1
|
Amini SR, Adams M, Hammer MP, Briggs G, Donaldson JA, Ebner BC, Unmack PJ. Cryptic species, biogeography, and patterns of introgression in the fish genus Mogurnda (Eleotridae) from the Australian wet tropics: A purple patch for purple-spots. Mol Phylogenet Evol 2025; 207:108344. [PMID: 40188977 DOI: 10.1016/j.ympev.2025.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Accurately delimiting species is an essential first step towards understanding the true biodiversity of an ecosystem and any subsequent efforts to identify and protect taxa at risk of extinction. Current molecular evidence suggests that purple-spotted gudgeons (genus Mogurnda) harbour high levels of cryptic biodiversity across their broad distributional range. The present study uses a large single nucleotide polymorphism (SNP) dataset plus a companion allozyme dataset to clarify taxonomic uncertainty, patterns of introgression, and biogeographic relationships among Mogurnda populations within the Queensland Wet Tropics (QWT), a known biodiversity hotspot. Both datasets were strongly concordant in identifying a total of seven taxa split among distinct southern, northern, and lowlands groups. No two taxa were found in strict sympatry, but many appear to be parapatric and occur within the same drainage basin. Although clear evidence of introgression was only evident at six sites (∼4%), the genomic signature of modest historic admixture between proximally-distributed taxa was detected at multiple other sites. Nevertheless, all primary genetic and phylogenetic analyses strongly supported the integrity and diagnosability of these seven taxa. We therefore nominate these as novel candidate species for what appears to be yet another hyper-cryptic complex within the Australian freshwater ichthyological fauna. These results offer up intriguing ecological scenarios and conservation implications for multiple candidate species with narrow ranges in specialised habitat. We conclude by exploring the major biogeographic patterns displayed by QWT Mogurnda.
Collapse
Affiliation(s)
- Samuel R Amini
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra ACT 2617, Australia
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, SA 5005 Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT 0801, Australia
| | - Glenn Briggs
- 19-21 Raleigh St, Seville Victoria 3139, Australia
| | | | - Brendan C Ebner
- TropWATER, James Cook University, Townsville, Qld, Australia; CSIRO Land and Water, Tropical Forest Research Centre, Atherton, Qld, Australia; Grafton Fisheries Centre, Grafton, NSW, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra ACT 2617, Australia; School of Biological Sciences, Monash University Vic 3800, Australia.
| |
Collapse
|
2
|
Hasan M, Kambayashi C, Anik ZH, Islam MS. Cryptic biodiversity of freshwater fish species in Bangladesh. PLoS One 2025; 20:e0318982. [PMID: 40293989 PMCID: PMC12036941 DOI: 10.1371/journal.pone.0318982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/26/2025] [Indexed: 04/30/2025] Open
Abstract
Unrecognized cryptic species impede conservation planning and biodiversity assessments. DNA barcoding has tremendously expanded the number of novel and cryptic species in biological science. Despite few sporadic studies, the exact number of freshwater species found in Bangladesh is not known. To assess this biodiversity, we sequenced the COI gene of 124 freshwater specimens, which were gathered from various localities around Bangladesh. Seven cryptic species hidden among the currently studied specimens were identified based on the findings of phylogenetic and species delimitation analyses. The preliminary assessment also encompassed a restricted morphological examination of these cryptic taxa. The appearance of cryptic species, some of them possibly endemic, has been hypothesized. This raises concerns regarding the true diversity and evolutionary history of freshwater species in Bangladesh, which are significantly underrepresented in the current systematic frameworks that do not account for DNA data. Our current study provides baseline data that might aid local ichthyologists in their quest to identify additional new species by combining several variables (morphology and ecology). Further research is warranted to protect the priceless freshwater species in Bangladesh.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Fisheries, Jamalpur Science and Technology University, Jamalpur, Bangladesh
- Evolution and Diversity Research Laboratory, Jamalpur Science and Technology University, Jamalpur, Bangladesh
| | | | - Zahid Hasan Anik
- Evolution and Diversity Research Laboratory, Jamalpur Science and Technology University, Jamalpur, Bangladesh
| | - Md. Saiful Islam
- Department of Fisheries, Jamalpur Science and Technology University, Jamalpur, Bangladesh
| |
Collapse
|
3
|
Potter S, Moritz C, Piggott MP, Bragg JG, Afonso Silva AC, Bi K, McDonald-Spicer C, Turakulov R, Eldridge MDB. Museum Skins Enable Identification of Introgression Associated with Cytonuclear Discordance. Syst Biol 2024; 73:579-593. [PMID: 38577768 PMCID: PMC11377193 DOI: 10.1093/sysbio/syae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
Increased sampling of genomes and populations across closely related species has revealed that levels of genetic exchange during and after speciation are higher than previously thought. One obvious manifestation of such exchange is strong cytonuclear discordance, where the divergence in mitochondrial DNA (mtDNA) differs from that for nuclear genes more (or less) than expected from differences between mtDNA and nuclear DNA (nDNA) in population size and mutation rate. Given genome-scale data sets and coalescent modeling, we can now confidently identify cases of strong discordance and test specifically for historical or recent introgression as the cause. Using population sampling, combining exon capture data from historical museum specimens and recently collected tissues we showcase how genomic tools can resolve complex evolutionary histories in the brachyotis group of rock-wallabies (Petrogale). In particular, applying population and phylogenomic approaches we can assess the role of demographic processes in driving complex evolutionary patterns and assess a role of ancient introgression and hybridization. We find that described species are well supported as monophyletic taxa for nDNA genes, but not for mtDNA, with cytonuclear discordance involving at least 4 operational taxonomic units across 4 species which diverged 183-278 kya. ABC modeling of nDNA gene trees supports introgression during or after speciation for some taxon pairs with cytonuclear discordance. Given substantial differences in body size between the species involved, this evidence for gene flow is surprising. Heterogenous patterns of introgression were identified but do not appear to be associated with chromosome differences between species. These and previous results suggest that dynamic past climates across the monsoonal tropics could have promoted reticulation among related species.
Collapse
Affiliation(s)
- Sally Potter
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Macquarie Park, NSW 2109, Australia
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
| | - Maxine P Piggott
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT 0811, Australia
| | - Jason G Bragg
- National Herbarium of New South Wales, The Royal Botanical Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia
| | | | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Christiana McDonald-Spicer
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
| | - Rustamzhon Turakulov
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Earth Sciences, College of Science and Engineering, Flinders University GPO Box 2100, Adelaide, SA 5001, Australia
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia
| |
Collapse
|
4
|
Shelley JJ, Delaval A, Feuvre MCLE. A revision of the gudgeon genus Hypseleotris (Gobiiformes: Gobioidei: Eleotridae) of northwest Australia, describing three new species and synonymizing the genus Kimberleyeleotris. Zootaxa 2023; 5311:340-374. [PMID: 37518639 DOI: 10.11646/zootaxa.5311.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Species within the northwest Australian clade of Hypseleotris (six species) and the genus Kimberleyeleotris (two species) are reviewed following the recording of new populations in the region and a molecular study of the group that identified three undescribed candidate species. Based on the analysis of extensive morphological and nuclear and mitochondrial molecular datasets, Kimberleyeleotris is here formally synonymised with Hypseleotris. Furthermore, three species from the Kimberley region, Western Australia, are described to science: Hypseleotris maranda sp. nov., Hypseleotris wunduwala sp. nov., and Hypseleotris garawudjirri sp. nov. The presence of, or number of scales across the head and body, the pattern of sensory papillae on the head, fin ray counts, dorsal and anal fin colouration (particularly in breeding males), and body depth, can be used to distinguish the members of the northwest Australia lineage. Furthermore, the newly described species were genetically separated from all northwest Australian congeners by K2P distances ranging from 7.8-11.3% based on the CO1 gene, and 7.7-16.3 % based on the entire mitochondrial genome. Two of the new species, H. maranda sp. nov. and H. wunduwala sp. nov., have extremely narrow ranges being found in single sub-catchments of the Roe and King Edward Rivers respectively. On the other hand, H. garawudjirri sp. nov. is moderately widespread, being found across the Charnley, Calder, and Sale rivers. While the conservation risk to H. maranda sp. nov. and H. wunduwala sp. nov. is inherently high due to their small range, there are currently no obvious local threatening processes to either of these species given their remote locations that are little impacted by human activities.
Collapse
Affiliation(s)
- James J Shelley
- School of BioSciences; University of Melbourne; Victoria 3010; Australia.
| | - Aurélien Delaval
- School of BioSciences; University of Melbourne; Victoria 3010; Australia; Ichthyology; Sciences Department; Museums Victoria; Victoria 3001; Australia; Institute of Marine Research; Bergen 5817; Norway.
| | - Matthew C LE Feuvre
- School of BioSciences; University of Melbourne; Victoria 3010; Australia; Ichthyology; Sciences Department; Museums Victoria; Victoria 3001; Australia.
| |
Collapse
|
5
|
Tims AR, Saupe EE. Forecasting climate‐driven habitat changes for Australian freshwater fishes. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Affiliation(s)
- Amy R. Tims
- School of Natural Sciences Macquarie University Sydney New South Wales Australia
| | - Erin E. Saupe
- Department of Earth Sciences University of Oxford Oxford UK
| |
Collapse
|
6
|
Campbell CSM, Dutoit L, King TM, Craw D, Burridge CP, Wallis GP, Waters JM. Genome‐wide analysis resolves the radiation of New Zealand's freshwater
Galaxias vulgaris
complex and reveals a candidate species obscured by mitochondrial capture. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Ludovic Dutoit
- Department of Zoology University of Otago Dunedin New Zealand
| | - Tania M. King
- Department of Zoology University of Otago Dunedin New Zealand
| | - Dave Craw
- Department of Geology University of Otago Dunedin New Zealand
| | - Christopher P. Burridge
- Discipline of Biological Sciences, School of Natural Sciences University of Tasmania Hobart Australia
| | | | | |
Collapse
|
7
|
Unmack PJ, Adams M, Hammer MP, Johnson JB, Gruber B, Gilles A, Young M, Georges A. Plotting for change: an analytical framework to aid decisions on which lineages are candidate species in phylogenomic species discovery. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A recent study argued that coalescent-based models of species delimitation mostly delineate population structure, not species, and called for the validation of candidate species using biological information additional to the genetic information, such as phenotypic or ecological data. Here, we introduce a framework to interrogate genomic datasets and coalescent-based species trees for the presence of candidate species in situations where additional biological data are unavailable, unobtainable or uninformative. For de novo genomic studies of species boundaries, we propose six steps: (1) visualize genetic affinities among individuals to identify both discrete and admixed genetic groups from first principles and to hold aside individuals involved in contemporary admixture for independent consideration; (2) apply phylogenetic techniques to identify lineages; (3) assess diagnosability of those lineages as potential candidate species; (4) interpret the diagnosable lineages in a geographical context (sympatry, parapatry, allopatry); (5) assess significance of difference or trends in the context of sampling intensity; and (6) adopt a holistic approach to available evidence to inform decisions on species status in the difficult cases of allopatry. We adopt this approach to distinguish candidate species from within-species lineages for a widespread species complex of Australian freshwater fishes (Retropinna spp.). Our framework addresses two cornerstone issues in systematics that are often not discussed explicitly in genomic species discovery: diagnosability and how to determine it, and what criteria should be used to decide whether diagnosable lineages are conspecific or represent different species.
Collapse
Affiliation(s)
- Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Mark Adams
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael P Hammer
- Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia
| | - Jerald B Johnson
- Department of Biology, Brigham Young University, Provo, UT, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA
| | - Bernd Gruber
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - André Gilles
- UMR 1467 RECOVER, Aix Marseille Univ, INRAE, Centre St Charles, 3 place Victor Hugo, Marseille, France
| | - Matthew Young
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
8
|
Hammer MP, Taillebois L, King AJ, Crook DA, Wedd D, Adams M, Unmack PJ, Hoese DF, Bertozzi T. Unravelling the taxonomy and identification of a problematic group of benthic fishes from tropical rivers (Gobiidae: Glossogobius). JOURNAL OF FISH BIOLOGY 2021; 99:87-100. [PMID: 33583039 DOI: 10.1111/jfb.14701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Flathead gobies (genus Glossogobius) include c. 40 small- to medium-sized benthic fishes found primarily in freshwater habitats across the Indo-Pacific, having biodiversity value as well as cultural and economic value as food fishes, especially in developing countries. To help resolve considerable confusion regarding the identification of some of the larger-growing Glossogobius species, a systematic framework was established using nuclear genetic markers, mitochondrial DNA barcoding and phenotypic evidence for a geographically widespread collection of individuals from the waterways of tropical northern Australia. Species boundaries and distribution patterns were discordant with those previously reported, most notably for the tank goby Glossogobius giuris, which included a cryptic species. Genetic divergence was matched with accompanying unique visual characters that aid field identification. Additional taxonomic complexity was also evident, by comparison with DNA barcodes from international locations, suggesting that the specific names applicable for two of the candidate species in Australia remain unresolved due to confusion surrounding type specimens. Although flathead gobies are assumed to be widespread and common, this study demonstrates that unrealised taxonomic and ecological complexity is evident, and this will influence assessments of tropical biodiversity and species conservation. This study supports the need for taxonomic studies of freshwater fishes to underpin management in areas subject to significant environmental change.
Collapse
Affiliation(s)
- Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia
| | - Laura Taillebois
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Alison J King
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Dion Wedd
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark Adams
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - Peter J Unmack
- Centre of Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Doug F Hoese
- Australian Museum, Sydney, New South Wales, Australia
| | - Terry Bertozzi
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Leidy RA, Moyle PB. Keeping up with the status of freshwater fishes: A California (
USA
) perspective. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Robert A. Leidy
- United States Environmental Protection Agency San Francisco California USA
| | - Peter B. Moyle
- Center for Watershed Sciences University of California Davis California USA
| |
Collapse
|
10
|
Onn Chan K, Hutter CR, Wood PL, Su YC, Brown RM. Gene Flow Increases Phylogenetic Structure and Inflates Cryptic Species Estimations: A Case Study on Widespread Philippine Puddle Frogs (Occidozyga laevis). Syst Biol 2021; 71:40-57. [PMID: 33964168 DOI: 10.1093/sysbio/syab034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
In cryptic amphibian complexes, there is a growing trend to equate high levels of genetic structure with hidden cryptic species diversity. Typically, phylogenetic structure and distance-based approaches are used to demonstrate the distinctness of clades and justify the recognition of new cryptic species. However, this approach does not account for gene flow, spatial, and environmental processes that can obfuscate phylogenetic inference and bias species delimitation. As a case study, we sequenced genome-wide exons and introns to evince the processes that underlie the diversification of Philippine Puddle Frogs-a group that is widespread, phenotypically conserved, and exhibits high levels of geographically-based genetic structure. We showed that widely adopted tree- and distance-based approaches inferred up to 20 species, compared to genomic analyses that inferred an optimal number of five distinct genetic groups. Using a suite of clustering, admixture, and phylogenetic network analyses, we demonstrate extensive admixture among the five groups and elucidate two specific ways in which gene flow can cause overestimations of species diversity: (1) admixed populations can be inferred as distinct lineages characterized by long branches in phylograms; and (2) admixed lineages can appear to be genetically divergent, even from their parental populations when simple measures of genetic distance are used. We demonstrate that the relationship between mitochondrial and genome-wide nuclear p-distances is decoupled in admixed clades, leading to erroneous estimates of genetic distances and, consequently, species diversity. Additionally, genetic distance was also biased by spatial and environmental processes. Overall, we showed that high levels of genetic diversity in Philippine Puddle Frogs predominantly comprise metapopulation lineages that arose through complex patterns of admixture, isolation-by-distance, and isolation-by-environment as opposed to species divergence. Our findings suggest that speciation may not be the major process underlying the high levels of hidden diversity observed in many taxonomic groups and that widely-adopted tree- and distance-based methods overestimate species diversity in the presence of gene flow.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Perry L Wood
- Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, Alabama 36849, USA
| | - Yong-Chao Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
11
|
A fossil-calibrated time-tree of all Australian freshwater fishes. Mol Phylogenet Evol 2021; 161:107180. [PMID: 33887481 DOI: 10.1016/j.ympev.2021.107180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
Australian freshwater fishes are a relatively species-poor assemblage, mostly comprising groups derived from older repeated freshwater invasions by marine ancestors, plus a small number of Gondwanan lineages. These taxa are both highly endemic and highly threatened, but a comprehensive phylogeny for Australian freshwater fishes is lacking. This has hampered efforts to study their phylogenetic diversity, distribution of extinction risk, speciation rates, and rates of trait evolution. Here, we present a comprehensive dated phylogeny of 412 Australian fishes. We include all formally recognized freshwater species plus a number of genetically distinct subpopulations, species awaiting formal description, and predominantly brackish-water species that sometimes enter fresh water. The phylogeny was inferred using maximum-likelihood analysis of a multilocus data set comprising six mitochondrial and three nuclear genes from 326 taxa. We inferred the evolutionary timescale using penalized likelihood, then used a statistical approach to add 86 taxa for which no molecular data were available. The time-tree inferred in our study will provide a useful resource for macroecological studies of Australian freshwater fishes by enabling corrections for phylogenetic non-independence in evolutionary and ecological comparative analyses.
Collapse
|
12
|
Hammer MP, Adams M, Unmack PJ, Hassell KL, Bertozzi T. Surprising Pseudogobius: Molecular systematics of benthic gobies reveals new insights into estuarine biodiversity (Teleostei: Gobiiformes). Mol Phylogenet Evol 2021; 160:107140. [PMID: 33711446 DOI: 10.1016/j.ympev.2021.107140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Snubnose gobies (genus Pseudogobius: Gobionellinae) are ubiquitous to, and important components of, estuarine ecosystems of the Indo-west Pacific. These small benthic fishes occur in freshwater, brackish and marine habitats such as mangroves, sheltered tide pools and lowland streams, and represent a model group for understanding the biodiversity and biogeography of estuarine fauna. To develop the species-level framework required for a concurrent morphological taxonomic appraisal, we undertook thorough sampling around the extensive Australian coastline, referenced to international locations, as part of a molecular systematic review using both nuclear and mitochondrial markers. The results indicate that while there are currently eight recognised species, the true diversity is close to double this, with a hotspot of endemism located in Australia. Complicated patterns were observed in southern Australia owing to two differing zones of introgression/admixture. Key drivers of diversity in the group appear to include plate tectonics, latitude, and historic barriers under glacial maxima, where an interplay between ready dispersal and habitat specialisation has led to regional panmixia but frequent geographic compartmentalisation within past and present landscapes. The findings have significant implications for biodiversity conservation, coastal and estuarine development, the basic foundations of field ecology, and for applied use such as in biomonitoring.
Collapse
Affiliation(s)
- Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory 0801, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia.
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT 2601, Australia
| | - Kathryn L Hassell
- Centre for Aquatic Pollution Identification and Management, School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Aquatic Environmental Stress Research Group, School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria 3083, Australia
| | - Terry Bertozzi
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
13
|
Hammer MP, Adams M, Thacker CE, Johnson JB, Unmack PJ. Comparison of genetic structure in co-occurring freshwater eleotrids (Actinopterygii: Philypnodon) reveals cryptic species, likely translocation and regional conservation hotspots. Mol Phylogenet Evol 2019; 139:106556. [DOI: 10.1016/j.ympev.2019.106556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/20/2019] [Accepted: 07/04/2019] [Indexed: 11/25/2022]
|
14
|
Ebner BC, Donaldson JA, Starrs D. Barred grunters shift objects to access benthic invertebrates in a crater lake. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Shelley JJ, Dempster T, Le Feuvre MC, Unmack PJ, Laffan SW, Swearer SE. A revision of the bioregionalisation of freshwater fish communities in the Australian Monsoonal Tropics. Ecol Evol 2019; 9:4568-4588. [PMID: 31031928 PMCID: PMC6476826 DOI: 10.1002/ece3.5059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 11/25/2022] Open
Abstract
The Australian freshwater fish fauna is very unique, but poorly understood. In the Australian Monsoonal Tropics (AMT) biome of northern Australia, the number of described and candidate species has nearly doubled since the last attempt to analyse freshwater fish species composition patterns and determine a bioregionalisation scheme. Here, we utilise the most complete database of catchment-scale freshwater fish distributions from the AMT to date to: (a) reanalyze spatial patterns of species richness, endemism and turnover of freshwater fishes; (b) propose a biogeographic regionalisation based on species turnover; (c) assess the relationship between species turnover and patterns of environmental change and historic drainage connectivity; and (d) identify sampling gaps. Biogeographic provinces were identified using an agglomerative cluster analysis of a Simpson's beta (β sim) dissimilarity matrix. A generalised dissimilarity model incorporating eighteen environmental variables was used to investigate the environmental correlates of species turnover. Observed and estimated species richness and endemism were calculated and inventory completeness was estimated based on the ratio of observed to estimated species richness. Three major freshwater fish biogeographic provinces and 14 subprovinces are proposed. These differ substantially from the current bioregionalisation scheme. Species turnover was most strongly influenced by environmental variables that are interpreted to reflect changes in terrain (catchment relief and confinement), geology and climate (runoff perenniality, stream density), and biotic responses to climate (net primary productivity). Past connectivity between rivers during low sea-level events is also influential highlighting the importance of historical processes in explaining contemporary patterns of biodiversity in the AMT. The inclusion of 49 newly discovered species and candidate species only reinforced known focal points of species richness and endemism in the AMT. However, a number of key sampling gaps remain that need to be filled to fully characterise the proposed bioregionalisation.
Collapse
Affiliation(s)
- James J. Shelley
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | | | - Peter J. Unmack
- Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Shawn W. Laffan
- School of Biological Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | | |
Collapse
|