1
|
Mochales-Riaño G, Burriel-Carranza B, Barros MI, Velo-Antón G, Talavera A, Spilani L, Tejero-Cicuéndez H, Crochet PA, Piris A, García-Cardenete L, Busais S, Els J, Shobrak M, Brito JC, Šmíd J, Carranza S, Martínez-Freiría F. Hidden in the sand: Phylogenomics unravel an unexpected evolutionary history for the desert-adapted vipers of the genus Cerastes. Mol Phylogenet Evol 2024; 191:107979. [PMID: 38040070 DOI: 10.1016/j.ympev.2023.107979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
The desert vipers of the genus Cerastes are a small clade of medically important venomous snakes within the family Viperidae. According to published morphological and molecular studies, the group is comprised by four species: two morphologically similar and phylogenetically sister taxa, the African horned viper (Cerastes cerastes) and the Arabian horned viper (Cerastes gasperettii); a more distantly related species, the Saharan sand viper (Cerastes vipera), and the enigmatic Böhme's sand viper (Cerastes boehmei), only known from a single specimen in captivity allegedly captured in Central Tunisia. In this study, we sequenced one mitochondrial marker (COI) as well as genome-wide data (ddRAD sequencing) from 28 and 41 samples, respectively, covering the entire distribution range of the genus to explore the population genomics, phylogenomic relationships and introgression patterns within the genus Cerastes. Additionally, and to provide insights into the mode of diversification of the group, we carried out niche overlap analyses considering climatic and habitat variables. Both nuclear phylogenomic reconstructions and population structure analyses have unveiled an unexpected evolutionary history for the genus Cerastes, which sharply contradicts the morphological similarities and previously published mitochondrial approaches. Cerastes cerastes and C. vipera are recovered as sister taxa whilst C. gasperettii is a sister taxon to the clade formed by these two species. We found a relatively high niche overlap (OI > 0.7) in both climatic and habitat variables between C. cerastes and C. vipera, contradicting a potential scenario of sympatric speciation. These results are in line with the introgression found between the northwestern African populations of C. cerastes and C. vipera. Finally, our genomic data confirms the existence of a lineage of C. cerastes in Arabia. All these results highlight the importance of genome-wide data over few genetic markers to study the evolutionary history of species.
Collapse
Affiliation(s)
| | - Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | - Margarida Isabel Barros
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Guillermo Velo-Antón
- Universidad de Vigo, Facultad de Biología, Edificio de Ciencias Experimentales, Bloque B, Planta 2, Laboratorio 39 (Grupo GEA), E-36310 Vigo, Spain
| | - Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Loukia Spilani
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Alberto Piris
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Luis García-Cardenete
- Agencia de Medio Ambiente y Agua de Andalucía, C/Johan G. Gutenberg, 1, 41092 Seville, Spain
| | - Salem Busais
- Department of Biology, Faculty of Education, Aden University, Yemen
| | - Johannes Els
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Mohammed Shobrak
- National Center for Wildlife, Prince Saud Al Faisal Wildlife Research Centre, Taif, Saudi Arabia
| | - José Carlos Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jiří Šmíd
- Department of Zoology, Faculty of Science, Charles University, Vinicná 7, Prague, Czech Republic
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
3
|
Tejero-Cicuéndez H, Simó-Riudalbas M, Menéndez I, Carranza S. Ecological specialization, rather than the island effect, explains morphological diversification in an ancient radiation of geckos. Proc Biol Sci 2021; 288:20211821. [PMID: 34933601 PMCID: PMC8692960 DOI: 10.1098/rspb.2021.1821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Island colonists are often assumed to experience higher levels of phenotypic diversification than continental taxa. However, empirical evidence has uncovered exceptions to this 'island effect'. Here, we tested this pattern using the geckos of the genus Pristurus from continental Arabia and Africa and the Socotra Archipelago. Using a recently published phylogeny and an extensive morphological dataset, we explore the differences in phenotypic evolution between Socotran and continental taxa. Moreover, we reconstructed ancestral habitat occupancy to examine if ecological specialization is correlated with morphological change, comparing phenotypic disparity and trait evolution between habitats. We found a heterogeneous outcome of island colonization. Namely, only one of the three colonization events resulted in a body size increase. However, in general, Socotran species do not present higher levels or rates of morphological diversification than continental groups. Instead, habitat specialization explains better the body size and shape evolution in Pristurus. Particularly, the colonization of ground habitats appears as the main driver of morphological change, producing the highest disparity and evolutionary rates. Additionally, arboreal species show very similar body size and head proportions. These results reveal a determinant role of ecological mechanisms in morphological evolution and corroborate the complexity of ecomorphological dynamics in continent-island systems.
Collapse
Affiliation(s)
- Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Marc Simó-Riudalbas
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Iris Menéndez
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, C/José Antonio Novais 12, Madrid 28040, Spain
- Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), C/Severo Ochoa 7, Madrid 28040, Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| |
Collapse
|
4
|
Tejero-Cicuéndez H, Patton AH, Caetano DS, Šmíd J, Harmon LJ, Carranza S. Reconstructing Squamate Biogeography in Afro-Arabia Reveals the Influence of a Complex and Dynamic Geologic Past. Syst Biol 2021; 71:261-272. [PMID: 33787928 PMCID: PMC8830062 DOI: 10.1093/sysbio/syab025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
The geographic distribution of biodiversity is central to understanding evolutionary biology. Paleogeographic and paleoclimatic histories often help to explain how biogeographic patterns unfold through time. However, such patterns are also influenced by a variety of other factors, such as lineage diversification, that may affect the probability of certain types of biogeographic events. The complex and well-known geologic and climatic history of Afro-Arabia, together with the extensive research on reptile systematics in the region, makes Afro-Arabian squamate communities an ideal system to investigate biogeographic patterns and their drivers. Here we reconstruct the phylogenetic relationships and the ancestral geographic distributions of several Afro-Arabian reptile clades (totaling 430 species) to estimate the number of dispersal, vicariance and range contraction events. We then compare the observed biogeographic history to a distribution of simulated biogeographic events based on the empirical phylogeny and the best-fit model. This allows us to identify periods in the past where the observed biogeographic history was likely shaped by forces beyond the ones included in the model. We find an increase in vicariance following the Oligocene, most likely caused by the fragmentation of the Afro-Arabian plate. In contrast, we did not find differences between observed and expected dispersal and range contraction levels. This is consistent with diversification enhanced by environmental processes and with the establishment of a dispersal corridor connecting Africa, Arabia and Eurasia since the middle Miocene. Finally, here we show that our novel approach is useful to pinpoint events in the evolutionary history of lineages that might reflect external forces not predicted by the underlying biogeographic model.
Collapse
Affiliation(s)
- Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, Spain
| | - Austin H Patton
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Daniel S Caetano
- Department of Ecology, University of São Paulo, São Paulo, Brazil.,Department of Biological Sciences, Towson University, Towson, MD, 21252, USA
| | - Jiří Šmíd
- Department of Zoology, National Museum, Cirkusová 1740, 19300, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12844, Prague, Czech Republic
| | - Luke J Harmon
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, Spain
| |
Collapse
|