Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Karin Tamar
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | - Pedro Tarroso
- CIBIO,Centro de Investigação em Biodiversidade e Recursos Genéticos,InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus deVairão, 4485-661 Vairão, Portugal
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| |
Collapse
|
2
|
dos Santos AG, Souza JFDSE, Soares SC, Nakayama CM, Feldberg E. Chromosomal characterization of three species of Serrasalmini (Serrasalmidae: Characiformes). Genet Mol Biol 2023; 46:e20230088. [PMID: 37992304 PMCID: PMC10664975 DOI: 10.1590/1678-4685-gmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/10/2023] [Indexed: 11/24/2023] Open
Abstract
The tribe Serrasalmini is a diverse group with paraphyletic genera and taxonomic uncertainties. Several studies have been carried out in this group of fish in order to understand this problem, including the cytogenetic approach. In this study, three species of a clade of Serrasalmini were characterized cytogenetically - Pristobrycon striolatus, Catoprion absconditus and Pygopristis denticulatus. The three species presented diploid number (2n) equal to 62 chromosomes, of one and two arms, with karyotypic formulas and species-specific fundamental numbers. Heterochromatin is centromeric and terminal (bi-telomeric) in most chromosomes, with a conspicuous interstitial block at pair 1 (m) in all three species. The nucleolar organizer regions were multiple and C-band positive, and their location was confirmed via 18S ribosomal DNA mapping; however, with additional sites. The 5S rDNA was located in interstitial region of long arm of pair 1 (m), in the three species (homeologous). Moreover, we observed synteny between 18S and 5S in the species C. absconditus and P. denticulatus, which, according to fiber-FISH, are interspersed. Thus, the maintenance of 2n (62) evidences the diversification of chromosomal formulas within the clade by non-Robertsonian rearrangements and reflects the paraphyly of the related species.
Collapse
Affiliation(s)
- Alan Gomes dos Santos
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
| | - José Francisco de Sousa e Souza
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
| | - Simone Cardoso Soares
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
| | - Celeste Mutuko Nakayama
- Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de
Biodiversidade, Laboratório de Genética Animal, Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
- Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de
Biodiversidade, Laboratório de Genética Animal, Manaus, AM, Brazil
| |
Collapse
|
3
|
Jacobina UP, Pontes AI, Costa L, Souza G. Macroevolutionary consequences of karyotypic changes in the neotropical Serrasalmidae fishes (Ostariophysi, Characiformes) diversification. Genetica 2023; 151:311-321. [PMID: 37566292 DOI: 10.1007/s10709-023-00191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
In the Neotropical region, one of the most diverse families of freshwater fishes is the monophyletic Serrasalmidae. Karyotypically, the family shows high diversity in chromosome numbers (2n = 54 to 64). However, little is discussed about whether the chromosomal changes are associated with cladogenetic events within this family. In the present study, we evaluated the role of chromosomal changes in the evolutionary diversification of Serrasalmidae. Our phylogenetic sampling included 36 species and revealed three main clades. The ancestral chromosome number reconstruction revealed the basic number 2n = 54 and a high frequency of ascending dysploid events in the most derived lineages. Our biogeographic reconstruction suggests an Amazonian origin of the family at 48-38 Mya, with independent colonization of other basins between 15 and 8 Mya. We did not find specific chromosomal changes or increased diversification rates correlated with the colonization of a new environment. On the other hand, an increase in the diversification rate was detected involving the genus Serrasalmus and Pygocentrus in the Miocene, correlated with the stasis of 2n = 60. Our data demonstrate that chromosomal rearrangements might have played an important evolutionary role in major cladogenetic events in Serrasalmidae, revealing them as a possible evolutionary driver in their diversification.
Collapse
Affiliation(s)
- Uedson Pereira Jacobina
- Laboratory of Molecular Integrative Systematics, Federal University of Alagoas, Campus Arapiraca, Arapiraca, 57076-100, Brazil.
| | - Alany Itala Pontes
- Laboratory of Molecular Integrative Systematics, Federal University of Alagoas, Campus Arapiraca, Arapiraca, 57076-100, Brazil
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, 50670-420, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, 50670-420, Brazil
| |
Collapse
|
4
|
Raick X, Godinho AL, Kurchevski G, Huby A, Parmentier É. Bioacoustics supports genus identification in piranhasa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2203-2210. [PMID: 37815413 DOI: 10.1121/10.0021308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
In different teleost species, sound production can utilize specific coding schemes to avoid confusion between species during communication. Piranhas are vocal Neotropical fishes, and both Pygocentrus and Serrasalmus produce similar pulsed sounds using the same sound-producing mechanism. In this study, we analysed the sounds of three Pygocentrus and nine Serrasalmus species to determine whether sounds can be used to discriminate piranha species at both the species and genus levels. Our analysis of temporal and frequency data supports the idea that the sounds of Serrasalmus and Pygocentrus species are species specific, and that different acoustic features can be used to differentiate taxa at the genus level. Specifically, the sounds of Serrasalmus species are shorter, louder, and have a shorter pulse period (as determined after correction for standard length). This suggests that sounds can be used to support taxonomy at the genus level as well as the species level.
Collapse
Affiliation(s)
- Xavier Raick
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, 4000, Belgium
| | - Alexandre Lima Godinho
- Fish Passage Center, Federal University of Minas Gerais, Belo-Horizonte, 31270-901, MG, Brazil
| | - Gregório Kurchevski
- Fish Passage Center, Federal University of Minas Gerais, Belo-Horizonte, 31270-901, MG, Brazil
| | - Alessia Huby
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, 4000, Belgium
| | - Éric Parmentier
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
5
|
Cohen KE, Lucanus O, Summers AP, Kolmann MA. Lip service: Histological phenotypes correlate with diet and feeding ecology in herbivorous pacus. Anat Rec (Hoboken) 2023; 306:326-342. [PMID: 36128598 DOI: 10.1002/ar.25075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023]
Abstract
Complex prey processing requires the repositioning of food between the teeth, as modulated by a soft tissue appendage like a tongue or lips. In this study, we trace the evolution of lips and ligaments, which are used during prey capture and prey processing in an herbivorous group of fishes. Pacus (Serrasalmidae) are Neotropical freshwater fishes that feed on leaves, fruits, and seeds. These prey are hard or tough, require high forces to fracture, contain abrasive or caustic elements, or deform considerably before failure. Pacus are gape-limited and do not have the pharyngeal jaws many bony fishes use to dismantle and/or transport prey. Despite their gape limitation, pacus feed on prey larger than their mouths, relying on robust teeth and a hypertrophied lower lip for manipulation and breakdown of food. We used histology to compare the lip morphology across 14 species of pacus and piranhas to better understand this soft tissue. We found that frugivorous pacus have larger, more complex lips which are innervated and folded at their surface, while grazing species have callused, mucus-covered lips. Unlike mammalian lips or tongues, pacu lips lack any intrinsic skeletal or smooth muscle. This implies that pacu lips lack dexterity; however, we found a novel connection to the primordial ligament which suggests that the lips are actuated by the jaw adductors. We propose that pacus combine hydraulic repositioning of prey inside the buccal cavity with direct oral manipulation, the latter using a combination of a morphologically heterodont dentition and compliant lips for reorienting food.
Collapse
Affiliation(s)
- Karly E Cohen
- Biology Department, University of Washington, Seattle, Washington, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, USA
| | - Oliver Lucanus
- BelowWater, Inc., Montreal, Quebec, Canada.,Applied Remote Sensing Lab, Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Adam P Summers
- Biology Department, University of Washington, Seattle, Washington, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, USA
| | - Matthew A Kolmann
- Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA.,Dept. of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Taphorn DC, Liverpool E, Lujan NK, DoNascimiento C, Hemraj DD, Crampton WGR, Kolmann MA, Fontenelle JP, de Souza LS, Werneke DC, Ram M, Bloom DD, Sidlauskas BL, Holm E, Lundberg JG, Sabaj MH, Bernard C, Armbruster JW, López-Fernández H. Annotated checklist of the primarily freshwater fishes of Guyana. PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 2022. [DOI: 10.1635/053.168.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Elford Liverpool
- Department of Biology, Faculty of Natural Sciences, University of Guyana, Turkeyen, East Coast Demerara, 413741, Georgetown, Guyana.
| | - Nathan K. Lujan
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, M5S 2C6, Canada and Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Carlos DoNascimiento
- Universidad de Antioquia, Grupo de Ictiología, Instituto de Biología, Calle 67 No. 53-108, Medellín, Antioquia, Colombia
| | - Devya D. Hemraj
- Centre for the Study of Biological Diversity, Department of Biology, Faculty of Natural Sciences, University of Guyana, Turkeyen Campus, Greater Georgetown, Guyana
| | | | - Matthew A. Kolmann
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - João Pedro Fontenelle
- University of Toronto, Institute of Forestry and Conservation, 33 Willcocks St. Office 4004, M5S 3E8, Toronto, ON, Canada
| | - Lesley S. de Souza
- Field Museum of Natural History, 1400 S. Lake Shore, Chicago, IL, 60605 USA
| | - David C. Werneke
- Department of Biological Sciences, 101 Rouse, Auburn University, Auburn, AL, 36849, USA
| | - Mark Ram
- Department of Biology, Faculty of Natural Sciences, University of Guyana, Turkeyen Campus, Greater Georgetown, Guyana
| | - Devin D. Bloom
- Department of Biological Sciences and Institute of the Environment & Sustainability, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Brian L. Sidlauskas
- Oregon State University, Department of Fisheries, Wildlife and Conservation Sciences, 104 Nash Hall, Corvallis, Oregon, 97331-3803 USA and Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, Dist
| | - Erling Holm
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, M5S 2C6, Canada
| | - John G. Lundberg
- The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103, USA
| | - Mark H. Sabaj
- The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103, USA
| | - Calvin Bernard
- Department of Biology, Faculty of Natural Sciences, University of Guyana, Turkeyen Campus, Greater Georgetown, Guyana
| | | | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1105 North University Ave. Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Sylvain FÉ, Normandeau E, Holland A, Luis Val A, Derome N. Genomics of Serrasalmidae teleosts through the lens of microbiome fingerprinting. Mol Ecol 2022; 31:4656-4671. [PMID: 35729748 DOI: 10.1111/mec.16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Associations between host genotype and host-associated microbiomes have been shown in a variety of animal clades, but studies on teleosts mostly show weak associations. Our study aimed to explore these relationships in four sympatric Serrasalmidae (i.e. piranha) teleosts from an Amazonian lake, using datasets from the hosts genomes (SNPs from GBS), skin and gut microbiomes (16S rRNA gene metataxonomics), and diets (COI metabarcoding) from the same fish individuals. Firstly, we investigated whether there were significant covariations of microbiome and fish genotypes at the inter and intraspecific levels. We also assessed the extent of co-variation between Serrasalmidae diet and microbiome, to isolate genotypic from dietary effects on community structure. We observed a significant covariation of skin microbiomes and host genotypes at interspecific (R2 =24.4%) and intraspecific (R2 =6.2%) levels, whereas gut microbiomes correlated poorly with host genotypes. Serrasalmidae diet composition was significantly correlated to fish genotype only at the interspecific level (R2 =5.4%), but did not covary with gut microbiome composition (mantel R=-0.04). Secondly, we investigated whether the study of interspecific differentiation could benefit from considering host associated microbial communities in addition to host genotypes. By using a NMDS ordination-based approach, we observed that ordinations from skin and gut species-specific bacterial biomarkers identified through a random forest algorithm, could significantly increase the average interspecific differentiation detected through host genotype data alone. Although future studies encompassing additional species and environments are needed, our results suggest Serrasalmidae microbiomes could constitute an insightful trait to be considered when studying the interspecific differences between members of this clade.
Collapse
Affiliation(s)
- François-Étienne Sylvain
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Albury/Wodonga Campus, Vic, Australia
| | - Adalberto Luis Val
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, AM, 69067-375, Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| |
Collapse
|
8
|
Amorim PF, Costa WJEM. Evolution and biogeography of
Anablepsoides
killifishes shaped by Neotropical geological events (Cyprinodontiformes, Aplocheilidae). ZOOL SCR 2022. [DOI: 10.1111/zsc.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pedro F. Amorim
- Laboratory of Systematics and Evolution of Teleost Fishes Institute of Biology Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Wilson J. E. M. Costa
- Laboratory of Systematics and Evolution of Teleost Fishes Institute of Biology Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
9
|
Velasco-Hogan A, Huang W, Serrano C, Kisailus D, Meyers MA. Tooth structure, mechanical properties, and diet specialization of Piranha and Pacu (Serrasalmidae): A comparative study. Acta Biomater 2021; 134:531-545. [PMID: 34428562 DOI: 10.1016/j.actbio.2021.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
The relationship between diet, bite performance, and tooth structure is a topic of common interest for ecologists, biologists, materials scientists, and engineers. The highly specialized group of biters found in Serrasalmidae offers a unique opportunity to explore their functional diversity. Surprisingly, the piranha, whose teeth have a predominantly cutting function and whose main diet is soft flesh, is capable of exerting a greater bite force than a similarly sized pacu, who feeds on a hard durophagous diet. Herein, we expand our understanding of diet specialization in the Serrasalmidae family by investigating the influence of elemental composition and hierarchical structure on the local mechanical properties, stress distribution, and deformation mechanics of teeth from piranha (Pygocentrus nattereri) and pacu (Colossoma macropomum). Microscopic and spectroscopic analyses combined with nanoindentation and finite element simulations are used to probe the hierarchical features to uncover the structure-property relationships in piranha and pacu teeth. We show that the pacu teeth support a durophagous diet through its broad cusped-shaped teeth, thicker-irregular enameloid, interlocking interface of the dentin-enameloid junction, and increased hardness of the cuticle layer due to the larger concentrations of iron present. Comparatively, the piranha teeth are well suited for piercing due to their conical-shape which we report as having the greatest stiffness at the tip and evenly distributed enameloid. STATEMENT OF SIGNIFICANCE: The hierarchical structure and local mechanical properties of the piranha and pacu teeth are characterized and related to their feeding habits. Finite element models of the anterior teeth are generated to map local stress distribution under compressive loading. Bioinspired designs from the DEJ interface are developed and 3D printed. The pacu teeth are hierarchically structured and have local mechanical properties more suitable to a durophagous diet than the piranha. The findings here can provide insight into the design and fabrication of layered materials with suture interfaces for applications that require compressive loading conditions.
Collapse
Affiliation(s)
- Audrey Velasco-Hogan
- Materials Science and Engineering Program, University of California, San Diego, United States
| | - Wei Huang
- Department of Materials Science and Engineering, University of California, Irvine, United States
| | - Carlos Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, United States
| | - Marc A Meyers
- Materials Science and Engineering Program, University of California, San Diego, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States; Department of Nanoengineering, University of California, San Diego, United States.
| |
Collapse
|
10
|
Favarato RM, Ribeiro LB, Campos A, Porto JIR, Nakayama CM, Ota RP, Feldberg E. Comparative cytogenetics of Serrasalmidae (Teleostei: Characiformes): The relationship between chromosomal evolution and molecular phylogenies. PLoS One 2021; 16:e0258003. [PMID: 34618832 PMCID: PMC8496811 DOI: 10.1371/journal.pone.0258003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Serrasalmidae has high morphological and chromosomal diversity. Based on molecular hypotheses, the family is currently divided into two subfamilies, Colossomatinae and Serrasalminae, with Serrasalminae composed of two tribes: Myleini (comprising most of pacus species) and Serrasalmini (represented by Metynnis, Catoprion, and remaining piranha’s genera). This study aimed to analyze species of the tribes Myleini (Myloplus asterias, M. lobatus, M. rubripinnis, M. schomburgki, and Tometes camunani) and Serrasalmini (Metynnis cuiaba, M. hypsauchen, and M. longipinnis) using classical and molecular cytogenetic techniques in order to understand the chromosomal evolution of the family. The four species of the genus Myloplus and T. camunani presented 2n = 58 chromosomes, while the species of Metynnis presented 2n = 62 chromosomes. The distribution of heterochromatin occurred predominantly in pericentromeric regions in all species. Tometes camunani and Myloplus spp. presented only one site with 5S rDNA. Multiple markers of 18S rDNA were observed in T. camunani, M. asterias, M. lobatus, M. rubripinnis, and M. schomburgkii. For Metynnis, however, synteny of the 18S and 5S rDNA was observed in the three species, in addition to an additional 5S marker in M. longipinnis. These data, when superimposed on the phylogeny of the family, suggest a tendency to increase the diploid chromosome number from 54 to 62 chromosomes, which occurred in a nonlinear manner and is the result of several chromosomal rearrangements. In addition, the different karyotype formulas and locations of ribosomal sequences can be used as cytotaxonomic markers and assist in the identification of species.
Collapse
Affiliation(s)
- Ramon Marin Favarato
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
- * E-mail:
| | - Leila Braga Ribeiro
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Avenida Capitão Ene Garcêz, Boa Vista, RR, Brazil
| | - Alber Campos
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| | - Jorge Ivan Rebelo Porto
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| | - Celeste Mutuko Nakayama
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| | - Rafaela Priscila Ota
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, São Paulo, Brazil
| | - Eliana Feldberg
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| |
Collapse
|
11
|
Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes. Sci Rep 2021; 11:16157. [PMID: 34373560 PMCID: PMC8352966 DOI: 10.1038/s41598-021-95713-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022] Open
Abstract
Hyperspectral data encode information from electromagnetic radiation (i.e., color) of any object in the form of a spectral signature; these data can then be used to distinguish among materials or even map whole landscapes. Although hyperspectral data have been mostly used to study landscape ecology, floral diversity and many other applications in the natural sciences, we propose that spectral signatures can be used for rapid assessment of faunal biodiversity, akin to DNA barcoding and metabarcoding. We demonstrate that spectral signatures of individual, live fish specimens can accurately capture species and clade-level differences in fish coloration, specifically among piranhas and pacus (Family Serrasalmidae), fishes with a long history of taxonomic confusion. We analyzed 47 serrasalmid species and could distinguish spectra among different species and clades, with the method sensitive enough to document changes in fish coloration over ontogeny. Herbivorous pacu spectra were more like one another than they were to piranhas; however, our method also documented interspecific variation in pacus that corresponds to cryptic lineages. While spectra do not serve as an alternative to the collection of curated specimens, hyperspectral data of fishes in the field should help clarify which specimens might be unique or undescribed, complementing existing molecular and morphological techniques.
Collapse
|
12
|
Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE, Stiassny MLJ, Arroyave J, Chang J, Faircloth BC, MacGuigan DJ, Harrington RC, Benine RC, Burns MD, Hoekzema K, Sanches NC, Maldonado-Ocampo JA, Castro RMC, Foresti F, Alfaro ME, Oliveira C. Accelerated Diversification Explains the Exceptional Species Richness of Tropical Characoid Fishes. Syst Biol 2021; 71:78-92. [PMID: 34097063 DOI: 10.1093/sysbio/syab040] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
The Neotropics harbor the most species-rich freshwater fish fauna on the planet, but the timing of that exceptional diversification remains unclear. Did the Neotropics accumulate species steadily throughout their long history, or attain their remarkable diversity recently? Biologists have long debated the relative support for these museum and cradle hypotheses, but few phylogenies of megadiverse tropical clades have included sufficient taxa to distinguish between them. We used 1,288 ultraconserved element loci (UCE) spanning 293 species, 211 genera and 21 families of characoid fishes to reconstruct a new, fossil-calibrated phylogeny and infer the most likely diversification scenario for a clade that includes a third of Neotropical fish diversity. This phylogeny implies paraphyly of the traditional delimitation of Characiformes because it resolves the largely Neotropical Characoidei as the sister lineage of Siluriformes (catfishes), rather than the African Citharinodei. Time-calibrated phylogenies indicate an ancient origin of major characoid lineages and reveal a much more recent emergence of most characoid species. Diversification rate analyses infer increased speciation and decreased extinction rates during the Oligocene at around 30 million years ago (Ma) during a period of mega-wetland formation in the proto-Orinoco-Amazonas. Three species-rich and ecomorphologically diverse lineages (Anostomidae, Serrasalmidae, and Characidae) that originated more than 60 Ma in the Paleocene experienced particularly notable bursts of Oligocene diversification and now account collectively for 68% of the approximately 2,150 species of Characoidei. In addition to paleogeographic changes, we discuss potential accelerants of diversification in these three lineages. While the Neotropics accumulated a museum of ecomorphologically diverse characoid lineages long ago, this geologically dynamic region also cradled a much more recent birth of remarkable species-level diversity.
Collapse
Affiliation(s)
- Bruno F Melo
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Brian L Sidlauskas
- Dept of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Thomas J Near
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Fabio F Roxo
- Sector of Zoology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Ava Ghezelayagh
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Luz E Ochoa
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Palmira, Valle del Cauca, 763547, Colombia
| | - Melanie L J Stiassny
- Dept of Ichthyology, American Museum of Natural History, New York, NY, 10024, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Jonathan Chang
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Brant C Faircloth
- Dept of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Daniel J MacGuigan
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Richard C Harrington
- Dept of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Ricardo C Benine
- Sector of Zoology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Michael D Burns
- Cornell Lab of Ornithology, Cornell University Museum of Vertebrates, Ithaca, NY, 14850, USA
| | - Kendra Hoekzema
- Dept of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Natalia C Sanches
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Javier A Maldonado-Ocampo
- Dept de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia (in memoriam)
| | - Ricardo M C Castro
- Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Fausto Foresti
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| | - Michael E Alfaro
- Dept of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Claudio Oliveira
- Dept of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 16818-689, Brazil
| |
Collapse
|
13
|
Carrillo-Briceño JD, Sánchez R, Scheyer TM, Carrillo JD, Delfino M, Georgalis GL, Kerber L, Ruiz-Ramoni D, Birindelli JLO, Cadena EA, Rincón AF, Chavez-Hoffmeister M, Carlini AA, Carvalho MR, Trejos-Tamayo R, Vallejo F, Jaramillo C, Jones DS, Sánchez-Villagra MR. A Pliocene-Pleistocene continental biota from Venezuela. SWISS JOURNAL OF PALAEONTOLOGY 2021; 140:9. [PMID: 34721281 PMCID: PMC8550326 DOI: 10.1186/s13358-020-00216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 06/13/2023]
Abstract
The Pliocene-Pleistocene transition in the Neotropics is poorly understood despite the major climatic changes that occurred at the onset of the Quaternary. The San Gregorio Formation, the younger unit of the Urumaco Sequence, preserves a fauna that documents this critical transition. We report stingrays, freshwater bony fishes, amphibians, crocodiles, lizards, snakes, aquatic and terrestrial turtles, and mammals. A total of 49 taxa are reported from the Vergel Member (late Pliocene) and nine taxa from the Cocuiza Member (Early Pleistocene), with 28 and 18 taxa reported for the first time in the Urumaco sequence and Venezuela, respectively. Our findings include the first fossil record of the freshwater fishes Megaleporinus, Schizodon, Amblydoras, Scorpiodoras, and the pipesnake Anilius scytale, all from Pliocene strata. The late Pliocene and Early Pleistocene ages proposed here for the Vergel and Cocuiza members, respectively, are supported by their stratigraphic position, palynology, nannoplankton, and 86Sr/88Sr dating. Mammals from the Vergel Member are associated with the first major pulse of the Great American Biotic Interchange. In contrast to the dry conditions prevailing today, the San Gregorio Formation documents mixed open grassland/forest areas surrounding permanent freshwater systems, following the isolation of the northern South American basin from western Amazonia. These findings support the hypothesis that range contraction of many taxa to their current distribution in northern South America occurred rapidly during at least the last 1.5 million years.
Collapse
Affiliation(s)
- Jorge D. Carrillo-Briceño
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006 Zurich, Switzerland
| | - Rodolfo Sánchez
- Museo Paleontológico de Urumaco, Calle Bolívar s/n, Urumaco, Estado Falcón Venezuela
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006 Zurich, Switzerland
| | - Juan D. Carrillo
- CR2P, Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, 8 Rue Buffon, 75005 Paris, France
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
| | - Massimo Delfino
- Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA/ICP, c/Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Georgios L. Georgalis
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006 Zurich, Switzerland
| | - Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia (CAPPA), Universidade Federal de Santa Maria (UFSM), São João do Polêsine, Rio Grande do Sul Brazil
- Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, PA Brazil
| | - Damián Ruiz-Ramoni
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, CONICET, UNLaR, SEGEMAR, UNCa, Entre Ríos y Mendoza s/n, 5301 Anillaco, La Rioja, Argentina
| | - José L. O. Birindelli
- Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Edwin-Alberto Cadena
- Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón Panama
| | - Aldo F. Rincón
- Departamento de Física y Geociencias, Universidad del Norte, Km. 5 Vía Puerto Colombia, Barranquilla, Colombia
| | - Martin Chavez-Hoffmeister
- Laboratorio de Paleontología, Instituto de Ciencias de La Tierra, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo A. Carlini
- Lab. Morfología Evolutiva Desarrollo (MORPHOS), and División Paleontología de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina
| | - Mónica R. Carvalho
- Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón Panama
| | - Raúl Trejos-Tamayo
- Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Calle 65 #26-10, Manizales, Colombia
- Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Felipe Vallejo
- Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Calle 65 #26-10, Manizales, Colombia
- Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón Panama
- Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
- ISEM, U. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Douglas S. Jones
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
| | | |
Collapse
|
14
|
Phylogenomics of the Neotropical fish family Serrasalmidae with a novel intrafamilial classification (Teleostei: Characiformes). Mol Phylogenet Evol 2020; 153:106945. [DOI: 10.1016/j.ympev.2020.106945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
|
15
|
Raick X, Huby A, Kurchevski G, Godinho AL, Parmentier É. Use of bioacoustics in species identification: Piranhas from genus Pygocentrus (Teleostei: Serrasalmidae) as a case study. PLoS One 2020; 15:e0241316. [PMID: 33119694 PMCID: PMC7595327 DOI: 10.1371/journal.pone.0241316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Pygocentrus contains three valid piranha species (P. cariba, P. nattereri and P. piraya) that are allopatric in tropical and subtropical freshwater environments of South America. This study uses acoustic features to differentiate the three species. Sounds were recorded in P. cariba, two populations of P. nattereri (red- and yellow-bellied) and P. piraya; providing sound description for the first time in P. cariba and P. piraya. Calls of P. cariba were distinct from all the other studied populations. Red- and yellow-bellied P. nattereri calls were different from each other but yellow-bellied P. nattereri calls were similar to those of P. piraya. These observations can be explained by considering that the studied specimens of yellow-bellied P. nattereri have been wrongly identified and are actually a sub-population of P. piraya. Morphological examinations and recent fish field recordings in the Araguari River strongly support our hypothesis. This study shows for the first time that sounds can be used to discover identification errors in the teleost taxa.
Collapse
Affiliation(s)
- Xavier Raick
- Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, University of Liège, Liège, Belgium
- * E-mail:
| | - Alessia Huby
- Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, University of Liège, Liège, Belgium
| | - Gregório Kurchevski
- Fish Passage Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Lima Godinho
- Fish Passage Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Éric Parmentier
- Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Bonani Mateussi NT, Melo BF, Oliveira C. Molecular delimitation and taxonomic revision of the wimple piranha Catoprion (Characiformes: Serrasalmidae) with the description of a new species. JOURNAL OF FISH BIOLOGY 2020; 97:668-685. [PMID: 32501542 DOI: 10.1111/jfb.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
A taxonomic revision of wimple piranhas of the genus Catoprion is performed in combination with a molecular analysis using mtDNA. Molecular phylogenetic analyses of 49 specimens using genetic distances, conventional likelihood and four delimitation methods yielded two distinct lineages of Catoprion, with the morphological analyses of 198 specimens of Catoprion corroborating the molecular results. We provide a redescription of Catoprion mento, from the Paraguay, Orinoco, and tributaries of western Amazon basin, keeping Mylesinus macropterus as a junior synonym of C. mento, and the description of Catoprion absconditus n. sp., from the Amazon and Essequibo basins. C. absconditus n. sp. differs from C. mento by the presence of 86-94 perforated scales in the lateral line (vs. 65-86 scales) and the presence of 35-40 circumpeduncular scales (vs. 29-34 scales). The distribution of C. mento follows the Amazonas-Paraguay-Orinoco lowlands, whereas C. absconditus follows the eastern Amazon biogeographic pattern.
Collapse
Affiliation(s)
- Nadayca T Bonani Mateussi
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bruno F Melo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Claudio Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
17
|
Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH, López-Fernández H, Ortí G. Phylogenomics of Piranhas and Pacus (Serrasalmidae) Uncovers How Dietary Convergence and Parallelism Obfuscate Traditional Morphological Taxonomy. Syst Biol 2020; 70:576-592. [PMID: 32785670 DOI: 10.1093/sysbio/syaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
The Amazon and neighboring South American river basins harbor the world's most diverse assemblages of freshwater fishes. One of the most prominent South American fish families is the Serrasalmidae (pacus and piranhas), found in nearly every continental basin. Serrasalmids are keystone ecological taxa, being some of the top riverine predators as well as the primary seed dispersers in the flooded forest. Despite their widespread occurrence and notable ecologies, serrasalmid evolutionary history and systematics are controversial. For example, the sister taxon to serrasalmids is contentious, the relationships of major clades within the family are inconsistent across different methodologies, and half of the extant serrasalmid genera are suggested to be non-monophyletic. We analyzed exon capture to reexamine the evolutionary relationships among 63 (of 99) species across all 16 serrasalmid genera and their nearest outgroups, including multiple individuals per species to account for cryptic lineages. To reconstruct the timeline of serrasalmid diversification, we time-calibrated this phylogeny using two different fossil-calibration schemes to account for uncertainty in taxonomy with respect to fossil teeth. Finally, we analyzed diet evolution across the family and comment on associated changes in dentition, highlighting the ecomorphological diversity within serrasalmids. We document widespread non-monophyly of genera within Myleinae, as well as between Serrasalmus and Pristobrycon, and propose that reliance on traits like teeth to distinguish among genera is confounded by ecological homoplasy, especially among herbivorous and omnivorous taxa. We clarify the relationships among all serrasalmid genera, propose new subfamily affiliations, and support hemiodontids as the sister taxon to Serrasalmidae. [Characiformes; exon capture; ichthyochory; molecular time-calibration; piscivory.].
Collapse
Affiliation(s)
- M A Kolmann
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON M5S 2C6, Canada
| | - L C Hughes
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Ichthyology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - L P Hernandez
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| | - D Arcila
- Dept of Ichthyology, Sam Noble Museum, 2401 Chautauqua Ave, Norman, OK 73072, USA.,Dept of Biology, University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
| | - R Betancur-R
- Dept of Ichthyology, Sam Noble Museum, 2401 Chautauqua Ave, Norman, OK 73072, USA.,Dept of Biology, University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
| | - M H Sabaj
- Dept of Ichthyology, The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103, USA
| | - H López-Fernández
- Museum of Zoology, University of Michigan, 1105 North University Dr., Ann Arbor, MI 48109, USA
| | - G Ortí
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Ichthyology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| |
Collapse
|
18
|
Delaunois Y, Huby A, Malherbe C, Eppe G, Parmentier É, Compère P. Microstructural and compositional variation in pacu and piranha teeth related to diet specialization (Teleostei: Serrasalmidae). J Struct Biol 2020; 210:107509. [DOI: 10.1016/j.jsb.2020.107509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
|
19
|
Bittencourt PS, Machado VN, Marshall BG, Hrbek T, Farias IP. Phylogenetic relationships of the neon tetras Paracheirodon spp. (Characiformes: Characidae: Stethaprioninae), including comments on Petitella georgiae and Hemigrammus bleheri. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2019-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Neon tetras (Paracheirodon spp.) are three colorful characid species with a complicated taxonomic history, and relationships among the species are poorly known. Molecular data resolved the relationships among the three neon tetras, and strongly supported monophyly of the genus and its sister taxon relationship to Brittanichthys. Additionally, the sister-taxon relationship of the rummy-nose tetras Hemigrammus bleheri and Petitella georgiae was strongly supported by molecular and morphological data. Therefore, we propose to transfer the rummy-nose tetras H. bleheri and H. rhodostomus to the genus Petitella. Furthermore, Petitella georgiae is likely to be a species complex comprised of at least two species.
Collapse
|
20
|
Ota RP, Machado VN, Andrade MC, Collins RA, Farias IP, Hrbek T. Integrative taxonomy reveals a new species of pacu (Characiformes: Serrasalmidae: Myloplus) from the Brazilian Amazon. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-20190112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Pacus of the genus Myloplus represent a formidable taxonomic challenge, and particularly so for the case of M. asterias and M. rubripinnis, two widespread and common species that harbor considerable morphological diversity. Here we apply DNA barcoding and multiple species discovery methods to find candidate species in this complex group. We report on one well-supported lineage that is also morphologically and ecologically distinct. This lineage represents a new species that can be distinguished from congeners by the presence of dark chromatophores on lateral-line scales, which gives the appearance of a black lateral line. It can be further diagnosed by having 25-29 branched dorsal-fin rays (vs. 18-24), 89-114 perforated scales from the supracleithrum to the end of hypural plate (vs. 56-89), and 98-120 total lateral line scales (vs. 59-97). The new species is widely distributed in the Amazon basin, but seems to have a preference for black- and clearwater habitats. This ecological preference and black lateral line color pattern bears a striking similarity to the recently described silver dollar Metynnis melanogrammus.
Collapse
|
21
|
Bignotto TS, Gomes VN, Maniglia TC, Boni TA, Agostinho CS, Prioli SMAP, Prioli AJ. Molecular characterization and genetic relationships of seven piranha species of the genera Serrasalmus and Pygocentrus (Characiformes: Serrasalmidae) from Paraná-Paraguay, São Francisco and Tocantins River basins in Brazil. BRAZ J BIOL 2019; 80:741-751. [PMID: 31778481 DOI: 10.1590/1519-6984.219020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Genetic and phylogenetic relationships among seven piranha species of the genera Serrasalmus and Pygocentrus from the Paraná-Paraguay, São Francisco and Tocantins River basins were evaluated in the present study by partial sequences of two mitochondrial genes, Cytochrome b and Cytochrome c Oxidase I. Phylogenetic analysis of Maximum-Likelihood and Bayesian inference were performed. Results indicated, in general, greater genetic similarity between the two species of Pygocentrus (P. nattereri and P. piraya), between Serrasalmus rhombeus and S. marginatus and between S. maculatus, S. brandtii and S. eigenmanni. Pygocentrus nattereri, S. rhombeus and S. maculatus showed high intraspecific genetic variability. These species have each one, at least two different mitochondrial lineages that, currently, occur in sympatry (S. rhombeus) or in allopatry (P. nattereri and S. maculatus). Species delimitation analysis and the high values of genetic distances observed between populations of S. rhombeus and of S. maculatus indicated that each species may corresponds to a complex of cryptic species. The non-monophyletic condition of S. rhombeus and S. maculatus reinforces the hypothesis. The geographic distribution and the genetic differentiation pattern observed for the piranha species analyzed herein are discussed regarding the geological and hydrological events that occurred in the hydrographic basins.
Collapse
Affiliation(s)
- T S Bignotto
- Grupo de Pesquisas em Recursos Pesqueiros e Limnologia - GERPEL, Universidade Estadual do Oeste do Paraná - UNIOESTE, Campus de Toledo, Rua da Faculdade, 645, CEP 85903-000, Toledo, PR, Brasil.,Programa de Pós-graduação em Genética e Melhoramento, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brasil
| | - V N Gomes
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura - NUPÉLIA, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brasil
| | - T C Maniglia
- Universidade Tecnológica Federal do Paraná - UTFPR, Campus de Toledo, Rua Cristo Rei, 19, CEP 85902-490, Toledo, PR, Brasil
| | - T A Boni
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura - NUPÉLIA, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brasil
| | - C S Agostinho
- Núcleo de Estudos Ambientais - NEAMB, Universidade Federal do Tocantins - UFT, Campus de Porto Nacional, Rua Três, s/n, CEP 77500-000, Porto Nacional, TO, Brasil
| | - S M A P Prioli
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura - NUPÉLIA, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brasil
| | - A J Prioli
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura - NUPÉLIA, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brasil
| |
Collapse
|
22
|
Liu X, Jiang J, Li C, Bai X, Ma L, Liu K. Two complete mitochondrial genomes of Myloplus rubripinnis and Metynnis hypsauchen (Characiforme: Serrasalmidae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:3874-3875. [PMID: 33366229 PMCID: PMC7707693 DOI: 10.1080/23802359.2019.1687345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myloplus rubripinnis and Metynnis hypsauchen are two compressed-bodied ornamental fishes of Serrasalmidae family. In this study, complete mitochondrial genome sequences of the two species were determined. The mitogenomes were 16662 bp and 16737 bp nucleotides in length, and both contained 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNA), 2 ribosomal RNAs (rRNA) and a control region. The phylogenetic tree revealed that Myloplus rubripinnis was closely related to Myleus sp. and Myleus cf. schomburgkii, while Metynnis hypsauchen was related to Pygocentrus nattereri, and then the two clades clustered into one group. Present mitogenome sequences of M. rubripinnis and M. hypsauchen will provide molecular information to the evolution and ecology studies of the two species.
Collapse
Affiliation(s)
- Xiaolian Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Jufeng Jiang
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chunyan Li
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Xiaohui Bai
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lin Ma
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Keming Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| |
Collapse
|
23
|
Kolmann MA, Cohen KE, Bemis KE, Summers AP, Irish FJ, Hernandez LP. Tooth and consequences: Heterodonty and dental replacement in piranhas and pacus (Serrasalmidae). Evol Dev 2019; 21:278-293. [DOI: 10.1111/ede.12306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew A. Kolmann
- Department of Biological Sciences George Washington University Washington District of Columbia
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Karly E. Cohen
- Department of Biological Sciences George Washington University Washington District of Columbia
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Katherine E. Bemis
- Fisheries Science, Virginia Institute of Marine Science Gloucester Point Virginia
| | - Adam P. Summers
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Frances J. Irish
- Department of Biological Sciences Moravian College Bethlehem Pennsylvania
| | - L. Patricia Hernandez
- Department of Biological Sciences George Washington University Washington District of Columbia
| |
Collapse
|
24
|
Moreira J, Luque JL, Šimková A. The phylogenetic position of Anacanthorus (Monogenea, Dactylogyridae) parasitizing Brazilian serrasalmids (Characiformes). Parasite 2019; 26:44. [PMID: 31335315 PMCID: PMC6650203 DOI: 10.1051/parasite/2019045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022] Open
Abstract
Anacanthorus (Anacanthorinae) is one of the most speciose and common genera of neotropical monogeneans, yet there are still many gaps in our knowledge concerning their diversity and phylogeny. We performed phylogenetic analyses of molecular sequences in order to investigate the phylogenetic position within the Dactylogyridae of Anacanthorus spp. infesting serrasalmids from two Brazilian river basins. Sequences of partial 28S rDNA obtained for nine species of Anacanthorus and Mymarothecium viatorum parasitizing serrasalmids and the published sequences of other members of the Dactylogyridae were included in the phylogenetic reconstruction. Phylogenetic analyses supported the monophyly of anacanthorine monogeneans. The Anacanthorinae (represented in this study by Anacanthorus spp.) formed a monophyletic group included in a large clade together with a group of solely freshwater Ancyrocephalinae and species of the Ancylodiscoidinae. Mymarothecium viatorum (Ancyrocephalinae) was placed within the clade of freshwater Ancyrocephalinae. The phylogenetic analyses indicated that the relationships among species of Anacanthorus reflect those of their serrasalmid hosts: the first subgroup includes a species specific to hosts assigned to Piaractus, a member of the "pacus" lineage; the second subgroup includes a species parasitizing the "Myleus-like pacus" lineage; and the third subgroup includes species parasitizing the lineage of the "true piranhas". We suggest that Anacanthorus and their serrasalmid hosts can be considered a useful model to assess host-parasite biogeography and coevolution in the neotropics. However, future studies focusing on a wider spectrum of host species and their specific Anacanthorus spp. are needed in order to investigate coevolution in this highly diversified system.
Collapse
Affiliation(s)
- Juliana Moreira
- Curso de Pós-Graduação em Biologia Animal da Universidade Federal Rural do Rio de Janeiro BR 465, Km 7, Caixa Postal 74.540 23890-000 Seropédica RJ Brazil
| | - José L. Luque
- Curso de Pós-Graduação em Biologia Animal da Universidade Federal Rural do Rio de Janeiro BR 465, Km 7, Caixa Postal 74.540 23890-000 Seropédica RJ Brazil
- Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro Caixa Postal 74.540 23851-970 Seropédica RJ Brazil
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University Kotlářská 2 Brno 611 37 Czech Republic
| |
Collapse
|
25
|
Mélotte G, Raick X, Vigouroux R, Parmentier E. Origin and evolution of sound production in Serrasalmidae. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Among piranhas, sound production is known in carnivorous species, whereas herbivorous species were thought to be mute. Given that these carnivorous sonic species have a complex sonic apparatus, we hypothesize that intermediate forms could be found in other serrasalmid species. The results highlight the evolutionary transition from a simple sound-producing mechanism without specialized sonic structures to a sonic mechanism involving large, fast-contracting sonic muscles. Hypaxial muscles in basal herbivores primarily serve locomotion, but some fibres cause sound production during swimming accelerations, meaning that these muscles have gained a dual function. Sound production therefore seems to have been acquired through exaptation, i.e. the development of a new function (sound production) in existing structures initially shaped for a different purpose (locomotion). In more derived species (Catoprion and Pygopristis), some fibres are distinguishable from typical hypaxial muscles and insert directly on the swimbladder. At this stage, the primary function (locomotion) is lost in favour of the secondary function (sound production). In the last stage, the muscles and insertion sites are larger and the innervation involves more spinal nerves, improving calling abilities. In serrasalmids, the evolution of acoustic communication is characterized initially by exaptation followed by adaptive evolution.
Collapse
Affiliation(s)
- Geoffrey Mélotte
- Laboratoire de Morphologie Fonctionnelle et Evolutive, UR FOCUS, Institut de Chimie, Bât. B6c, Université de Liège, Liège, Belgium
| | - Xavier Raick
- Laboratoire de Morphologie Fonctionnelle et Evolutive, UR FOCUS, Institut de Chimie, Bât. B6c, Université de Liège, Liège, Belgium
| | - Régis Vigouroux
- HYDRECO Guyane, Laboratoire Environnement de Petit Saut, Kourou Cedex, French Guiana
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, UR FOCUS, Institut de Chimie, Bât. B6c, Université de Liège, Liège, Belgium
| |
Collapse
|
26
|
Huie JM, Summers AP, Kolmann MA. Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 2019. [DOI: 10.1635/053.166.0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jonathan M. Huie
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98195, USA
| | - Adam P. Summers
- Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| | - Matthew A. Kolmann
- Department of Biological Sciences, George Washington University, 800 22nd St NW, Suite 6000, Washington, DC 20052, USA
| |
Collapse
|
27
|
Molecular Data Reveal Multiple Lineages in Piranhas of the Genus Pygocentrus (Teleostei, Characiformes). Genes (Basel) 2019; 10:genes10050371. [PMID: 31096658 PMCID: PMC6562675 DOI: 10.3390/genes10050371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022] Open
Abstract
Carnivorous piranhas are distributed in four serrasalmid genera including Pygocentrus, which inhabit major river basins of South America. While P. cariba and P. piraya are endemics of the Orinoco and São Francisco basins, respectively, P. nattereri is widely distributed across the Amazonas, Essequibo, lower Paraná, Paraguay, and coastal rivers of northeastern Brazil, with recent records of introductions in Asia. Few studies have focused on the genetic diversity and systematics of Pygocentrus and the putative presence of additional species within P. nattereri has never been the subject of a detailed molecular study. Here we aimed to delimit species of Pygocentrus, test the phylogeographic structure of P. nattereri, and access the origin of introduced specimens of P. nattereri in Asia. Phylogenetic analyses based on a mitochondrial dataset involving maximum-likelihood tree reconstruction, genetic distances, Bayesian analysis, three delimitation approaches, and haplotype analysis corroborate the morphological hypothesis of the occurrence of three species of Pygocentrus. However, we provide here strong evidence that P. nattereri contains at least five phylogeographically-structured lineages in the Amazonas, Guaporé (type locality), Itapecuru, Paraná/Paraguay, and Tocantins/Araguaia river basins. We finally found that the introduced specimens in Asia consistently descend from the lineage of P. nattereri from the main Rio Amazonas. These results contribute to future research aimed to detect morphological variation that may occur in those genetic lineages of Pygocentrus.
Collapse
|
28
|
Favarato RM, Braga Ribeiro L, Ota RP, Nakayama CM, Feldberg E. Cytogenetic Characterization of Two Metynnis Species (Characiformes, Serrasalmidae) Reveals B Chromosomes Restricted to the Females. Cytogenet Genome Res 2019; 158:38-45. [PMID: 31079097 DOI: 10.1159/000499954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 07/27/2024] Open
Abstract
Karyotypes and chromosomal characteristics with focus on B chromosomes of 2 species of the serrasalmid genus Metynnis, namely M. lippincottianus and M. maculatus, were examined using conventional (C-banding) and molecular (FISH mapping of minor and major rDNAs and Rex1, Rex3, and Rex6 retrotransposable elements) protocols. Both species possessed a diploid chromosome number of 2n = 62 and karyotypes composed of 32 metacentric + 28 submetacentric + 2 subtelocentric and 32 metacentric + 26 submetacentric + 4 subtelocentric, respectively; one small B element was found in the female genome of M. lippincottianus. C-banding revealed heterochromatin in the pericentromeric and terminal portions of all chromosomes of both species; the B chromosome was entirely heterochromatic. FISH showed 18S rDNA sites in 2 chromosome pairs in both species (pairs 19 and 22), and a large block in the B chromosome, while 5S rDNA signals were detected in the first pair of subtelocentric chromosomes in both species, moreover in M. maculatus an additional labeled pair 4 was observed. Mapping of the Rex1, Rex3, and Rex6 retrotransposable elements in the genomes of M. lippincottianus and M. maculatus indicated that they were dispersed throughout nearly all the chromosomes of the complement, except for the B chromosome of M. lippincottianus.
Collapse
|
29
|
Huby A, Lowie A, Herrel A, Vigouroux R, Frédérich B, Raick X, Kurchevski G, Godinho AL, Parmentier E. Functional diversity in biters: the evolutionary morphology of the oral jaw system in pacus, piranhas and relatives (Teleostei: Serrasalmidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Serrasalmid fishes form a highly specialized group of biters that show a large trophic diversity, ranging from pacus able to crush seeds to piranhas capable of cutting flesh. Their oral jaw system has been hypothesized to be forceful, but variation in bite performance and morphology with respect to diet has not previously been investigated. We tested whether herbivorous species have higher bite forces, larger jaw muscles and more robust jaws than carnivorous species. We measured in vivo and theoretical bite forces in 27 serrasalmid species. We compared the size of the adductor mandibulae muscle, the jaw mechanical advantages, the type of jaw occlusion, and the size and shape of the lower jaw. We also examined the association between bite performance and functional morphological traits of the oral jaw system. Contrary to our predictions, carnivorous piranhas deliver stronger bites than their herbivorous counterparts. The size of the adductor mandibulae muscle varies with bite force and muscles are larger in carnivorous species. Our study highlights an underestimated level of functional morphological diversity in a fish group of exclusive biters. We provide evidence that the trophic specialization towards carnivory in piranhas results from changes in the configuration of the adductor mandibulae muscle and the lower jaw shape, which have major effects on bite performance and bite strategy.
Collapse
Affiliation(s)
- Alessia Huby
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| | - Aurélien Lowie
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
- Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | - Anthony Herrel
- UMR7179 MNHN/CNRS, National Museum of Natural History, Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | - Régis Vigouroux
- HYDRECO GUYANE, Laboratory Environment of Petit Saut, Kourou, French Guiana
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| | - Xavier Raick
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| | - Gregório Kurchevski
- Fish Passage Center, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Amorim PF, Costa WJEM. Reconstructing biogeographic temporal events in the evolution of the livebearer fish genus Jenynsia based on total evidence analysis (Cyprinodontiformes: Anablepidae). SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2018.1554606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pedro F. Amorim
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| | - Wilson J. E. M. Costa
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Butt ZD, O'Brien E, Volkoff H. Effects of fasting on the gene expression of appetite regulators in three Characiformes with different feeding habits (Gymnocorymbus ternetzi, Metynnis argenteus and Exodon paradoxus). Comp Biochem Physiol A Mol Integr Physiol 2019; 227:105-115. [DOI: 10.1016/j.cbpa.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
|
32
|
Kolmann MA, Urban P, Summers AP. Structure and Function of the Armored Keel in Piranhas, Pacus, and their Allies. Anat Rec (Hoboken) 2018; 303:30-43. [DOI: 10.1002/ar.23986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/07/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew A. Kolmann
- Friday Harbor Laboratories University of Washington Friday Harbor Washington 98250
| | - Paulina Urban
- Department of Biology Christian‐Albrechts University Kiel, 24118 Germany
| | - Adam P. Summers
- Friday Harbor Laboratories University of Washington Friday Harbor Washington 98250
| |
Collapse
|
33
|
Boyle KS, Herrel A. Relative size variation of the otoliths, swim bladder, and Weberian apparatus structures in piranhas and pacus (Characiformes: Serrasalmidae) with different ecologies and its implications for the detection of sound stimuli. J Morphol 2018; 279:1849-1871. [PMID: 30443931 DOI: 10.1002/jmor.20908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/18/2018] [Accepted: 09/30/2018] [Indexed: 11/05/2022]
Abstract
The Weberian apparatus of otophysan fishes confers acute hearing that is hypothesized to allow these fishes to assess the environment and to find food resources. The otophysan family Serrasalmidae (piranhas and pacus) includes species known to feed on falling fruits and seeds (frugivore/granivores) that splash in rivers, herbivorous species associated with torrents and rapids (rheophiles), and carnivores that feed aggressively within shoals. Relevant sound stimuli may vary among these ecological groups and hearing may be tuned to different cues among species. In this context, we examined size variation of the Weberian ossicles, swim bladder chambers, and otoliths of 20 serrasalmid species from three broad feeding ecologies: frugivore/granivores, rheophiles, and carnivores. We performed 3D-reconstructions of high resolution tomographic data (μCT) from 54 museum specimens to estimate the size of these elements. We then tested for an ecology effect on covariation of auditory structure size and body size and accounted for phylogeny with phylogenetic generalized least squares analyses. Among ecological groups, we observed differences in relative sizes of otoliths associated with sound pressure and particle motion detection, and variation in Weberian ossicle size that may impact sound transmission. Rheophiles, which live in noisy environments, possess the strongest modifications of these structures.
Collapse
Affiliation(s)
- Kelly S Boyle
- Département Adaptation du vivant, UMR 7179 C.N.R.S./M.N.H.N, Case postale 55, Paris Cedex 5, France
| | - Anthony Herrel
- Département Adaptation du vivant, UMR 7179 C.N.R.S./M.N.H.N, Case postale 55, Paris Cedex 5, France
| |
Collapse
|
34
|
Neurocranium shape variation of piranhas and pacus (Characiformes: Serrasalmidae) in association with ecology and phylogeny. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Machado VN, Collins RA, Ota RP, Andrade MC, Farias IP, Hrbek T. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci Rep 2018; 8:8387. [PMID: 29849152 PMCID: PMC5976771 DOI: 10.1038/s41598-018-26550-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Piranhas and pacus (Characiformes: Serrasalmidae) are a charismatic but understudied family of Neotropical fishes. Here, we analyse a DNA barcode dataset comprising 1,122 specimens, 69 species, 16 genera, 208 localities, and 34 major river drainages in order to make an inventory of diversity and to highlight taxa and biogeographic areas worthy of further sampling effort and conservation protection. Using four methods of species discovery-incorporating both tree and distance based techniques-we report between 76 and 99 species-like clusters, i.e. between 20% and 33% of a priori identified taxonomic species were represented by more than one mtDNA lineage. There was a high degree of congruence between clusters, with 60% supported by three or four methods. Pacus of the genus Myloplus exhibited the most intraspecific variation, with six of the 13 species sampled found to have multiple lineages. Conversely, piranhas of the Serrasalmus rhombeus group proved difficult to delimit with these methods due to genetic similarity and polyphyly. Overall, our results recognise substantially underestimated diversity in the serrasalmids, and emphasise the Guiana and Brazilian Shield rivers as biogeographically important areas with multiple cases of across-shield and within-shield diversifications. We additionally highlight the distinctiveness and complex phylogeographic history of rheophilic taxa in particular, and suggest multiple colonisations of these habitats by different serrasalmid lineages.
Collapse
Affiliation(s)
- Valeria N Machado
- Laboratório de Evolução e Genétic Animal, Departamento de Genética, Universidade Federal do Amazonas, Av., General Rodrigo Otávio Jordão, 3000, 69077-000, Manaus, AM, Brazil
| | - Rupert A Collins
- Laboratório de Evolução e Genétic Animal, Departamento de Genética, Universidade Federal do Amazonas, Av., General Rodrigo Otávio Jordão, 3000, 69077-000, Manaus, AM, Brazil.
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Rafaela P Ota
- Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, CP 2223, Petrópolis, 69080-971, Manaus, AM, Brazil
| | - Marcelo C Andrade
- Programa de Pós-Graduação em Ecologia Aquática e Pesca, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651, Terra Firme, 66040-830, Belém, PA, Brazil
| | - Izeni P Farias
- Laboratório de Evolução e Genétic Animal, Departamento de Genética, Universidade Federal do Amazonas, Av., General Rodrigo Otávio Jordão, 3000, 69077-000, Manaus, AM, Brazil
| | - Tomas Hrbek
- Laboratório de Evolução e Genétic Animal, Departamento de Genética, Universidade Federal do Amazonas, Av., General Rodrigo Otávio Jordão, 3000, 69077-000, Manaus, AM, Brazil.
| |
Collapse
|
36
|
Mélotte G, Parmentier E, Michel C, Herrel A, Boyle K. Hearing capacities and morphology of the auditory system in Serrasalmidae (Teleostei: Otophysi). Sci Rep 2018; 8:1281. [PMID: 29352233 PMCID: PMC5775314 DOI: 10.1038/s41598-018-19812-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/05/2018] [Indexed: 11/16/2022] Open
Abstract
Like all otophysan fishes, serrasalmids (piranhas and relatives) possess a Weberian apparatus that improves their hearing capacities. We compared the hearing abilities among eight species of serrasalmids having different life-history traits: herbivorous vs. carnivorous and vocal vs. mute species. We also made 3D reconstructions of the auditory system to detect potential morphological variations associated with hearing ability. The hearing structures were similar in overall shape and position. All the species hear in the same frequency range and only slight differences were found in hearing thresholds. The eight species have their range of best hearing in the lower frequencies (50–900 Hz). In vocal serrasalmids, the range of best hearing covers the frequency spectrum of their sounds. However, the broad overlap in hearing thresholds among species having different life-history traits (herbivorous vs. carnivorous and vocal vs. non-vocal species) suggests that hearing ability is likely not related to the capacity to emit acoustic signals or to the diet, i.e. the ability to detect sounds is not associated with a given kind of food. The inner ear appears to be highly conservative in this group suggesting that it is shaped by phylogenetic history or by other kinds of constraints such as predator avoidance.
Collapse
Affiliation(s)
- Geoffrey Mélotte
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie, Bât. B6c, Université de Liège, B-4000, Liège, Belgium.
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie, Bât. B6c, Université de Liège, B-4000, Liège, Belgium
| | - Christian Michel
- Aquarium-Muséum, Département de Biologie, Ecologie et Evolution, Université de Liège, Institut de Zoologie, Bât I1, 22 quai Van Beneden, B - 4020, Liège, Belgium
| | - Anthony Herrel
- UMR 7179C.N.R.S./M.N.H.N., Département Adaptations du vivant, 55 Rue Buffon, Case Postale 55, 75005, Paris Cedex, 5, France
| | - Kelly Boyle
- UMR 7179C.N.R.S./M.N.H.N., Département Adaptations du vivant, 55 Rue Buffon, Case Postale 55, 75005, Paris Cedex, 5, France.,Department of Marine Sciences, University of South Alabama, 5871 USA Drive North, Mobile, Alabama, 36688, USA.,Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, Alabama, 36528, USA
| |
Collapse
|
37
|
Correa SB, de Oliveira PC, Nunes da Cunha C, Penha J, Anderson JT. Water and fish select for fleshy fruits in tropical wetland forests. Biotropica 2017. [DOI: 10.1111/btp.12524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Bibiana Correa
- Odum School of Ecology; University of Georgia; Athens GA 30602 USA
- Department of Genetics; University of Georgia; Athens GA 30602 USA
| | - Patricia Carla de Oliveira
- Departamento de Botânica e Ecologia; Instituto de Biociências; Universidade Federal de Mato Grosso; Av. Fernando Correa da Costa s/n Cuiabá MT Brazil
| | - Catia Nunes da Cunha
- Departamento de Botânica e Ecologia; Instituto de Biociências; Universidade Federal de Mato Grosso; Av. Fernando Correa da Costa s/n Cuiabá MT Brazil
| | - Jerry Penha
- Departamento de Botânica e Ecologia; Instituto de Biociências; Universidade Federal de Mato Grosso; Av. Fernando Correa da Costa s/n Cuiabá MT Brazil
| | - Jill T. Anderson
- Odum School of Ecology; University of Georgia; Athens GA 30602 USA
- Department of Genetics; University of Georgia; Athens GA 30602 USA
| |
Collapse
|
38
|
Banker SE, Wade EJ, Simon C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol Phylogenet Evol 2017; 116:172-181. [DOI: 10.1016/j.ympev.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 01/28/2023]
|
39
|
Vullo R, Cavin L, Khalloufi B, Amaghzaz M, Bardet N, Jalil NE, Jourani E, Khaldoune F, Gheerbrant E. A unique Cretaceous-Paleogene lineage of piranha-jawed pycnodont fishes. Sci Rep 2017; 7:6802. [PMID: 28754956 PMCID: PMC5533729 DOI: 10.1038/s41598-017-06792-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/16/2017] [Indexed: 11/09/2022] Open
Abstract
The extinct group of the Pycnodontiformes is one of the most characteristic components of the Mesozoic and early Cenozoic fish faunas. These ray-finned fishes, which underwent an explosive morphological diversification during the Late Cretaceous, are generally regarded as typical shell-crushers. Here we report unusual cutting-type dentitions from the Paleogene of Morocco which are assigned to a new genus of highly specialized pycnodont fish. This peculiar taxon represents the last member of a new, previously undetected 40-million-year lineage (Serrasalmimidae fam. nov., including two other new genera and Polygyrodus White, 1927) ranging back to the early Late Cretaceous and leading to exclusively carnivorous predatory forms, unique and unexpected among pycnodonts. Our discovery indicates that latest Cretaceous-earliest Paleogene pycnodonts occupied more diverse trophic niches than previously thought, taking advantage of the apparition of new prey types in the changing marine ecosystems of this time interval. The evolutionary sequence of trophic specialization characterizing this new group of pycnodontiforms is strikingly similar to that observed within serrasalmid characiforms, from seed- and fruit-eating pacus to flesh-eating piranhas.
Collapse
Affiliation(s)
- Romain Vullo
- Géosciences Rennes, UMR CNRS 6118, Université de Rennes 1, 35042, Rennes, France.
| | - Lionel Cavin
- Département de Géologie et Paléontologie, Muséum d'Histoire Naturelle de Genève, CP 6434, 1211 Geneva 6, Switzerland
| | - Bouziane Khalloufi
- ISYEB - Institut de Systématique, Evolution, Biodiversité, UMR 7205 Muséum National d'Histoire Naturelle, CNRS, EPHE, UPMC, Sorbonne Universités. MNHN, CP38, 75005, Paris, France
| | - Mbarek Amaghzaz
- OCP Group SA, Avenue Hassan II, BP 168, 25010, Khouribga, Morocco
| | - Nathalie Bardet
- CR2P - Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, UMR 7207, Muséum National d'Histoire Naturelle, CNRS, UPMC, Sorbonne Universités. MNHN, CP38, 75005, Paris, France
| | - Nour-Eddine Jalil
- CR2P - Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, UMR 7207, Muséum National d'Histoire Naturelle, CNRS, UPMC, Sorbonne Universités. MNHN, CP38, 75005, Paris, France
| | - Essaid Jourani
- OCP Group SA, Avenue Hassan II, BP 168, 25010, Khouribga, Morocco
| | - Fatima Khaldoune
- OCP Group SA, Avenue Hassan II, BP 168, 25010, Khouribga, Morocco
| | - Emmanuel Gheerbrant
- CR2P - Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, UMR 7207, Muséum National d'Histoire Naturelle, CNRS, UPMC, Sorbonne Universités. MNHN, CP38, 75005, Paris, France
| |
Collapse
|
40
|
A new species of Tometes Valenciennes 1850 (Characiformes: Serrasalmidae) from Tocantins-Araguaia River Basin based on integrative analysis of molecular and morphological data. PLoS One 2017; 12:e0170053. [PMID: 28422969 PMCID: PMC5396854 DOI: 10.1371/journal.pone.0170053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/24/2016] [Indexed: 11/19/2022] Open
Abstract
A new large serrasalmid species of Tometes is described from the Tocantins-Araguaia River Basin. Tometes siderocarajensissp. nov. is currently found in the rapids of the Itacaiúnas River Basin, and formerly inhabited the lower Tocantins River. The new species can be distinguished from all congeners, except from T. ancylorhynchus, by the presence of lateral space between 1st and 2nd premaxillary teeth, and by the absence of lateral cusps in these two teeth. However, T. siderocarajensissp. nov. can be differentiated from syntopic congener T. ancylorhynchus by an entirely black with mottled red body in live specimens, densely pigmented pelvic fins with a high concentration of dark chromatophores, and the presence of 39 to 41 rows of circumpeduncular scales (vs. silvery body coloration with slightly reddish overtones on middle flank during breeding period in live specimens, hyaline to slightly pale coloration on distalmost region of pelvic fins, and 30 to 36 rows of circumpeduncular scales). Additionally, molecular sequence shows that T. siderocarajensissp. nov. is reciprocally monophyletic, and diagnosable from all congeners by having two autapomorphic molecular characters in the mitochondrial gene COI. The phylogenetic reconstruction still show that T. siderocarajensissp. nov. is closely related to T. trilobatus. This is the first molecular study using an integrative taxonomic approach based on morphological and molecular sequence data for all described species of Tometes. These findings increase the number of formally described species of Tometes to seven. A key to the Tometes species is provided.
Collapse
|
41
|
Ramirez JL, Birindelli JL, Galetti PM. A new genus of Anostomidae (Ostariophysi: Characiformes): Diversity, phylogeny and biogeography based on cytogenetic, molecular and morphological data. Mol Phylogenet Evol 2017; 107:308-323. [DOI: 10.1016/j.ympev.2016.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
|
42
|
Systematics and biogeography of the Automolus infuscatus complex (Aves; Furnariidae): Cryptic diversity reveals western Amazonia as the origin of a transcontinental radiation. Mol Phylogenet Evol 2017; 107:503-515. [DOI: 10.1016/j.ympev.2016.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/13/2016] [Accepted: 12/20/2016] [Indexed: 11/21/2022]
|
43
|
Mélotte G, Vigouroux R, Michel C, Parmentier E. Interspecific variation of warning calls in piranhas: a comparative analysis. Sci Rep 2016; 6:36127. [PMID: 27782184 PMCID: PMC5080574 DOI: 10.1038/srep36127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/10/2016] [Indexed: 11/27/2022] Open
Abstract
Fish sounds are known to be species-specific, possessing unique temporal and spectral features. We have recorded and compared sounds in eight piranha species to evaluate the potential role of acoustic communication as a driving force in clade diversification. All piranha species showed the same kind of sound-producing mechanism: sonic muscles originate on vertebrae and attach to a tendon surrounding the bladder ventrally. Contractions of the sound-producing muscles force swimbladder vibration and dictate the fundamental frequency. It results the calling features of the eight piranha species logically share many common characteristics. In all the species, the calls are harmonic sounds composed of multiple continuous cycles. However, the sounds of Serrasalmus elongatus (higher number of cycles and high fundamental frequency) and S. manueli (long cycle periods and low fundamental frequency) are clearly distinguishable from the other species. The sonic mechanism being largely conserved throughout piranha evolution, acoustic communication can hardly be considered as the main driving force in the diversification process. However, sounds of some species are clearly distinguishable despite the short space for variations supporting the need for specific communication. Behavioural studies are needed to clearly understand the eventual role of the calls during spawning events.
Collapse
Affiliation(s)
- Geoffrey Mélotte
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie, Bât. B6c, Université de Liège, B-4000 Liège, Belgium
| | - Régis Vigouroux
- HYDRECO Guyane, Laboratoire Environnement de Petit Saut, B.P. 823-97388 Kourou Cedex, French Guiana
| | - Christian Michel
- Département de Biologie, Ecologie et Evolution, AFFISH Research Center, Université de Liège, Institut de Zoologie, 22 quai Van Beneden, B-4020 Liège, Belgium
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie, Bât. B6c, Université de Liège, B-4000 Liège, Belgium
| |
Collapse
|
44
|
Andrade MC, Sousa LM, Ota RP, Jégu M, Giarrizzo T. Redescription and Geographical Distribution of the Endangered Fish Ossubtus xinguense Jégu 1992 (Characiformes, Serrasalmidae) with Comments on Conservation of the Rheophilic Fauna of the Xingu River. PLoS One 2016; 11:e0161398. [PMID: 27662358 PMCID: PMC5035070 DOI: 10.1371/journal.pone.0161398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 08/04/2016] [Indexed: 12/05/2022] Open
Abstract
The monotypic species Ossubtus xinguense was originally described based on scarce material putatively divided into juveniles and adults. Ossubtus xinguense has a restricted distribution and was previously known only from a few rapids downstream of the city of Altamira, in the Volta Grande stretch of the Middle Xingu River. Until recently, the species was rare in museums because its habitat (large rapids) is difficult to sample. Large-scale collecting efforts targeting rapids throughout the Xingu River basin have yielded an abundance of new material. Based on an analysis of the type series and freshly preserved specimens, we redescribe O. xinguense and provide detailed osteological descriptions along with comments about its relationships within Serrasalmidae. Furthermore, we expand the geographical distribution of the species and discuss its conservation status.
Collapse
Affiliation(s)
- Marcelo C. Andrade
- Universidade Federal do Pará, Cidade Universitária Professor José Silveira Netto, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia Aquática e Pesca, Laboratório de Biologia Pesqueira e Manejo dos Recursos Aquáticos, Belém, PA, Brazil
| | - Leandro M. Sousa
- Universidade Federal do Pará, Campus Universitário de Altamira, Faculdade de Ciências Biológicas, Laboratório de Ictiologia, Altamira, PA, Brazil
| | - Rafaela P. Ota
- Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Manaus, AM, Brazil
| | - Michel Jégu
- Institut de Recherche Pour le Développement, Biologie des Organismes et Ecosystèmes Aquatiques, Laboratoire d’Icthyologie, Muséum national d’Histoire naturelle, Paris, France
| | - Tommaso Giarrizzo
- Universidade Federal do Pará, Cidade Universitária Professor José Silveira Netto, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia Aquática e Pesca, Laboratório de Biologia Pesqueira e Manejo dos Recursos Aquáticos, Belém, PA, Brazil
- Universidade Federal do Pará, Campus Universitário de Altamira, Faculdade de Ciências Biológicas, Laboratório de Ictiologia, Altamira, PA, Brazil
| |
Collapse
|
45
|
Tucker DB, Colli GR, Giugliano LG, Hedges SB, Hendry CR, Lemmon EM, Lemmon AR, Sites JW, Pyron RA. Methodological congruence in phylogenomic analyses with morphological support for teiid lizards (Sauria: Teiidae). Mol Phylogenet Evol 2016; 103:75-84. [PMID: 27395779 DOI: 10.1016/j.ympev.2016.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/03/2016] [Accepted: 07/05/2016] [Indexed: 11/28/2022]
Abstract
A well-known issue in phylogenetics is discordance among gene trees, species trees, morphology, and other data types. Gene-tree discordance is often caused by incomplete lineage sorting, lateral gene transfer, and gene duplication. Multispecies-coalescent methods can account for incomplete lineage sorting and are believed by many to be more accurate than concatenation. However, simulation studies and empirical data have demonstrated that concatenation and species tree methods often recover similar topologies. We use three popular methods of phylogenetic reconstruction (one concatenation, two species tree) to evaluate relationships within Teiidae. These lizards are distributed across the United States to Argentina and the West Indies, and their classification has been controversial due to incomplete sampling and the discordance among various character types (chromosomes, DNA, musculature, osteology, etc.) used to reconstruct phylogenetic relationships. Recent morphological and molecular analyses of the group resurrected three genera and created five new genera to resolve non-monophyly in three historically ill-defined genera: Ameiva, Cnemidophorus, and Tupinambis. Here, we assess the phylogenetic relationships of the Teiidae using "next-generation" anchored-phylogenomics sequencing. Our final alignment includes 316 loci (488,656bp DNA) for 244 individuals (56 species of teiids, representing all currently recognized genera) and all three methods (ExaML, MP-EST, and ASTRAL-II) recovered essentially identical topologies. Our results are basically in agreement with recent results from morphology and smaller molecular datasets, showing support for monophyly of the eight new genera. Interestingly, even with hundreds of loci, the relationships among some genera in Tupinambinae remain ambiguous (i.e. low nodal support for the position of Salvator and Dracaena).
Collapse
Affiliation(s)
- Derek B Tucker
- Brigham Young University, Department of Biology LSB 4102, Provo, UT 84602, USA.
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, 70910-900 Brasília DF, Brazil
| | - Lilian G Giugliano
- Departamento de Genética e Morfologia, Universidade de Brasília, 70910-900 Brasília DF, Brazil
| | - S Blair Hedges
- Center for Biodiversity, Temple University, 1925 N. 12th Street, Suite 502, Philadelphia, PA 19122, USA
| | - Catriona R Hendry
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306-4120, USA
| | - Jack W Sites
- Brigham Young University, Department of Biology LSB 4102, Provo, UT 84602, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
46
|
Melo BF, Sidlauskas BL, Hoekzema K, Frable BW, Vari RP, Oliveira C. Molecular phylogenetics of the Neotropical fish family Prochilodontidae (Teleostei: Characiformes). Mol Phylogenet Evol 2016; 102:189-201. [PMID: 27262428 DOI: 10.1016/j.ympev.2016.05.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/14/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
Migratory detritivores of the characiform family Prochilodontidae occur throughout the freshwaters of much of South America. Prochilodontids often form massive populations and many species achieve substantial body sizes; a combination that makes them one of the most commercially important fish groups on the continent. Their economic significance notwithstanding, prochilodontids have never been the subject of a comprehensive molecular phylogenetic analysis. Using three mitochondrial and three nuclear loci spanning all prochilodontid species, we generated a novel phylogenetic hypothesis for the family. Our results strongly support monophyly of the family and the three included genera. A novel, highly supported placement of Ichthyoelephas sister to the clade containing Prochilodus and Semaprochilodus diverges from a previous morphological hypothesis. Most previously hypothesized interspecific relationships are corroborated and some longstanding polytomies within Prochilodus and Semaprochilodus are resolved. The morphologically similar P. brevis, P. lacustris, P. nigricans and P. rubrotaeniatus are embedded within what is herein designated as the P. nigricans group. Species limits and distributions of these species are problematic and the group clearly merits taxonomic revision.
Collapse
Affiliation(s)
- Bruno F Melo
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Brian L Sidlauskas
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Kendra Hoekzema
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Benjamin W Frable
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Richard P Vari
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
47
|
Ota RP, Py-Daniel LHR, Jégu M. A new Silver Dollar species of Metynnis Cope, 1878 (Characiformes: Serrasalmidae) from Northwestern Brazil and Southern Venezuela. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20160023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT A new Metynnis is described from the rio Negro in Brazil and Venezuela, and from black- or clearwater tributaries in Brazil including the rios Parauari, Uatumã, Trombetas, and Sucunduri (the latter belonging to the rio Madeira basin). The new species can be distinguished readily from all congeners by having a high concentration of dark chromatophores on the lateral line scales. It can be further distinguished by the combination of head length 24.3-27.5% of SL, 13-18 gill-rakers on upper limb and 16-24 gill-rakers on lower limb. The new species is most similar to and likely most closely related to Metynnis hypsauchen . These two species share a similar color pattern, body shape and sexual dimorphism of the anal fin. However, they differ in that M. hypsauchen has a lightly pigmented lateral line. The new species is also distinguished from M. hypsauchen by having 56-65 predorsal scales and 90-104 lateral line scales (vs . 36-54, and 65-82, respectively). A detailed osteological description of the new species is provided.
Collapse
|
48
|
Luz LA, Reis LL, Sampaio I, Barros MC, Fraga E. Genetic differentiation in the populations of red piranha, Pygocentrus nattereri Kner (1860) (Characiformes: Serrasalminae), from the river basins of northeastern Brazil. BRAZ J BIOL 2015; 75:838-45. [PMID: 26675902 DOI: 10.1590/1519-6984.00214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/18/2014] [Indexed: 11/21/2022] Open
Abstract
The red piranha, Pygocentrus nattereri, is an important resource for artisanal and commercial fisheries. The present study determines the genetic differentiation among P. nattereri populations from the northeastern Brazilian state of Maranhão. The DNA was isolated using a standard phenol-chloroform protocol and the Control Region was amplified by PCR. The PCR products were sequenced using the didesoxyterminal method. A sequence of 1039 bps was obtained from the Control Region of 60 specimens, which presented 33 polymorphic sites, 41 haplotypes, һ =0.978 and π =0.009. The neutrality tests (D and Fs) were significant (P < 0.05) for most of the populations analyzed. The AMOVA indicated that most of the molecular variation (72%) arises between groups. The fixation index was highly significant (FST = 0.707, P < 0.00001). The phylogenetic analyses indicated that the specimens represented a monophyletic group. Genetic distances between populations varied from 0.8% to 1.9%, and were <0.5% within populations. The degree of genetic differentiation found among the stocks of P. nattereri indicates the need for the development of independent management plans for the different river basins in order to preserve the genetic variability of their populations.
Collapse
Affiliation(s)
- L A Luz
- Centro de Ciências Agrárias, Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - L L Reis
- Centro de Ciências Agrárias, Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - I Sampaio
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, PA, Brazil
| | - M C Barros
- Centro de Ciências Agrárias, Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - E Fraga
- Centro de Ciências Agrárias, Universidade Estadual do Maranhão, São Luís, MA, Brazil
| |
Collapse
|
49
|
Tonini J, Moore A, Stern D, Shcheglovitova M, Ortí G. Concatenation and Species Tree Methods Exhibit Statistically Indistinguishable Accuracy under a Range of Simulated Conditions. PLOS CURRENTS 2015; 7. [PMID: 25901289 PMCID: PMC4391732 DOI: 10.1371/currents.tol.34260cc27551a527b124ec5f6334b6be] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phylogeneticists have long understood that several biological processes can cause a gene tree to disagree with its species tree. In recent years, molecular phylogeneticists have increasingly foregone traditional supermatrix approaches in favor of species tree methods that account for one such source of error, incomplete lineage sorting (ILS). While gene tree-species tree discordance no doubt poses a significant challenge to phylogenetic inference with molecular data, researchers have only recently begun to systematically evaluate the relative accuracy of traditional and ILS-sensitive methods. Here, we report on simulations demonstrating that concatenation can perform as well or better than methods that attempt to account for sources of error introduced by ILS. Based on these and similar results from other researchers, we argue that concatenation remains a useful component of the phylogeneticist’s toolbox and highlight that phylogeneticists should continue to make explicit comparisons of results produced by contemporaneous and classical methods.
Collapse
Affiliation(s)
- João Tonini
- Department of Biological Sciences, The George Washington Univerisity, Washington, District of Columbia, USA
| | - Andrew Moore
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - David Stern
- Computational Biology Institute, Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Maryia Shcheglovitova
- Department of Geography & Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington Univerisity, Washington, District of Columbia, USA
| |
Collapse
|
50
|
Correa SB, Costa-Pereira R, Fleming T, Goulding M, Anderson JT. Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation. Biol Rev Camb Philos Soc 2015; 90:1263-78. [PMID: 25599800 DOI: 10.1111/brv.12153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 09/22/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
Abstract
Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems.
Collapse
Affiliation(s)
- Sandra Bibiana Correa
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, U.S.A
| | - Raul Costa-Pereira
- Programa de Pós Graduação em Ecologia & Biodiversidade, Universidade Estadual Paulista 'Julio de Mesquita Filho', Rio Claro, São Paulo, Brazil
| | - Theodore Fleming
- Emeritus, Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL 33124, U.S.A
| | - Michael Goulding
- Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY 10460, U.S.A
| | - Jill T Anderson
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, U.S.A
| |
Collapse
|